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Abstract

Background: Increasingly in network meta-analysis (NMA), there is a need to incorporate non-randomised evidence
to estimate relative treatment effects, and in particular in cases with limited randomised evidence, sometimes
resulting in disconnected networks of treatments. When combining different sources of data, complex NMA methods
are required to address issues associated with participant selection bias, incorporating single-arm trials (SATs), and
synthesising a mixture of individual participant data (IPD) and aggregate data (AD). We develop NMA methods which
synthesise data from SATs and randomised controlled trials (RCTs), using a mixture of IPD and AD, for a dichotomous
outcome.

Methods: We propose methods under both contrast-based (CB) and arm-based (AB) parametrisations, and extend
the methods to allow for both within- and across-trial adjustments for covariate effects. To illustrate the methods, we
use an applied example investigating the effectiveness of biologic disease-modifying anti-rheumatic drugs for
rheumatoid arthritis (RA). We applied the methods to a dataset obtained from a literature review consisting of 14 RCTs
and an artificial dataset consisting of IPD from two SATs and AD from 12 RCTs, where the artificial dataset was created
by removing the control arms from the only two trials assessing tocilizumab in the original dataset.

Results: Without adjustment for covariates, the CB method with independent baseline response parameters
(CBunadjInd) underestimated the effectiveness of tocilizumab when applied to the artificial dataset compared to the
original dataset, albeit with significant overlap in posterior distributions for treatment effect parameters. The CB
method with exchangeable baseline response parameters produced effectiveness estimates in agreement with
CBunadjInd, when the predicted baseline response estimates were similar to the observed baseline response. After
adjustment for RA duration, there was a reduction in across-trial heterogeneity in baseline response but little change
in treatment effect estimates.
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Conclusions: Our findings suggest incorporating SATs in NMA may be useful in some situations where a treatment is
disconnected from a network of comparator treatments, due to a lack of comparative evidence, to estimate relative
treatment effects. The reliability of effect estimates based on data from SATs may depend on adjustment for covariate
effects, although further research is required to understand this in more detail.

Keywords: Evidence synthesis, Network meta-analysis, Single-arm trials, Individual participant data, Arm-based
methods, Bayesian hierarchical methods, Rheumatoid arthritis, Observational evidence

Background
Traditionally, meta-analysis of randomised controlled tri-
als (RCTs) has been used to quantitatively pool published
evidence on the effectiveness of a treatment, or a network
of treatments through network meta-analysis (NMA),
across trials with similar characteristics (e.g. patient pop-
ulation, trial design and conduct) [1–3]. In the published
literature, results from a trial are usually reported as
aggregate data (AD) summarising the average treatment
effect. Synthesising evidence from RCTs has been consid-
ered a gold standard as randomised treatment allocation
minimises the risk of confounding in treatment effect
estimates.
In circumstances where randomised evidence is limited,

non-randomised evidence, such as data from single-arm
trials (SATs), may have to be considered in determin-
ing treatment effectiveness [4]. Such cases are becoming
increasingly common in health technology assessment
(HTA), as new technologies receive accelerated approval
from regulatory agencies based on SATs leading to dis-
connected networks of treatments [5]. This creates an
issue for reimbursement decision-making by HTA bod-
ies where the interest is in unbiased estimates of rela-
tive treatment effects. Consequently, there is a need for
synthesis methods which combine randomised and non-
randomised evidence, whilst addressing issues associated
with the latter, such as susceptibility to confounding and
the lack of evidence from a comparator arm in the case of
SATs [6].
For a particular trial, individual participant data (IPD)

may be available recording the effect of the treatment
on outcomes of interest, as well as a set of covariates,
for each participant. Meta-analysis incorporating IPD has
been shown to overcome issues associated with detecting
treatment-covariate interactions, and prognostic effects,
compared to a meta-regression of AD only [7, 8]. More-
over, it accounts for variability in covariate values across
participants within a trial, allowing within- and across-
trial interactions to be estimated separately which miti-
gates the risk of aggregation bias [9, 10]. However, the
availability of IPD is often subject to a data-sharing agree-
ment with the trial sponsor which often involves a lengthy,
complex process due to regulatory considerations (e.g.
data protection and privacy). Furthermore, access to IPD

may be particularly challenging when data are required
from a number of trials, and for trials assessing different
treatments developed by different manufacturers. Conse-
quently, IPD are unlikely to be available for all trials in
the synthesis and methods have been developed which
combine a mixture of IPD and AD [11–14]. Population-
adjustment methods have been developed to estimate a
relative treatment effect for the specific situation where
IPD are available for a trial assessing a particular treat-
ment and only AD are available for another trial assessing
a comparator, which is a common occurrence in HTA
[15]. Such methods make the assumption that the treat-
ment effect is equivalent in the two study populations at
each level of a set of effect modifiers [16]. More recently,
multilevel network meta-regression methods have been
proposed which extend the population-adjustment meth-
ods beyond the two-study case, and also avoid the issue
of aggregation bias by using IPD to inform the covari-
ate distributions in the ADmodel [17]. Similarly, methods
have been proposed which use IPD to estimate regres-
sion coefficients for effect modifiers, and synthesise IPD
and AD via either a hierarchical model or by constructing
empirical prior distributions [18].
Extensions to meta-analysis, which allow the synthesis

of SATs and RCTs, have been proposed which assume that
baseline response parameters are exchangeable (rather
than independent) across trials [19]. This approach has
been developed to a NMA context using a mixture of
IPD and AD and a contrast-based approach to NMA [20].
Arm-based NMA methods, which parametrise absolute
treatment effects across trial arms, also allow SATs to
be incorporated into a synthesis of RCTs in a pairwise
meta-analysis [21] and a NMA context [22, 23]. Under
a Bayesian framework, these methods allow data from
SATs to provide information on the pooled treatment
effect and between-study heterogeneity parameters via a
prior distribution, and can be down-weighted according
to commensurability with RCT data [24]. These meth-
ods have been criticised for compromising randomised
treatment allocation and introducing bias in treatment
effect estimates from RCTs [25, 26]. However, they may
be helpful to include when the only evidence available for
a treatment is from SATs, and the increase in risk of bias
associated with the exchangeability assumption may have
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little impact in practice [27, 28]. Alternative methods seek
to match similar trial arms based on reported characteris-
tics and either entering the matched pairs into the NMA
directly or by plugging-in the baseline response estimate
from amatched trial to estimate a relative treatment effect
from SATs [29, 30].
In this paper, we develop methods to synthesise SATs

