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Abstract

Background: Due to contradictory results in current research, whether age at menopause is increasing or decreasing
in Western countries remains an open question, yet worth studying as later ages at menopause are likely to be related
to an increased risk of breast cancer. Using data from breast cancer screening programs to study the temporal trend
of age at menopause is difficult since especially younger women in the same generational cohort have often not yet
reached menopause. Deleting these younger women in a breast cancer risk analyses may bias the results. The aim of
this study is therefore to recover missing menopause ages as a covariate by comparing methods for handling missing
data. Additionally, the study makes a contribution to understanding the evolution of age at menopause for several
generations born in Portugal between 1920 and 1970.

Methods: Data from a breast cancer screening program in Portugal including 278,282 women aged 45-69 and
collected between 1990 and 2010 are used to compare two approaches of imputing age at menopause: (i) a multiple
imputation methodology based on a truncated distribution but ignoring the mechanism of missingness; (i) a
copula-based multiple imputation method that simultaneously handles the age at menopause and the missing
mechanism. The linear predictors considered in both cases have a semiparametric additive structure accommodating
linear and non-linear effects defined via splines or Markov random fields smoothers in the case of spatial variables.

Results: Both imputation methods unveiled an increasing trend of age at menopause when viewed as a function of
the birth year for the youngest generation. This trend is hidden if we model only women with an observed age at
menopause.

Conclusion: When studying age at menopause, missing ages must be recovered with an adequate procedure for
incomplete data. Imputing these missing ages avoids excluding the younger generation cohort of the screening
program in breast cancer risk analyses and hence reduces the bias stemming from this exclusion. In addition,
imputing the not yet observed ages of menopause for mostly younger women is also crucial when studying the time
trend of age at menopause otherwise the analysis will be biased.
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Introduction

Age at menopause has an important role in the research
about risk factors for breast cancer [1]. However, it is a
variable prone to incompleteness, because the time when
women participate in a breast cancer screening program
overlaps the time when women are most likely to enter
menopause. Therefore, the younger women of the gener-
ation cohort under analysis tend to have missing informa-
tion on age at menopause. Not recovering the values for
age at menopause can lead to wrong conclusions because
the parameter estimates for the most recent years will tend
to be dominated by these young women.

Nowadays, there is greater awareness about discard-
ing individuals with some missing observation from the
statistical analysis. Generally, leaving out incompletely
observed individuals tends to be unsatisfactory and unnat-
urally decreases the data sample. A simple imputation of
the gaps using the mean of the respective variable leads to
negative side effects as well since the covariance structure
is neglected, i.e. set to zero, thus implying the variance
estimators to be biased. Essentially, the literature han-
dles incomplete data in two ways: (a) analysing only the
cases with a complete vector of observations (complete
cases analysis — CCA) and (b) analysing all the cases after
imputing the missing observations with an appropriate
statistical technique.

The question of whether missing values of a variable
are related to the underlying value itself allows for clas-
sifying the missing data mechanism into three categories
[2, 3]: missing completely at random (MCAR), missing
at random (MAR) and missing not at random (MNAR).
The data are said to be MCAR if the probability of a
value being missing is neither related to the observed and
unobserved values of that variable nor to other measured
characteristics. In this scenario, the observed data are said
to be representative of the overall data and analysing only
the participants with a complete data vector is a valid
approach. MAR is a less restrictive assumption, occur-
ring when the probability of missing observations for a
variable is related to other observed variables but unre-
lated with unobserved values given all other observed
variables. The probability of a value being missing may
be dependent on observed data but, given the observed
data, is conditionally independent of the underlying value
itself. This assumption means that outcomes for individ-
uals with similar observed characteristics will have the
same probability distribution, whether or not they have
been observed. In this situation there exists a separation
between the parameters of the missing process and the
parameters of the observed response data — the miss-
ing process is said to be ignorable or non-informative.
Data are MNAR if the probability of a value being miss-
ing is related to the values supposed to be observed for
the variable at the time of the observation process — the
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missing process is said to be non-ignorable or informa-
tive. This implies that a missing observation has a different
probability distribution than the observed values of other
individuals even when they have the same characteristics.
The validity of inferences made under different statistical
methods depends on the assumption about the missing
process. It is well known in these cases that inference-
based statistical analysis ignoring such feature may lead to
biased parameter estimates [3].

We frame the issue of imputing age at menopause as a
missing data problem since we consider age at menopause
as a covariate in a potential subsequent risk cancer anal-
ysis. We therefore ask the same question as in a classical
missing value setting: Is the missing mechanism infor-
mative or not? Note that recovering the values for age
at menopause as the dependent variable could also be
treated as a censoring or prediction problem but is not the
focus of this work.

To test how different strategies to impute missing ages at
menopause for the youngest women influence the analysis
of time- and spatial-trends of that variable, we will analyse
the case of a breast cancer screening program in central
Portugal. Exploratory analyses show the presence of a geo-
graphical pattern of the missing data and a close relation
with a woman’s year of birth, implying, at least, a violation
of the missing complete at random assumption. Addition-
ally, there is a high percentage of missing values in the
variable menopause (23.6%), which precludes an analysis
by simply deleting those individuals.

Regarding time and spatial trends of age at menopause,
recent researches have shown some contradictory conclu-
sions. For instance, Duarte et al. [4] in a complete cases
scenario stated that women born after the first world war
are having their menopause at lower ages. On the other
hand Dratva et al. [5] claim that there is a shift towards
higher ages. Concerning the spatial patterns in the breast
cancer’s relative risk for the central region in Portugal,
there are also different findings. Rodrigues [6] reported
a non-homogeneous risk across the municipalities, but
Duarte et al. [7] reported a non-significant spatial effect.

To achieve the goals defined above, we will consider
two statistical modelling approaches with the aid of two
R packages, namely GJRM (v. 0.2-3) — Generalised Joint
Regression Modelling [8] and gamlss (v. 5.1-7) — Gener-
alised Additive Models for Location, Scale and Shape [9].
The GIRM package allows us to deal simultaneously with
two response variables while their specific marginal dis-
tributions are conveniently expressed in a joint manner
by means of a copula function that binds them together.
In this way, we will be able to define a joint distribution
for both the process that governs the probability that a
woman has not yet reached menopause and for the age
at menopause itself. A bivariate copula regression model
will be adopted [10]. To allow for sufficient flexibility in
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the model estimation, we will consider spline functions
to model some of the covariates effects. The gamlss
package allows for virtually expressing any distributional
parameter as a function of covariates in a generalized
additive model (GAM, [11]) fashion and adopts a method
for the imputations which is more flexible than other
imputation methods provided by other packages in R [12].
This usage has naturally led to the emergence of a sec-
ondary objective of this work — to compare, within our
context of age at menopause, the imputations obtained by
these two different methods.

The remainder of this paper develops as follows: in
“Breast cancer screening data from Portugal” section,
we describe the motivating data set and present a brief
exploratory analysis followed by a recall of some key
definitions from the copulas literature (“Bivariate condi-
tional copula regression” section). Two different imputa-
tion approaches are presented in “Imputation methodol-
ogy” section, whereas “Modelling the age at menopause
in central Portugal” section outlines and formalizes the
main models. In “Results” section, we conduct a data anal-
ysis by applying a selected model chosen from a set of
several similar models, present and discuss the results of
the models. A sensitivity and validation analysis are pre-
sented in the Supplementary files. Concluding remarks
and discussion of important related issues are given in
“Discussion” section.

Breast cancer screening data from Portugal

The database that we are working with is constantly
updated with longitudinal information from new women
and from women who are already part of it. The records
have the follow-up of 278 282 women between 1990 and
2010. At the age of 45 (since 2017 the onset age is 50),
all women in each of the 78 municipalities are invited to
have a free screening mammogram and every two years
thereafter until the age of 69. At the time of the last
screening, 65765 women (23.6%) stated they had not yet
reached menopause (missing information). Table 1 sum-

Table 1 Summary of the continuous (top) and binary (bottom)
variables used in data analysis

Variable Summary

Mean Range
Age at menopause 482 20-59
Age at menarche 13.2 8-18
Age at last attending screening 583 45-69
Year of birth 1948.9 1920-1965
Municipality purchasing power index 81 24-145

% No % Yes
Any pregnancy 74 92.6
Oral contraceptives 526 474
Breastfeeding 446 554
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marizes the variables included in the data set, namely
(i) binary characteristics provided by the variables preg-
nancy (pregnancy = O if the woman has never been
pregnant; 1 otherwise), breastfeeding (breastf = 0
if the woman has never breastfed; 1 otherwise) and the
use of oral contraceptives (anov = 0 if the woman has
never used oral contraceptives; 1 otherwise); (ii) quan-
titative information carried by the continuous variables
age at menopause (menopause) (Figs. 1 and 2), age at
menarche (menarche), year of birth (birth) and age
at the last attending screening (sage); (iii) demographic
information given by the municipality purchasing power
index (ipccap); and (iv) spatial information embodied
in neighbourhood structure of the municipality of resi-
dence (muni). The central region of Portugal is divided
in 78 municipalities (Figs. 3 and 4) and roughly repre-
sents 25% of the Portuguese population. More details
about screening program and the inclusion criteria are
given in [4].

To encourage participation in the screening program,
invitation letters are sent out to women but the decision
to participate is exclusively left to the women. In Fig. 5,
the different levels of attendance per region are shown.
Absenteeism is stronger in the coastal (Western) areas.
The different reasons of non-attendance pointed out by
many studies are unfavourable socio-economic levels, liv-
ing in an urban region, or women that take care of their
health by their own initiative [13, 14].

In 2017, we had been granted access to 20 130 women
already screened in 2010 and who have since then reached
menopause. With these data at hand, we can compare the
imputed values for those women in 2010 with their real
age at menopause allowing us to check the reliability of the
obtained results under the assumed missing mechanism.
This validation analysis, for the sake of space, is carried
out in one additional file available online.