and two-arm RCTs, using a mixture of IPD and AD, for
a dichotomous outcome. We consider methods with and
without adjustment for a covariate effect. We build on
contrast- and arm-based NMAmethods [22, 23] to incor-
porate SATs, and use shared-parameters to synthesise IPD
and AD [13, 14]. We apply the developed methods using
mixture of IPD and AD from RCTs assessing the effective-
ness of biologic disease-modifying anti-rheumatic drugs
(bDMARDs) as treatments for rheumatoid arthritis (RA),
as an applied example. We describe the IPD and AD
datasets used in the applied example in “Applied example:
assessing biologics for treating rheumatoid arthritis (RA)”
section, before detailing themethods for a Bayesian imple-
mentation in “Methods” section, and reporting the results
from the application in “Results” section. In “Discussion”
section, we discuss issues related to the use of themethods
and suggest how these can be investigated further.

Applied example: assessing biologics for treating
rheumatoid arthritis (RA)
In this paper, we consider a case-study in rheumatoid
arthritis (RA); a chronic auto-immune condition caus-
ing joint inflammation in (mostly) elderly patients. The
American College of Rheumatology (ACR) response cri-
teria provide a measure of patient response to treatment,
with an ACR20 outcome representing a 20% improvement
in RA symptoms as defined by the criteria [31]. A num-
ber of bDMARDs (hereafter referred to as biologics) have
been developed to offer a choice of treatment strategies in
managing the disease [32].
Table 1 summarises the original dataset used in the

applied example. Data were available from 14 RCTs, each
assessing the effectiveness of a first-line biologic versus
placebo as treatment for RA, with 5,821 participants in
total. In 9 trials, a biologic was allocated to multiple trial
arms (ranging from two to four arms) in order to assess
different dosage regimens. For this applied example, these
data were aggregated and considered as from a single trial
arm. There was not significant variability in dosage regi-
mens across trials assessing a particular biologic. All trial
arms consisted of participants receiving methotrexate as
background therapy. IPD were available for two trials of
tocilizumab [33, 34], whilst only AD were available for the
remaining trials [35–49]. An ACR20 response was consid-
ered as an outcome to measure treatment effectiveness,
with IPD providing responder status for each participant
and AD providing the number of participants achieving

a response in each trial arm. We considered RA duration
(in years) as a covariate in our models, as there was evi-
dence of an association between baseline response and RA
duration present in the exploratory analysis of the IPD.
Table 1 lists the mean RA duration at baseline in each
trial arm.
Figure 1 illustrates the network structure in terms of

the evidence available for each treatment comparison. The
network consists of trials assessing four biologics; inflix-
imab, tocilizumab, golimumab, and adalimumab. Each
trial compared a biologic therapy versus placebo, and
there were no trials comparing biologics head-to-head.
In this paper, we consider methods which can be applied

to synthesise data from SATs and RCTs, in a NMA
context. For the applied example, an artificial dataset
was created by removing the placebo arms from the
two tocilizumab trials. As a result, the artificial dataset
included two SATs assessing tocilizumab. The aim of the
synthesis was to compare the effectiveness of tocilizumab
with infliximab, golimumab, and adalimumab, in terms of
the ACR20 outcome.

Methods
In this section, we describe Bayesian NMA methods used
to synthesise data from SATs and two-arm RCTs, under
both contrast- and arm-based model parametrisations.
We focus on one-stage methods which synthesise IPD
and AD in a single model, as opposed to two-stage meth-
ods where IPD are first aggregated and then synthesised
with AD. We assume data are available as IPD from NIPD

SATs followed by AD from NAD two-arm RCTs, and let
j = 1, ...,NIPD, ...,NIPD + NAD index both trial sets. We
start by describing the likelihood functions used to model
a dichotomous outcome using IPD and AD, then describe
methods under a contrast-based parametrisation, fol-
lowed by methods under an arm-based parametrisation.
Under each parametrisation, we describe methods with-
out adjustment for covariates and methods which include
a covariate to adjust for its effect.

Likelihoodmodels for a dichotomous outcome
Let Yijk represent a dichotomous outcome indicating
responder status (i.e. responder 1, non-responder 0) for
participant i in trial j assigned to treatment k. Then, for
trials from which IPD are available, we assume that the
outcome Yijk is a Bernoulli random variable,

Yijk ∼ Bern(pijk), j = 1, ...,NIPD; (1)

where pijk represents the probability of response for each
participant.
Similarly, let njk and rjk represent the numbers of par-

ticipants and responders, respectively, in trial j allocated
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Table 1 Summary (arm-level) data from RCTs assessing biologic therapies as treatments for RA, (N - number of participants, ACR20 (%)
- percent of ACR20 responders)

Trial Lead author Year Data type Intervention N ACR20 (%) Mean RA duration (years)

1 Genovese 2008 IPD Tocilizumab 803 60.8 9.8

1 Genovese 2008 IPD Placebo 413 24.5 9.8

2 Smolen 2008 IPD Tocilizumab 418 53.1 7.4

2 Smolen 2008 IPD Placebo 204 26.5 7.8

3 Maini 1999 AD Infliximab 340 57.4 8.3

3 Maini 1999 AD Placebo 88 22.7 8.9

4 Weinblatt 2003 AD Adalimumab 209 60.3 12.7

4 Weinblatt 2003 AD Placebo 62 14.5 11.1

5 Keystone 2004 AD Adalimumab 419 62.1 11.0

5 Keystone 2004 AD Placebo 200 29.5 10.9

6 Chen 2008 AD Adalimumab 35 54.3 6.2

6 Chen 2008 AD Placebo 12 33.3 8.3

7 Kay 2008 AD Golimumab 137 61.3 7.9

7 Kay 2008 AD Placebo 35 37.1 5.6

8 Keystone 2009 AD Golimumab 178 59.6 5.6

8 Keystone 2009 AD Placebo 133 27.8 6.5

9 Kremer 2010 AD Golimumab 257 43.6 8.8

9 Kremer 2010 AD Placebo 129 24.8 7.4

10 Schiff 2011 AD Infliximab 165 59.4 7.3

10 Schiff 2011 AD Placebo 110 41.8 8.4

11 Emery 2013 AD Golimumab 318 61.6 3.5

11 Emery 2013 AD Placebo 160 49.4 2.9

12 Kim 2013 AD Infliximab 71 50.7 9.8

12 Kim 2013 AD Placebo 72 30.6 7.4

13 Tanaka 2013 AD Golimumab 173 72.8 8.4

13 Tanaka 2013 AD Placebo 88 33.0 8.7

14 Weinblatt 2013 AD Golimumab 395 58.5 6.9

14 Weinblatt 2013 AD Placebo 197 24.9 7.0

treatment k. Then, for trials fromwhich only AD are avail-
able, the number of responders in each arm rjk is assumed
to follow a Binomial distribution,