Bivariate conditional copula regression

Although some ages at menopause, especially these of
younger women, cannot be directly observed, we can
retrieve some information based on the idea of construct-
ing a bivariate joint distribution of the missing data mech-
anism and the age at menopause assuming the data are
MNAR. This allows us to input the not yet observed ages
of menopause in order to complete the data set. In what
follows, we give a brief introduction to the concept of cop-
ula function that facilitates the construction of such joint
distribution.

Bivariate joint distributions through copulas

Copulas are multivariate distribution functions that can
be used to construct a dependence structure between
two or more variables. Irrespective of the nature of the
marginal distributions, copulas allow to investigate this
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Fig. 1 Age at menopause for the women with an observed value

dependence by combining the margins into a multivariate
structure, usually accomplished in two steps: (i) choosing
the optimal margins and (ii) choosing the optimal cop-
ula [15]. With copulas, the marginal behaviour (marginal
distribution functions) is separated from the dependence
structure. Usually, if one starts from a multivariate distri-
bution function to represent joint probabilities, separating
the dependence from the marginals is not achievable.

A bivariate copula C(.) is a distribution on [0, 12—
[0,1] for any set of two random variables Y; and Y, with
univariate marginal distributions Fy, (yx), K = 1,2. The
construction

Fy,,v,(y1,92) = C(F1(91), F2(32);6) , (1)

generates a 2-variate joint distribution for the Y}’s, where
0 is an association parameter. Hence, we can use paramet-

ric families of copulas to generate a joint density fy,,y, with
marginal densities given by fy, and fy, [16]. The parameter
of association may be difficult to interpret in some cases.
To this end, the well-known Kendall’s T €[ —1, 1], a more
interpretable measure of association, is a popular choice.
It is defined to be the probability of concordance minus
the probability of discordance between two independent
random vectors [17]. For a deeper insight about copulas
the reader is referred to [18] and [19].

Mixed binary-continuous copulas

We are particularly interested in the case of building an
inferential framework for two variables, one being contin-
uous and the other one binary. However, a copula function
is uniquely determined if and only if both random vari-
ables are continuous [16] limiting the direct applicability
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Fig. 2 Histogram of the missing ages at menopause by birth year and points representing the mean age at menopause by birth year
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Fig. 3 Missing ages at menopause by municipality
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of copula to the discrete framework [20]. To circum-
vent this difficulty, we make use of the latent variable
representation for binary regression models.

Let the random variable Y5; ~ Fy,,(.) be the continu-
ous response of interest from each of N subjects and let
Y1; ~ Fy,(.) be the associated binary response indica-
tor, i = 1,...,N. For a particular realization (y1;,¥2i), y1i
takes the value 1 when the corresponding y»; is observed
and a value 0, when yy; is missing. These outcomes may
arise in a breast screening program, for example, where a
binary outcome indicates a woman that has yet reached
the menopause and the continuous outcome may denote
her age at menopause. Additionally, let Y7, be the unob-
served continuous latent variable underlying Y7;, such that
Y1; = 1(Y]; > 0), where 1 is the indicator function.
Without loss of generality, and for simplicity, we chose the
cut-point at zero. This leads to a marginal logit model for
the missingness indicator Y7, with the advantage of having
a clear interpretation for the doctors who are familiarized
with the interpretations on the log(odds) scale.

Together with the response variables, Y7; and Y3;, a
series of explanatory variables are also recorded and col-
lected in an individual-specific vector v; containing, e.g.,
binary, categorical, continuous and spatial variables. The
copula function contributes to build the joint distribu-
tion of the pair (Y7;, Y2;) given fully observed covari-
ates of interest. Parametric models indexed by a vector
of parameters B, possibly including regression coeffi-
cients, will be considered to relate the covariates to the
responses. The vector @' is partitioned as (B1, B2, 9)
where B, and B, are for the marginal models of the miss-
ing mechanism and the continuous response, respectively.
The joint distribution function Fy y, of Y7; and Yy; is
given by

Fyx v, (W1 y2:) = C (FY{; 1) Fyy, (yzi);9>, 2)

1

with
a(uyy) = mivis Br),  &(uyy) = n2i(vais B2) - (3)

where g1(.) and go(.) are link functions mapping the
covariates to the marginal location parameters, s, and
Iy,;, whose choice is governed by the parametric space.
The linear predictors 71;(.;.) and n9;(.;.) depend on the
outcome-specific covariate vectors, vi; € v; and vy; C v;
and in the parameters, $; and §,.