rjk ∼ Bin(njk , pjk), j = NIPD + 1, ...,NIPD + NAD; (2)

where pjk is the probability of response in each trial arm.
For both data-types, we employ the logit link function to
transform response probabilities onto the linear predic-
tor scale on which treatment effects can be assumed to be
linearly additive.
The number of responders in each arm rjk is the sum

over the participant-level Bernoulli outcomes Yijk , which
are assumed to be identically-distributed. If there are
unobserved participant-level covariates which influence
the individual response probabilities pijk , then the cor-
responding outcomes Yijk are unlikely to be identically-

distributed. Thus, the AD likelihood in Eq. (2) is the cor-
rect aggregate version of the IPD likelihood in Eq. (1) only
if there are no important unobserved participant-level
covariates.

Contrast-based (CB) methods
Here, we describe methods under a contrast-based
parametrisationwhere treatment effects are expressed rel-
ative to a baseline response (i.e. the outcome observed in
the control arm). We denote B as index for the baseline
treatment in each trial.

Methods without covariates
We start by describing methods which only model the
response data and do not include data on covariates, as
an intermediate step so that it is clear how these meth-
ods can be extended to incorporate covariate adjust-



Singh et al. BMCMedical ResearchMethodology          (2022) 22:186 Page 5 of 17

infliximab

placebo

adalimumab

tocilizumab

golimumab

333333333

333333333

222222222

666666666

Fig. 1 Network diagram representing number of RCTs assessing
biologics as treatments for RA, IPD were available for the two trials
assessing tocilizumab

ment in “Methods with covariate-adjustment” section.
The IPD and ADmodels are equivalent, but are described
separately to clarify how shared-parameters allow both
datasets to contribute to the estimation of the treatment
effect.
For IPD, the model is given by,

logit(pijk) = φj + δjBk × Iijk , j = 1, ...,NIPD; (3)

where φj represents the log odds of a response on the base-
line treatment B in trial j, δjBk is the log odds ratio of effect
on treatment k relative to B, and Iijk is a participant-level
treatment indicator variable (i.e. treatment 1, baseline 0).
Similarly, for AD, the model can be written as,

logit(pjk) = φj + δjBk × Ijk ,
j = NIPD + 1, ...,NIPD + NAD;

(4)

where φj and δjBk have the same interpretation as for the
IPD model (3), and Ijk is an arm-level treatment indicator
variable.
The treatment effects δjBk are assumed to be exchange-

able across trials comparing treatment k with B,

δjBk ∼ N
(
dBk , σ 2) , j = 1, ...,NIPD + NAD; (5)

with dBk representing the pooled log odds ratio. The
between-study heterogeneity in the treatment effects is
quantified by the standard deviation parameter σ . Here, σ
is assumed to be common across treatment comparisons
as we consider methods for application in cases where
data are limited.
The pooled effects dBk can be represented in terms of

basic parameters by assuming consistency within the net-
work dBk = d1k − d1B (d11 = 0). Thus, effect estimates

can be obtained indirectly for treatment comparisons for
which there are no trials providing a head-to-head esti-
mate. We place a non-informative Normal prior distribu-
tion on each of the basic parameters d1k ∼ N

(
0, 102

)
and

the baseline response parameters φj ∼ N
(
0, 102

)
. Hong

et al. place a non-informative Uniform prior distribu-
tion for the between-study heterogeneity parameter, σ ∼
U(0, 10). However, we note that this prior distribution
may be weakly-informative in a synthesis with few trials
[50] and σ ∼ U(0, 2) has been recommended as a more
appropriate prior distribution [51] which we use here (The
results of a sensitivity analysis using σ ∼ U(0, 10) are
reported in Appendix E for comparison).
Traditionally, NMA methods have been applied to syn-

thesise data from RCTs which assume independent base-
line response parameters φj [3]. This accounts for differ-
ences in prognostic factors between trials, and ensures
that the impact of randomised treatment allocation is
reflected in the treatment effect estimates. However, such
an approach is restricted to trials with two or more arms
and the interest here is to incorporate data from SATs
into the synthesis. Therefore, we assume exchangeable
baseline response parameters as in [19],

φj ∼ N
(
mφ , σ 2

φ

)
, j = 1, ...,NIPD + NAD; (6)

where mφ represents the mean baseline response, and
σφ quantifies between-study heterogeneity in the base-
line response. The benefit of this assumption is that it
allows a baseline response to be predicted, and a treat-
ment effect to be estimated, for each SAT in the synthesis
so that pooled estimates are based on all of the available
evidence. The cost of this assumption is that randomi-
sation is compromised for RCTs in the synthesis, which
will bias treatment effect estimates where there is sig-
nificant between-study heterogeneity (which may be due
to differences in prognostic factors) in baseline response
estimates. We specify a non-informative Normal prior
distribution for the mean baseline response parameter
mφ ∼ N

(
0, 102

)
, and a non-informative Uniform prior

distribution for the between-study heterogeneity param-
eter σφ ∼ U(0, 2). We label the methods with indepen-
dent and exchangeable baseline response parameters by
CBunadjInd and CBunadjEx, respectively.
Alternatively, the CBunadjInd method can be imple-

mented in two stages to predict baseline response esti-
mates for SATs in the synthesis, whilst maintaining the
effects of randomisation and limiting bias in treatment
effect estimates for RCTs. In the first stage, the CBunad-
jEx method is applied to the data from the set of RCTs in
the synthesis. The posterior estimates for the mean and
standard deviation parameters (i.e. m̂φ and σ̂φ), describ-
ing the distribution of the baseline response across RCTs,
are recorded. In the second stage, theCBunadjIndmethod



Singh et al. BMCMedical ResearchMethodology          (2022) 22:186 Page 6 of 17

is applied to synthesise SATs and RCTs, where an infor-
mative Normal prior distribution is placed on the baseline
response parameters corresponding to SATs (i.e. φj ∼
N

(
m̂φ , σ̂ 2

φ

)
). This prior distribution is informed by the

posterior estimates recorded from the first stage of the
method, which is equivalent to using the posterior pre-
dictive distribution of the baseline response across RCTs.
The posterior predictive distribution, as opposed to the
posterior distribution, is recommended by Dias et al.
to account for between-study heterogeneity [52]. Ulti-
mately, pooled treatment effect estimates, and inference,
are based only on the second stage of the method. Thus,
SATs are incorporated into the synthesis and contribute to
the pooled treatment effect estimates, whilst the assump-
tion of independent baseline response parameters ensures
randomisation in RCTs is not compromised.

Methods with covariate-adjustment
Study-level adjustment only Here, we consider meth-
ods which include a covariate to adjust the baseline
response. We begin by extending the CBunadjEx method
to adjust for a covariate at the trial-level, and let x̄j rep-
resent the mean covariate value summarising participants
in trial j. We use the superscripts A and W to denote
across- and within-trial effects, respectively. For IPD, the
extended model is given by,

logit(pijk) = φj + αA × x̄j + δjBk × Iijk , j = 1, ...,NIPD;
(7)

where φj represents the log odds of response on base-
line treatment B when x̄j is equal to zero, and αA is the
change in the log odds for a unit increase in x̄j. Thus,
αA represents a trial-level covariate effect, accounting for
the association between the baseline response φj and the
mean covariate x̄j, across trials. Here, there is no adjust-
ment for the interaction between the relative treatment
effect and the mean covariate, and so δjBk represents a
marginal treatment effect.
Similarly, for AD, the extended model can be described

by,

logit(pjk) = φj + αA × x̄j + δjBk × Ijk ,
j = NIPD + 1, ...,NIPD + NAD;

(8)

where φj and αA have the same interpretation as for the
IPD model (7). A non-informative Normal prior distribu-
tion is recommended for the across-trial covariate effect
parameter αA ∼ N(0, 102), and we label this method
CBadjEx.

Participant-level and study-level adjustment In this
paper, we consider methods to synthesise a mixture
of IPD and AD. IPD allows participant-level and trial-
level covariate effects to be estimated separately, avoiding

aggregation bias which may occur when the assumption
that these effects are equivalent does not hold [8]. We
extend the CBadjEx method in Eq. (7) to adjust for the
covariate both at the participant-level and the trial-level.
We let xijk represent the covariate value for participant i in
trial j allocated treatment k. For IPD, the extended model
is given by,

logit(pijk) = φj + αA × x̄j + αW × (
xijk − x̄j

) + δjBk × Iijk ,
j = 1, ...,NIPD;

(9)

where αW is the change in the log odds of a response
on baseline treatment B for a unit increase in

(
xijk − x̄j

)
.

Thus, αW represents a common (participant-level) covari-
ate effect within a trial. A non-informative Normal prior
distribution is recommended for within-trial covariate
effect parameter αW ∼ N

(
0, 102

)
, and we label this

method CBadjEbEx (where Eb denotes that this method
accounts for ecological aggregation bias - the difference
between the across- and within-trial covariate effects).

Arm-based (AB) methods
Hong et al. have proposed NMA models under an
arm-based parametrisation, where treatment effects are
expressed as the absolute effects across trial arms, using
either IPD [22] or AD [23]. Here, we extend their models
to synthesise a mixture of IPD and AD.

Methods without covariates
We begin by describing models with outcome data only.
For IPD, the model is given by,

logit(pijk) = θk + νjk , j = 1, ...,NIPD; (10)

where θk represents the pooled log odds of response on
treatment k, and νjk are error terms (i.e. the difference
between the log odds of response on treatment k in trial
j and the pooled log odds of response on treatment k).
A non-informative Normal prior distribution is suggested
for each pooled response parameter θk ∼ N

(
0, 102

)
.

Similarly, for AD, the model is described by,

logit(pjk) = θk + νjk , j = NIPD + 1, ...,NIPD + NAD;
(11)

where θk and νjk have the same interpretation as for the
IPD model (10).
The error terms νjk are assumed to be exchangeable

across trials,

νjk ∼ N
(
0, τ 2

)
, j = 1, ...,NIPD + NAD; (12)

where τ quantifies the between-study heterogeneity and
is assumed to be common. A non-informative Uniform
prior distribution is recommended for the between-study
heterogeneity parameter τ ∼ U(0, 2).
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The application in this paper considers a synthesis of
SATs and two-arm RCTs, and we make an additional
assumption regarding the heterogeneity observed in the
latter. For each two-arm RCT, we let k1 and k2 denote the
treatment assigned in arms 1 and 2, respectively. Then, the
error terms are assumed to follow a bivariate distribution,

(
νjk1
νjk2

)
∼ N

((
0
0

)
,�k1k2 =

(
τ 2 ρτ 2

ρτ 2 τ 2

))
,

j = NIPD + 1, ...,NIPD + NAD;
(13)

with covariance matrix �k1k2 . The responses observed in
arms from RCTs are likely to be similar (compared to two
SATs), due to the balance in prognostic factors achieved
by randomised treatment allocation [53]. The similarity is
represented by a common distribution, which is a bivari-
ate distribution in the case of data from two-arm RCTs,
accounting for the correlation between treatment arms. A
non-informative Uniform prior distribution is suggested
for the correlation parameter in the covariance matrix
ρ ∼ U(−1, 1). We label this method as ABunadj.

Methods with covariate-adjustment
Study-level adjustment only Here, we extend the
ABunadj method to allow adjustment for a covariate. We
begin by adjusting the absolute treatment effect in each
arm for the average value of the covariate x̄jk across partic-
ipants in trial j and treatment arm k. For IPD, the extended
model is given by,

logit(pijk) = θk + νjk + βA × x̄jk , j = 1, ...,NIPD; (14)

where θk represents the pooled log odds of response to
treatment k when x̄jk is equal to zero, and βA is the change
in the pooled log odds for a unit increase in x̄jk . Thus,
βA represents the covariate effect across trial arms. Under
the arm-based parametrisation, we follow the approach
by Hong et al. and adjust for the arm-level mean covari-
ate to account for differences between arms within each
trial, in addition to differences between trials [22]. In
some cases, data on the arm-level mean covariate x̄jk may
not be available from the published trial report, in which
case adjustment would be restricted to the reported mean
trial-level covariate x̄j.
Similarly, for AD, the extended model can be written as,

logit(pjk) = θk + νjk + βA × x̄jk ,
j = NIPD + 1, ...,NIPD + NAD;

(15)

where θk and βA have the same interpretation as for
the IPD model (14). We suggest a non-informative Nor-
mal prior distribution for the arm-level covariate effect
parameter βA ∼ N(0, 102), and we label this method
ABadj.