The likelihood

In order to directly estimate the joint distribution of Y;
and Y» as a bivariate copula, we need to consider that the
joint distribution can be written as
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P(Y1i = y1i Yai < y21)
_ | Erpovsi (0320, y1i =0
Fy,(52i) = Fyy,v,(0,921), y1: = 1
C (Fy; (0, Fra, (02036 i =0

Py 020 = C (Fryy (00, Py 020;6 ) yri =1

(4)
From (4) we can write the joint density
Sy1,Ya 014> y2i)
dC( Fyx (0),Fyy; (y2:):0
( 151‘"21'()’2;') ) X fyy (V2i) y1; =0 )
dC(Fyx (0),Fy,; (y2:):0
- ( llani(yz,v) ) X fyy (92i), y1i =1

The likelihood function for the parametric vector
(B1, B, 0) with data (Y7, Y3) may be represented as a com-
bination of the likelihood function for individuals without
missing responses, Y1; = 1, and for individuals with the
response missing, Y1; = 0. Considering (5) and for now
omitting the dependence on the outcome-specific covari-
ates, we can write the likelihood for our copula model
[10, 21]

L(B1,B20)

N

[P (Y] > 0; B)f (y2i | 5 > 0; Bo, 0) ]
i=1

P(Y; <0 8y)] 7"

o

[(1 = Fy,;(0; B))Sf (v2i | y1; > 0 '32’9)];/15

1
x [Fy,; (0; 8] 7", ©6)

where
Sraityy, 02i | y1; > 0)

= frouvu 02 1y =1)
0Fyy vy O2i 1 y1i=1)

9y2i
— 1 3 [Fyy 20) — Fry,,v5:(0,520) |
T 1— Fy,,(0) 3y -
T 1-Fy, (0 I:fYZi(yZi) - W]
: 9¢ (F;F’u (0), Fyy, ()’2i))
=T Eoo [0 - -

represents the density function of Y5; given Y7;. Note
that we have not explicitly specified a model for fy,y;. It
appears as the result of the marginal models chosen but
mainly because of the copula function considered to cap-
ture the relation. If, instead of a MNAR assumption, we
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consider the data as MAR, then given v;, Y7; and Yo; will
be deemed conditionally independent, i.e.

Sraityy, 020 | Y15 V) = fro, 02i | v2i), (8)
and the likelihood (6) can be simplified.

Imputation methodology

The primary goal of this work is to draw inferences
about the distribution of Y,, representing the age at
menopause, given a set of observed covariates, by con-
sidering the primary analysis model [ Y3 |v;]. The most
popular approach would be to estimate the parameters
of this distribution using only the observed values of Y3,
yet estimates from such an analysis would be less efficient
than they would be if we had observed Y; for every indi-
vidual. Recovering information via an imputation tech-
nique, e.g. multiple imputation (MI), should allow to
retrieve some of the information about Y, that is not
available.

The underlying idea of MI is similar to prediction pro-
cedures, i.e. the observed data is used to predict plausible
values but taking into account the uncertainty accrued
from the imputation process. Those values are sampled
from an adequate predictive distribution. To reflect the
uncertainty attached to the procedure this process is
repeated many times to obtain several complete sets of
data, which are free of missing data [22]. A common mis-
understanding about MI is that it is restricted to a MAR
setting but the theory of MI is completely general and also
applies to MNAR [23].

The work [24] warns about the typical naive approach
of averaging the functionals of the distributions obtained
according to each posterior predictive distribution.
Instead, they advise to follow the approach in [25][pp.
159-162] that mixes the draws from the posterior pre-
dictive distributions from each completed data set and
use those mixed draws to summarize the posterior quan-
tities of interest. In particular, they find that the usual
advice for MI with modest fractions of missing data which
states that five or ten completed data sets are adequate
for inferences can result in unreliable estimates. Addition-
ally, the typical routine of estimating posterior quantiles
in each completed data set and then averaging them
across the data sets may produce unreliable estimates
as well.

In the next two subsections we present two methodolo-
gies of imputation based on two different R packages that
allow for multiple imputation under chosen work-models.
Both are very flexible and the user is offered a variety of
options for building the imputation model. This contrasts
to most packages available that are often limited to simple
models like the homoscedastic normal linear regression
model [12].
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Imputing with a copula approach

This section introduces an imputation procedure, which
is valid under the MNAR assumption, inside a bivari-
ate copula approach considering a continuous response
variable and a missing indicator. This procedure is easily
implemented using the GJRM package in R.

Multiple imputation is a concept closely related to the
Bayesian philosophy where the imputations are obtained
by sampling from the posterior predictive distribution of
the missing data given modelling assumptions and the
observed data,

f(ymis | Yobs, Vi) = /f(ymis | @, Vi)f(tb | Vobs, vi) d®,
)

where, in our case, Vyps = {yzl' Ly = 1} and YVmis =
{yzi Dy = O}, i=1,...,N;f(® | Vobs, Vi) is the posterior
distribution of all the parameters combined in the vec-
tor, ®. Unfortunately, the package GJRM does not support
Bayesian inference, so samples of posterior distributions
are not available. The posterior predictive distribution
of the missing values is approximated by considering an
approach based on the asymptotic normal approximation
to the posterior distribution, f(® | Yobs,vi), [11, 26],

ie. considering that ® ~ N, <<i>, —7:[19), where H, is

the model’s Hessian and @ are the estimated parameters
obtained by penalization of the likelihood in (6) [21]. After
this, the imputation procedure is reduced to two steps:

(i) draw @ from the multivariate normal N, <<i>, —7:{1,)

and then (ii) draw a candidate y from f (J/mis | o, v,') to
replace the value not observed.