Participant-level and study-level adjustment In a sim-
ilar way to that described for the contrast-based methods,
the covariate effect at the participant-level may differ
from the effect at the arm-level. To avoid the aggrega-
tion bias which is introduced as a result of this difference,
we extend the ABadj method in Eq. (14) to separate the
across- and within-trial covariate effects. For IPD the
extended model is given by,

logit(pijk) = θk + νjk + βA × x̄jk + βW × (
xijk − x̄jk

)
,

j = 1, ...,NIPD;
(16)

where βW represents the change in the pooled log
odds for a unit increase in

(
xijk − x̄jk

)
. We place a

non-informative Normal distribution on the within-trial
covariate effect parameter βW ∼ N(0, 102). We label this
method ABadjEb.

Implementation and software
All methods were applied by fitting models in Stan
[54], using Markov chain Monte Carlo (MCMC) sam-
pling to estimate Bayesian posterior distributions for
model parameters. Each implementation consisted of four
MCMC chains, where 1,000 iterations were used as an
initial burn-in period for each chain. Posterior estimates
were based on 1,000 samples per chain, and checked
for sensitivity to changes in initial values. The effective
sample size and R̂ statistics were extracted for an initial
assessment to identify signs of chain non-convergence,
and further checks were made by inspecting trace and
autocorrelation plots [55].

Results
In this section, we report the results from applying the
methods described in “Methods” section to the datasets
described in “Applied example: assessing biologics for
treating rheumatoid arthritis (RA)” section. All meth-
ods were applied to both the original dataset (consisting
of 14 RCTs) and the artificial dataset (consisting of two
SATs and 12 RCTs from the original dataset). In tables
and figures, where a method was applied to the orig-
inal dataset it is labelled with the suffix 1, and where
it was applied to the artificial dataset it is labelled with
the suffix 2 (e.g. the contrast-based unadjusted method
with independent baseline response parameters applied
to the original dataset is labelled CBunadjInd1). Under
the contrast-based parametrisation, the methods require
a reference treatment to be specified for which we chose
placebo. We report the results for the methods without
covariates first, and then report the results from apply-
ing the methods with adjustment on the baseline response
using RA duration (years) as a covariate.
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Methods without covariates
Contrast-basedmethods
The contrast-based methods without adjustment for
covariates are described in “Methods without covariates”
section, and consist of the methods with independent and
exchangeable baseline response parameters, CBunadjInd
and CBunadjEx, respectively. Figure 2 presents the pos-
terior median and 95% credible interval (CrI) estimates
for the basic parameters d1k , representing log odds ratios
(ORs) comparing biologics versus placebo in terms of the
ACR20 outcome, for each method when applied to the
original and artificial datasets.
Considering the application to the original dataset first,

the CBunadjInd method estimates the OR comparing
tocilizumab versus placebo to be 3.94 (95%CrI: 1.99, 8.25).
This indicates that, in the population represented by the
set of trials in the synthesis, a random sample of par-
ticipants allocated tocilizumab have on average almost
four times the odds of achieving an ACR20 response
compared to a similar sample of participants allocated

placebo. When the CBunadjInd method was applied to
the artificial dataset, using a two-stage approach (see final
paragraph in “Methods without covariates” section), the
OR was estimated to be 3.10 (1.34, 6.82). This suggests
that the effectiveness of tocilizumab is underestimated
in the artificial dataset compared to the original dataset,
albeit with significant overlap in CrIs. This result can
be explained by the difference in the observed baseline
response in the original dataset and the baseline response
predicted by the CBunadjIndmethod when applied to the
artificial dataset. Figure A.1 (Appendix A) presents the
posterior estimates of the baseline response parameters φj
representing the log odds of achieving an ACR20 response
on placebo in each trial. For trials one and two, assess-
ing tocilizumab versus placebo, the predicted baseline
response overestimates the observed baseline response
in the original dataset, which inversely impacts the basic
parameter estimates.
Considering the application to the original dataset,

the CBunadjEx method estimates the OR comparing

golimumab

adalimumab

infliximab

tocilizumab

0.0 2.5 5.0 7.5 10.0
Odds ratio scale (vs. placebo)
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CBunadjInd1

CBunadjEx1

CBunadjInd2

CBunadjEx2

Basic parameter estimates, d1k

Fig. 2 Posterior median and 95% credible interval estimates for log odds ratios comparing each biologic versus placebo in terms of the ACR20
outcome, for contrast-based methods without covariates



Singh et al. BMCMedical ResearchMethodology          (2022) 22:186 Page 9 of 17

tocilizumab versus placebo to be 3.86 (2.20, 6.89). This
estimate is in agreement with the estimate from the
CBunadjInd method applied to the original dataset, indi-
cating that the exchangeability assumption had little
impact on the baseline response estimates. Figure A.1
(Appendix A) confirms that there is little difference in
baseline response estimates between CBunadjInd and
CBunadjEx for trials one and two. When applied to
the artificial dataset, CBunadjEx estimates the OR to be
3.10 (1.40, 6.96). This result is consistent with the esti-
mate from applying CBunadjInd to the artificial dataset
using the two-stage approach, but underestimates the
OR in the original dataset. This suggests that the dis-
agreement in the effect estimates for tocilizumab is due
to the difference between the observed and predicted
baseline response estimates, and that the exchangeabil-
ity assumption had little impact on the results. There
is significant overlap in the CrIs corresponding to the
effect estimates across all applications, which indicates
that the disagreement introduced by using data from
SATs (i.e. removing data from an RCT control arm)
is relatively limited for this example. Figure 2 also
shows that uncertainty increases in treatment effect esti-
mates corresponding to tocilizumab when the control
arms are removed, but there is no change in uncer-
tainty for the effect estimates corresponding to the other
treatments.
Figure 2 suggests that the exchangeability assumption

has a greater impact on effect estimates for adalimumab.
Considering the application to the original dataset, the
CBunadjInd method estimates an OR of 4.90 (2.39, 9.78)
for adalimumab versus placebo. In contrast, the CBunad-
jExmethod estimates an OR of 4.18 (2.44, 7.17). A similar
disagreement is observed in the artificial dataset where
the CBunadjInd method estimates an OR of 4.81 (2.34,
9.78), whilst CBunadjEx estimates an OR of 4.10 (2.34,
6.96). This indicates that the exchangeability assumption
introduces a disagreement in the effect estimates for adal-
imumab in both datasets. Figure A.1 (Appendix A) shows
that the baseline response estimates corresponding to tri-
als assessing adalimumab versus placebo (in particular, tri-
als four and six) are significantly shifted toward the mean
baseline response (represented by the dashed-line). This
suggests that the exchangeability assumption can lead to
disagreement in effect estimates, particularly where there
is significant between-study heterogeneity in baseline
response estimates. It follows that adjusting the baseline
response by including covariates, to account for between-
study heterogeneity, could mitigate disagreement in effect
estimates introduced by the exchangeability assumption.
Despite evidence of disagreement in effect estimates there
is significant overlap in CrIs, suggesting that the impact
of assuming exchangeability is relatively limited for this
example.

Arm-basedmethods
The arm-based method without covariate-adjustment
ABunadj is described in “Methods without covariates”
section. Figure 3 presents the posterior median and 95%
CrI estimates for the pooled absolute effects θk repre-
senting the log odds of achieving an ACR20 outcome
associated with each intervention.
Considering the application to the original dataset first,

ABunadj estimates the pooled log odds on placebo to be
-0.88 (-1.10, -0.67). This implies that, in a population rep-
resented by the trials in the synthesis, a random sample
of participants allocated placebo would on average have
a probability of achieving an ACR20 response of 0.29
(0.25, 0.34). For tocilizumab, the pooled log odds is esti-
mated to be 0.33 (-0.17, 0.81), which corresponds to a
response probability of 0.58 (0.46, 0.69). This suggests that
tocilizumab is significantly more effective than placebo, in
terms of the ACR20 outcome, and is consistent with the
results from the contrast-based methods. When ABunadj
was applied to the artificial dataset, the pooled log odds
on placebo was estimated to be -0.83 (-1.09, -0.57), repre-
senting a response probability of 0.30 (0.25, 0.36). This is
very similar to the estimate of the pooled response prob-
ability for ABunadj applied to the original dataset. The
pooled log odds on tocilizumab is estimated to be 0.28
(-0.26, 0.82), corresponding to a response probability of
0.57 (0.44, 0.69). Here, the result slightly underestimates
the effect estimate from the original dataset. This indi-
cates that the removal of data on placebo response, in
trials assessing tocilizumab versus placebo, impacted the
pooled response estimate for tocilizumab. This may be
because the ABunadjmethod assumes that response esti-
mates are correlated at the between-study level, where the
correlation ρ was estimated to be 0.29 (-0.42, 0.80) for the
application to the original dataset, and 0.31 (-0.40, 0.84)
for the application to the artificial dataset. There is signif-
icant overlap in CrIs for each intervention associated with
each dataset, which suggests the impact of the removal of
data was limited in this example.
Table B.2 (Appendix B) lists posterior median and 95%

CrI estimates for the model parameters corresponding
to each application of ABunadj. The between-study het-
erogeneity τ was estimated to be 0.34 (0.22, 0.53) when
ABunadj was applied to the original dataset, which is
slightly smaller than the estimate of 0.35 (0.23, 0.55) from
the application to the artificial dataset.

Methods with covariate-adjustment
Contrast-basedmethods
In this section, we report the results from applying meth-
ods which include an adjustment of the baseline response
for RA duration. We begin by considering the results
from the contrast-basedmethods with exchangeable base-
line response parameters. Figure 4 presents the posterior
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Fig. 3 Posterior median and 95% credible interval estimates for the pooled log odds on each intervention in terms of the ACR20 outcome, for
arm-based methods without covariates

median and 95% CrI estimates for the unadjusted and
adjusted log ORs, corresponding to the contrast-based
methods applied to the artificial dataset.
For tocilizumab, the OR estimated by the CBadjEx

method, which included adjustment for the mean RA
duration, was 3.00 (1.42, 6.42) which suggests that in a trial
of newly-diagnosed RA patients (i.e. mean RA duration
equal to zero years), participants allocated tocilizumab
have approximately three times greater odds of achiev-
ing an ACR20 response compared to a similar group
of participants allocated placebo. This result underesti-
mates the unadjustedOR 4.10 (2.34, 6.96) estimated by the
CBunadj method, which represents the average effect of
tocilizumab across varying levels of RA duration. This dif-
ference in results indicates that the effect of tocilizumab
may vary with RA duration, and Table B.3 (Appendix B)
confirms the presence of an across trial covariate effect
(αA) of -0.10 (-0.20, 0.00). This implies that the effect of
a biologic versus placebo in a trial in which a sample of
patients have had RA for an average of two years will be

approximately 10% (100× (1− exp(−0.10))) smaller than
in a trial in which a similar sample of patients have had RA
for an average of one year.
The CBadjEbExmethod, which also includes an adjust-

ment for the within-trial covariate effect of RA dura-
tion, estimates an OR of 2.94 (1.34, 6.30) comparing
tocilizumab versus placebo. This result is in strong agree-
ment with the CBadjEx method, which suggests a lack
of a covariate effect at the participant-level. Table B.3
(Appendix B) lists the within-trial covariate effect (αW )
estimate as 0.00 (-0.02, 0.01). The difference between
across- and within-trial covariate effect estimates indi-
cates aggregation bias, and may be due to a difference
in the distribution of RA duration within trials and the
distribution of mean RA duration across trials. Figure 4
also presents the posterior estimates for the unadjusted
log OR (comparing tocilizumab versus placebo) from
the contrast-based method with independent baseline
response parameters (CBunadjInd) applied to the origi-
nal dataset. The unadjusted OR, estimated in the artificial
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Fig. 4 Posterior median and 95% credible interval estimates for log odds ratios comparing each biologic versus placebo in terms of the ACR20
outcome, for contrast ‘-based methods applied to the artificial dataset