The package has the built-in function imputeSs(),
which takes a fitted gjrm object and imputes the miss-
ing values. Although, the mixing of the “posterior imputed
values” to which we allude above must be the carried on
by the user. Additionally it does not provide an option to
conduct imputations from a truncated distribution, which
in our case would be extremely useful.

Imputing with GAMLSS models

If we advocate that the missing ages at menopause are
MAR, instead of MNAR, then the parametric vector, 8,
of the model fy, is separated from B,, the parametric
vector of fy,. This implies that conditional on v, the dis-
tribution of Y5 can be inferred considering only the units
with Y5; observed and with (Y7; = 1), and then used to
predict the missing observations of Y5.

In this section, where the missing mechanism is deemed
ignorable, we describe how generalized additive models
for location, scale and shape via the gamlss package
in R [9] may be used for MI. As with GJRM, this pack-
age is not Bayesian-based, so we cannot rely on posterior
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predictive distributions. However, the package considers
the bootstrap predictive distribution as an approximation
to the posterior predictive distribution [27, 28]. This is
achieved by approximating the Bayesian posterior distri-
bution /(@ | Vops,¥i) in (9) by f (& | &(Vabs, %)), which
is the sampling distribution of the imputation parame-
ters evaluated at the estimated values. The values ® are
the possible values of the imputation model parameters,
<i>(y0bs) is an estimator of such model parameters. If there
are variables fitted as non-linear functions, a penaliza-
tion of the likelihood is used. This sampling distribution,
f (<i> | @ (Vobs» v,-)), is obtained by fitting the model to sev-
eral bootstrap samples. The set of all parameters obtained
constitutes the sampling distribution.

This imputation algorithm may be subject to some tai-
lored constraints depending on the problem at hand. In
this case, it makes little sense to impute a value for a
missing age at menopause which is lower than the actual
woman’s age. Thus a truncated distribution may be more
suitable. The task may be accomplished by using the
gamlss. tr package, which allows users to define trun-
cated distributions in GAMLSS models. Unfortunately,
within the package GJRM, we do not have such option.

In short, the procedure is very similar to the one pre-
sented for the GJRM package, i.e. we have to perform the
following steps: (i) draw @ from their sampling distribu-
tion and then (ii) draw a candidate y from the truncated

f (Ymis | o, vi) to replace the value not observed. Again,

we combine the estimates obtained from each analysed
complete data set using the recommendations in [24]. A
detailed description of the algorithm used for the imputa-
tion process is given in [12] and [29].

Modelling the age at menopause in central
Portugal

In this section, we will typify the models driving the miss-
ing data mechanism (when assuming that the data are
MNAR) and the age at menopause by considering the very
flexible framework of the structured additive regression
(STAR) models [30].

Semiparametric predictors

In a regression framing, potentially all distributional
parameters involved may be related to additive predictors
containing regression coefficients and observed covari-
ates. The use of adequate link functions ensures the
restrictions on the parametric space. However, in this
work we will be modelling only the location parameters of
the distributions concerned.

The great flexibility of both R packages GJRM and
gaml ss facilitates the choice of the functional form spec-
ifications for the missing and observed response models.
In the case of the GJRM package, we want to simultane-
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ously model the underlying missing indicator, Y7, and the
response, Y>, as we are under an MNAR assumption. Both
models will be linked with the introduction of a bivariate
copula [8], conditional on some covariates. In the MAR
scenario, we will use the gamlss package to model only
Y, before and after the imputations.

The linear predictors for the location parameters of the
distributions considered for the marginal models, Y}; and
Y2, have a semiparametric additive structure according to:

Jk
i =M v+ Y s, k=12,
j=1

(10)

where Ay is a design coefficients vector; the set of binary
covariates, Vy;, is a subset of the p; dimensional set of
covariates, i.e. Vi, C vy = {V/d,-, oo ,Vkpk,-}, and Sk (Vi)
are Ji unknown smooth functions modelling the effects
of the subset of continuous or spatial covariates, v; =
{Vkli: R Vk]ki}r such that vi; N vy = @.

We take the binary observed covariates, pregnancy,
anov and breastf for entering the model with linear
effects. The effects of the continuous information such as
birth, ipccap and menarche may be non-linear. Spa-
tial information enclosed in muni, viewed as a Markov
random field, will be taken into account in order to see
how the age at menopause differs between regions.

In this scenario, the location parameters for the miss-
ingness and age at menopause distributions are specified
as:

Mmi = A0 + A11 X pregnancy; + Az X anov;
+ A13 X breastf; +s;1(birth;)

+ s12(ipccap;) + si3(menarche;)

+ s14(muni;), (11)
n2i = Ago + A21 X pregnancy; + Az X anov;

+ A3 X breastf; +sy(birth;)

+ spo(ipccap;) + sp3(menarche;)

+ s94(muni;), (12)

where s(.) refers to a non-linear effect, which can be a
smooth function defined via splines in the case of con-
tinuous variables, or a Markov random field smoother
in the case where the spatial information concerns a set
of area labels like the case of si4(muni;). More details
are given in “Flexible effects” section below. The covari-
ates used are considered to potentially influence the age
at menopause according to some previous researches and
expert opinion, as long as they were available in the data
set.