dataset, underestimates the unadjusted OR estimated in
the original dataset, and this difference does not decrease
after adjustment for the covariate effect of RA duration.
This shows that the adjustment has not mitigated the dis-
agreement in results between the original and artificial
datasets. Figure A.2 (Appendix A) presents the poste-
rior estimates for the baseline response corresponding to
each method. For trials one and two, there is little differ-
ence in the estimates before and after adjustment. This
could be due to the fact that RA duration does not explain
heterogeneity in the baseline response.
For adalimumab versus placebo, the adjusted OR esti-

mated by the CBadjEx method was 4.39 (2.53, 8.00). This
estimate is more consistent with the unadjusted OR from
the original dataset, estimated by CBunadjInd to be 4.90
(2.39, 10.07). In Figure A.2 (Appendix A), the adjusted
baseline response estimates in trials four, five, and six
(i.e. trials assessing adalimumab versus placebo) show
some discrepancy with respect to the unadjusted baseline
response estimates from the original dataset.

Table B.3 (Appendix B) shows that there is a reduction
in between-study heterogeneity in baseline response (σφ)
after adjusting for the mean RA duration, from 0.33 (0.15,
0.60) estimated by CBunadjEx to 0.28 (0.12, 0.56) esti-
mated by CBadjEx. This indicates that the inclusion of
mean RA duration is explaining some of the heterogeneity
in baseline response, although there is little change in the
mean baseline responsemφ .

Arm-basedmethods
Figure 5 presents the posterior median and 95% CrI esti-
mates for the unadjusted and adjusted arm-based meth-
ods, applied to the artificial dataset. For placebo, the unad-
justed pooled log odds of achieving an ACR20 response
was estimated to be -0.83 (-1.08, -0.58), corresponding
to a response probability of 0.30 (0.25, 0.36). This result
was relatively unchanged after adjustment for mean RA
duration at the arm-level, where the adjusted pooled log
odds were estimated to be -0.85 (-1.09, -0.61) and the
corresponding response probability was 0.30 (0.25, 0.36).
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Fig. 5 Posterior median and 95% credible interval estimates for the pooled log odds on each intervention in terms of the ACR20 outcome, for
arm-based methods applied to the artificial dataset

Similarly, the adjustment did not seem to have an impact
on effect estimates for tocilizumab, where the unadjusted
pooled log odds were estimated to be 0.28 (-0.26, 0.82)
and the adjusted pooled log odds were 0.27 (-0.24, 0.80).
In contrast, the effect on adalimumab was larger after
adjustment indicating the presence of a covariate effect
across trials. The unadjusted pooled log odds of response
were 0.59 (0.10, 1.07) corresponding to a response prob-
ability of 0.64 (0.52, 0.74), whilst the adjusted pooled log
odds of response were 0.46 (-0.04, 0.91) corresponding
to a response probability of 0.61 (0.49, 0.71). Table B.4
(Appendix B) lists the posterior estimates for the across-
trial covariate effect βA, estimated by the ABadj method
to be -0.06 (-0.14, 0.02). This suggests that there is a
decrease of approximately 6% in the pooled log odds of
achieving an ACR20 response, for each additional year
a sample of patients spend diagnosed with RA. There
does not appear to be evidence of a within-trial covari-
ate effect βW , which is estimated by the ABadjEbmethod
to be 0.00 (-0.02, 0.01). Although there does not seem to

be a noticeable difference in the between-study hetero-
geneity (τ ) before and after adjustment, the correlation ρ

decreases from 0.31 (-0.40, 0.87) to 0.23 (-0.49, 0.82).
Table B.5 (Appendix B) lists deviance information cri-

terion (DIC) statistics, a measure of model fit [56] where
smaller values are preferred, for each method applied to
the artificial dataset. There does not seem to be a sig-
nificant difference in model fit between the arm- and
contrast-based methods. The inclusion of RA duration as
a covariate did not provide a significant reduction in DIC.

Discussion
In this paper, we develop contrast- and arm-based meth-
ods for NMA synthesising SATs and RCTs, using a mix-
ture of IPD and AD, for a dichotomous outcome. We also
extended these methods to adjust the baseline response
for a covariate, to account for within- and across-trial
covariate effects. We applied the methods to a dataset
of 14 RCTs assessing biologics versus placebo for RA
and an artificial dataset, including two SATs (assessing
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tocilizumab), generated from the original dataset of 14
RCTs by removing the control arm in the two tocilizumab
trials. Placebo was designated as the reference treat-
ment for the network, and so the contrast-based methods
assumed a fixed baseline treatment across trials. The
contrast-based unadjusted methods underestimated the
treatment effect for tocilizumab versus placebo, when
applied to the artificial dataset compared to the orig-
inal dataset. This difference appeared to be caused by
an overestimate of the predicted baseline response for
the SATs. The contrast-based methods with exchangeable
baseline response parameters showed disagreement with
the methods assuming independent parameters, in treat-
ment effect estimates for adalimumab, in both datasets.
This disagreement seemed to be caused by a shift toward
the mean baseline response associated with the exchange-
ability assumption for the baseline response parameters.
Despite these discrepancies, there was large overlap in
posterior distributions for treatment effect parameters
between applications to the two datasets. Under both the
contrast- and arm-based parametrisation, there was some
evidence of an across-trial covariate effect associated with
mean RA duration, but a within-trial covariate effect was
not detected. However, the adjustment appeared to make
little difference to the treatment effect estimates. The
arm-based methods showed greater agreement in effect
estimates between the applications to the two datasets.
Our applied example enabled an assessment of the

developed methods to synthesise SATs and RCTs against
a synthesis of RCTs alone. A similar approach was used
by Beliveau et al. [27], where connected networks of
RCTs were disconnected by removing data from trials, to
understand the impact of assuming exchangeable base-
line response parameters to connect the disconnected
networks. In the majority of cases, the exchangeability
assumption seemed to make relatively little difference
to the results, as posterior distributions for treatment
effect parameters showed large overlap. This is consistent
with the findings from our applied example, where there
was also significant overlap in posterior distributions for
treatment effect parameters in the artificial and original
datasets, although the effect estimate for tocilizumab had
greater precision in the original dataset where more data
were available. Despite this, there was a shift in effect
estimates associated with assuming exchangeable baseline
response parameters, due to the influence of the mean
baseline response (e.g. for adalimumab). To better under-
stand this discrepancy, we also applied the contrast-based
method with independent baseline response parameters
to the artificial dataset using a two-stage approach. This
approach is recommended by Dias et al. [52] to ensure
treatment effect estimates are not influenced by assump-
tions regarding the baseline response. This mitigated
the discrepancy associated with assuming exchangeable

baseline response parameters, and the results were more
consistent with the application to the original dataset
for adalimumab. However, the discrepancy remained for
treatment effect estimates associated with tocilizumab,
indicating that the predicted baseline response in the
artificial dataset was not consistent with the observed
baseline response in the original dataset. This implies
that incorporating SATs into a NMA to estimate relative
treatment effects depends significantly on how represen-
tative the mean baseline response across the RCTs in the
synthesis is of the hypothetical baseline response for the
participants in the SATs. This highlights the importance
of considering whether each trial in the synthesis is infor-
mative about the target population in the SATs [52]. It
also suggests that explaining between-study heterogene-
ity in the baseline response, by including covariates to
account for differences in prognostic factors in trial par-
ticipants, could improve the predicted baseline response.
Thus, incorporating SATs into a synthesis may be benefi-
cial when decision-makers require relative effect estimates
for a particular treatment, and are reluctant to delay the
decision until a RCT has been undertaken. A review of
HTA submissions found an increasing use of data from
SATs in recent years, particularly to provide evidence on
an external patient cohort to determine relative treatment
effectiveness [57]. Malottki et al. conducted a multiple
technology appraisal of five biologics as second-line treat-
ment for RA [58], in which they identified five RCTs
and 28 SATs relevant to the decision problem. Only two
biologics were compared head-to-head via an indirect
comparison based on two RCTs and the SATs were not
included in any quantitative synthesis, resulting in large
uncertainty in effectiveness estimates.
When seeking to combine data from SATs and RCTs

in a meta-analysis (or NMA), particularly in a decision-
making context, it can be beneficial to implement a range
of methods to understand how alternative parametrisa-
tions influence the results. A comparison of arm- and
contrast-based methods requires the calculation of addi-
tional quantities as a function of model parameters. For
arm-based methods, a pooled relative treatment effect
can be calculated from the pooled arm-level outcomes,
d1k = θk − θ1. For contrast-based methods, a pooled
absolute treatment effect can be calculated from the mean
baseline response and the pooled relative treatment effect,
θk = mφ + dik .
We also applied methods which included adjustment

for a covariate, to account for between-study heterogene-
ity in baseline response, considering RA duration to be a
prognostic factor associated with ACR20 response. In the
artificial dataset, an across-trial covariate effect was asso-
ciated with mean RA duration. The results indicate that
the adjustment provided a small reduction in between-
study heterogeneity, but this did not make treatment
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effect estimates more consistent with those from the
application to the original dataset. The residual between-
study heterogeneity estimated after adjustment suggested
the presence of unmeasured prognostic factors. Despite
some evidence of an across-trial covariate effect, there was
no evidence of a within-trial covariate effect, indicating
the presence of aggregation bias. The difference between
these findings may be due to the impact of unmeasured
covariates, associated with both an ACR20 response and
mean RA duration across trials. An exploratory analysis
of the IPD, corresponding to the two tocilizumab trials
for which it was available (see Table 1), was undertaken
to assess the distribution of RA duration across patients
within each trial. The distribution of RA duration within
each trial did not differ significantly from the distribution
of mean RA duration across the other 12 RCTs (listed in
Table 1). Here, the goal of the adjustment for RA duration
was to use data from RCTs to predict baseline response
estimates more representative (compared to the unad-
justed estimates) of the patient population in the SATs.
Whilst we focus on adjustment on the baseline response,
other authors have looked at how a treatment effect
varies with respect to a trial characteristic (treatment-
covariate interaction) [59], via meta-regression or net-
work meta-regression. Population-adjustment methods,
such as matching-adjustment indirect comparison and
simulated treatment comparisonmethods, have been pro-
posed for a similar goal where IPD are available for one
trial and only AD are available for another [16]. Simi-
larly, NMAmethods have been developed which combine
IPD andADwhilst accounting for a non-linear association
between the treatment effect and a particular covariate
to mitigate aggregation bias [60]. More recently, Hong et
al. propose NMA methods using AD to define a prior
distribution for pooled treatment effect and treatment-
covariate interaction parameters estimated from IPD,
whilst down-weighting the AD via a power term or a com-
mensurability parameter, which also avoid introducing
aggregation bias into the synthesis [61].
Due to the limited data available in the artificial

dataset, we assumed a common within-trial covariate
effect parameter. An assumption of independent within-
trial covariate effects may have accounted for the differ-
ence in covariate distributions between the two trials for
which IPD were available. Thom et al. were unable to
detect across-trial covariate effects in a similar applica-
tion due to limited data [20]. In our applied example, there
were no trials comparing biologics head-to-head, prevent-
ing an assessment of inconsistency via the recommended
methods [62]. Due to this, and the limited data, we did
not consider adjustment of treatment effects for potential
effect modifiers.
In this paper, wemade the assumption that the interven-

tion arms in RCTs assessing tocilizumab versus placebo

were representative of SATs assessing tocilizumab. In
practice, the populations represented by the trials may
differ due to factors associated with trial design (e.g. par-
ticipant inclusion criteria). A better assessment of the
methods would be provided by a simulation study, where
data are simulated for a network of RCTs and then a
subset of data corresponding to participants in control
arms are removed, to provide a more accurate represen-
tation of data from SATs. This would allow the methods
to be applied in a greater number of scenarios to under-
stand how differences in trial populations can influence
treatment effect estimates when incorporating SATs into
a network. Furthermore, many of the trials considered
in the applied example consisted of multiple intervention
arms, from which data were combined to create a single
intervention arm. The proposedmethods can be extended
for application to multi-arm RCTs, by considering within-
trial correlation between treatment effects relative to a
common baseline treatment [51].

Conclusion
In this paper, we propose contrast- and arm-based NMA
methods which allow the incorporation of SATs into a
synthesis of RCTs, to estimate relative treatment effective-
ness when there is no alternative (due to a disconnected
network). Further work is required to understand how
adjustment for covariate effects can be incorporated to
predict a more representative baseline response estimate
for SATs, and treatment effect estimates more consistent
with randomised evidence.
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