In the case of an MNAR assumption, both the linear pre-
dictors (11) and (12) have to be taken into account, while
in an MAR scenario only (12) is considered.
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Copula model

By specifying a bivariate copula with association parame-
ter 6 we build a joint model to glue the marginal models
for Y7 and Y. Our framework investigates the adjust-
ment of several copulas. The copula most supported by
the Akaike Information criteria (AIC) and Bayesian Infor-
mation criteria (BIC) was the Joe copula rotated by 270°
(Table 3), whose non-rotated version is defined as

Crup, uz;0) =1 — [(1 — u1)? + 1 — up)’

0w -wf], (3

where u; = Fyx (7)) and uy = Fy,(y2), represent our
marginal distribution functions (see [8] for further copula
function choices), whereas the rotated version allows for
the shifting of the tail dependence to one of the four cor-
ners of the unit square and can be obtained considering

Croz0(u1, u2;0) = ur — Cr(u1, 1 — u; 0). (14)
Marginal models

Flexible effects

The terms in (10), (11) and (12) expressing a non-linear
(flexible) effect for a continuous covariate will be con-
sidered by using a linear combination of spline basis
functions [31], i.e.

Ly

Sk (Vi) = Z VijiBrjt (Vi) = )’/;;Bkj(iji);
=1

(15)

where Ly is the number of splines basis functions,

b
Bkj(iji) = (Bkjl (Vk]'i)’ . ’Bkiji (iji)> is the ith vector of
dimension Ly; evaluated at the observation vyj; and y K is
the corresponding vector of coefficients. The basis func-
tions, By;y, are generally chosen based on convenience. We
choose penalized splines as proposed by [31].

Considering (15), the linear predictors defined in (10)
can be further simplified as

Mi =M Vi + 7 B k=1,2 (16)

where yl;'_ = (y;('—l, ey y,ij/) and B;{';. = (Bkl(Vku)T, ey

By, (Vk]ki)T)‘ The writing can still be simplified if one con-

siders X;'(; = (i?;l.,B,;';) and (p,j = ().;('—, yl;'—), resulting in

Nki = (P];rxki’ k=1,2. (17)

Spatial effects

The ages at menopause in the central region of Portugal
may exhibit some spatial dependence, i.e., observations
from neighbouring areas are expected to be more corre-
lated than distant areas. In this regard it can be useful to
inspect a spatial clustering in order to see if some latent
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characteristics of the response variable may arise. For
instance, we may consider a simplification of the sg4(Vka;)
function in (10) and write that sgq(muni;) = &, m =
1,...,78, where every municipality is assigned a specific
regression coefficient giving us the level of some random
quantity within the mth region. In case of a spatial vari-
able, like muni, a simple Markov random field smoother
[32] is sometimes appropriate. Indeed, the map displayed
on Figs. 3 and 4 may be viewed as an irregular lattice.

A key concept for models dealing with spatial informa-
tion is that of a adjacency (weights) matrix, W, in our case
with dimensions (78 x 78). We take it to be symmetric
and of binary elements based on geographical contiguity;
wg = 1 if the areas (A, A;) defined in R? share common
boundaries, perhaps a vertex, denoted s ~ t; while wg; = 0
otherwise, denoted s 7 t. This neighbourhood specifica-
tion of first order implies that if s and ¢ are geographically
adjacent areas, wgy = 1, then their respective spatial
effects are correlated, whereas spatial effects related to
non-contiguous areal units are conditionally independent
given the remaining spatial effects.

Typically, a penalty matrix is used to reduce the effective
number of parameters that result from this highly para-
metric models. The objective is to have the elements of
the 78-length vector of specific spatial effects of nearby
regions, 61—: = (&1, - ., &x78), not too different from each
other. Generally, the penalty is based on the squared
differences between the coefficients of all possible com-
binations of neighbourhood and given by K = (Dy —
W), where Dy is a diagonal matrix with each element
of its diagonal being equal to the sum of each row of
the matrix W (corresponding to the number of neigh-
bours of each region). The matrix thus obtained, K, keeps
a structure of adjacency because their elements are only
not zero when indicating a neighbourhood relation [33].
If one looks at the penalty from a Bayesian hierarchical
perspective, the penalty can be viewed as being induced
by an (improper) Gaussian prior, ie. § ~ N (0,7K~ ),
where 7 is a precision parameter. Thinking this way, & and
the neighbourhood structure can be viewed as an (intrin-
sic) Gaussian Markov random field (GMRF) with variance
matrix K~! [11]. The ages at menopause between regions
are then assumed conditionally independent given these
random effects. This approach is very popular in disease
mapping [34].

Selected marginal distributions

As already stated above, we chose the logit model to
regress the presence/absence of menopause age on the
covariates and among the several distributions consid-
ered for the marginal age at menopause we found that the
Gumbel provides the best fit (Table 2), whose distribu-
tion and density functions, parametrized accordingly to
the gamlss package, are:
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Table 2 Selecting the best fitting marginal distribution for the
age at menopause

Marginal AIC BIC
Gamma 1318295 1317297
Gumbel 1263542 1264326
LogNormal 1328666 1329256
Normal 1298449 1299285
Student’s t 1289426 1290270
Weibull 1265325 1266310

o2 1__—z
FYQ()Q):e € 5 sz()’2)=;€ Z-e 5

y2— K
z= .
o
(18)

The parametrization is in terms of location, p (the mode),
and scale, o, which is reproduced by the GJRM package.
The mean is given by 1 + yo and the variance is o272/6,
where y & 0.5772 is the Euler-Mascheroni constant.

Results

In this section, we compare the results obtained by delet-
ing the women without menopause (a CCA) to the results
obtained after the data set has been completed with
imputed values under both MNAR and MAR assump-
tions. Meanwhile, we will compare the results by means
of the two R packages — GJRM and gamlss — in order to
analyse the robustness of our findings.

Model selection

Several variations of the models were tested in order to
examine the robustness of the results to the different
specifications. Selection procedures for the marginal dis-
tributions, namely the one for the continuous response
and for the most suitable copula function were carried out
using the AIC and/or BIC. Complementary to these mea-
sures, we considered a suitable residual analysis. Based on
these criteria we selected a Gumbel distribution for the
age at menopause, Yy (Table 2).

Because the Gaussian copula allows for both positive
and negative signs of dependence between the marginal
distributions, we begin with it and then, based on the
sign of the dependence, we consider alternative specifica-
tions consistent with this initial finding. In this case, the
values for the Kendall’s tau (Table 4 - last row) is nega-
tive, —0.91, with an associated 95% confidence interval of
(—0.913, —0.906), indicating that those women who are
missing the menopause age, Y1, = 0, are more likely
to have their menopause at older ages. Thus, we only
consider copulas consistent with this sign of dependence
(Table 3). Based on these same model adequacy measures
already reported, the preferred copula is the Joe copula
with a rotation of 270°.
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Table 3 Selecting the best fitting copula. The NA represent
situations where the algorithm failed to converge

Copula AIC BIC

N 1394988 1397140
PL 1393386 1395308
C90 1391835 1393702
270 1397586 1399744
JO 1401004 1403095
J90 NA NA

1270 1391834 1393701
G90 NA NA

G270 1393482 1395444

It is worthwhile to note that a rotation of 270° for
the Joe copula means that the joint distribution is better
described by an association structure where the variability
associated to the likelihood of being missing is larger for
the cases with higher menopause ages (for an intuition of
this picture the reader is refereed to [21]).

Estimated effects

We considered 20 sets of imputed menopause ages which
were then subject to a random sample to obtain our
final imputed data set to be the subject of the analysis.
This procedure is carried out twice (one for each miss-
ing mechanism considered). Thus, the results below for
the data set completed with the imputations are based on
such samples. Figure 6 shows the histogram for these two
random samples obtained and consider: (i) an MAR sce-
nario adjusted with the GAMLSS model (12) along with
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a truncated Weibull distribution to obtain the imputa-
tions accomplished within the package gamlss. tr; (ii)
an MNAR scenario using the imputeSS function within
the GJRM package. Although the shapes of the obtained
distributions are similar, the distribution corresponding
to the imputations via the imputesSS function is shifted
towards larger values and has a larger lower tail. Based
on the current knowledge of the biological menopause
process, we can say that the imputations produced with
the gamlss. tr package, which allows the user to use a
truncated distribution for the imputations, in this case a
Weibull, seem to be more in agreement with the values
that are considered reasonable for a woman to reach the
menopause age. Nevertheless, none of the imputed pro-
cesses produced values above 67 years. The occurrence
of menopause at the age of 69 and 70 is considered to be
unrealistic [35].

Table 4 presents in 4 columns the estimates of the
regression coefficients of the binary variables for 4 sce-
narios. In the first one, we consider a CCA within the
gamlss package (before imputations); a Gumbel dis-
tribution for the age at menopause and the location
parameter expressed according to (12) with an identity
link function. Subsequently, we continue to consider the
gamlss package but only after obtaining the imputations
via the same package using a truncated Weibull distribu-
tion. The third scenario considers the copula approach
according to “Modelling the age at menopause in cen-
tral Portugal” section with a logit and Gumbel marginal
models and a Joe copula rotated by 270°. The location
parameters for the logit and Gumbel marginal models are
expressed as in (11) and (12). The last scenario exposes the
application of a GAMLSS approach to the completed data

0.10-
2
B
c
(]
©
0.05-
0.00-
10 20 30 40
value

variable
GJRM

gamlss

50 60

Fig. 6 Two overlayed histograms showing one random sample of 20 imputations after applying the gam1 ss methodology considering a truncated
Weibull distribution to impute the missing menopause ages (light grey) and after applying the copula approach (dark grey)
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Table 4 Regression coefficients and standard errors for the binary variables. (*p < 0.05, **p < 0.01, ***p < 0.001). Results are on the

scale of the linear predictor

CCA; gamlss after GJRM; gamlss after
gamlss; imputations no imputations; imputations
Gumbel margin truncated logit; Gumbel; produced with gjrm:
Weibull Copula=J270 Gumbel margin
Copula=J270
intercept 50.09 (0.03)*** 51.09 (0.03)*** 50.97 (0.03)*** 51.59 (0.03)***
pregnancy 0.28 (0.04)*** 0.19 (0.03)*** 0.27 (0.04)*** 0.27 (0.03)***
breastf 0.13 (0.02)*** 0.15 (0.02)*** 0.24 (0.02)*** 0.20 (0.02)***
anov 0.25 (0.02)*** 0.30 (0.02)*** 0.40 (0.02)*** 0.34 (0.02)***
oy, 4.04 401 425 423
T - - -0.91 -
6 - - -20.8 -

set obtained after the application of the imputeSS func-
tion in GJRM. From this table we can state that the differ-
ent scenarios do not significantly differ in its estimates of
the regression parameters for the binary variables. They
are all significant and positive.

Figures 7, 8, 9 and 10 display the estimates of the non-
linear effects for the continuous covariates in (12) for both
MNAR and MAR assumptions. Figure 7 shows the results
of fitting our model within the gamlss package before
the imputations (corresponding to a CCA). The down-
ward trend of the age at menopause when viewed as a
function of the birth year is notorious, being in accor-
dance with what had already been observed by [4]. Mean-
ing that younger women are tendentiously having early

menopauses. The variables ipccap and menarche have
generally a positive relation with the menopause. Women
living in municipalities with higher purchasing power
tend to have late menopauses as well as women with late
menarche. From the spatial clustering plot we might con-
clude that areas in the coast (Western) of Portugal tend to
show early menopause.

A different story is told if one looks at Fig. 8, where
the data has been completed with the imputations under
an MAR assumption. The downward trend for younger
women found in Fig. 7 born around 1950 is now reversed,
implying that younger women now tend to have a late
menopause. The effect of ipccap almost disappears and
the menarche impacts negatively the menopause age
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Fig. 7 Results using gamlss to fit only the complete cases (CCA), i.e. without imputations. Results are plotted on the scale of the semiparametric
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Fig. 8 Results using gamlss to fit the completed cases, i.e. after the missing menopause ages have been replaced with the imputations
considering a truncated Weibull distribution at the screening age to ensure that the imputed values are not lower than the actual woman'’s age.
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only for those women that had their menarche until the
age of 12. The spatial clustering remains more or less
unchanged.

Figure 9 shows the results for the menopause age when
fitting a copula model with the GJRM package under an
MNAR statement. We noticed that this approach without
imputations, i.e. using only the complete cases, already
captures the “new” increasing behaviour of the birth vari-
able (left top panel), that was observed in Fig. 8, despite the
estimates of the parameters being slightly different (last
two columns of the Table 4).

Figure 10 presents the results obtained with the
gamlss package fitted to the data set after filling up
the missing values with one imputation using the cop-
ula approach. Compared to Fig. 9, the variable that seems
to be changing more its behaviour is ipccap. Those
municipalities with a purchasing power slightly above

the national average tend to show an increase in their
menopause ages. The municipalities with higher ipccap
are located in the coast of Portugal, and from the spa-
tial plot (bottom right panel) those municipalities seem
to have a negative spatial effect. Although these estimates
may seem to point different conclusions, from our point of
view we think that this is due to the spatial random effects
showing that there is a need to incorporate new spatial
information in the data because their confidence intervals
do not contain zero.

Based on the validation analysis results shown in the
Supplementary Material I and on Fig. 11 below, which
compares the distribution of the age at menopause
obtained in different scenarios of imputation, to the true
observed ages in 2017, the MI approach using a truncated
Weibull distribution within the gamlss package pro-
duces the best results, i.e., it produces complete data sets
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Fig. 11 Boxplots for the menopause age considering only the set of women for whom menopause age was missing in 2010, but which was already
observed in 2017: solely imputations without truncation in 2010 (0); solely imputations with a truncated Weibull in 2010 (1); solely imputations with

a Copula approach in 2010 (2); true ages observed in 2017 (4)

2 3

that are more in agreement with the reality than using the
GJRM package that does not allow for truncation. Given
that, and given the information provided by the Figs. 8 and
10, we can state that the age at menopause is increasing
in the centre of Portugal. Younger women will, on aver-
age, experience the menopause a little later than women
of previous generations.

Finally, we would like to emphasize that the first goal of
this work was to assess the performance of some imputa-
tion procedures in retrieving the not yet observed ages at
menopause. The decreasing behaviour of the menopause
age as a function of the birth year, as in Fig. 7, is a fea-
ture always present if we adopt a naive approach to the
problem, i.e. if we do not input the not yet observed
ages at menopause (see Supplementary Fig. S11 in the
Supplementary Material I). If so, we will always be led
to conclude that the age at menopause is decreasing at
a very high rate for the younger generation. This is the
main reason why we opt for only adjust models for the
available information until 2010 and utilize the remaining
one for performing an adequate analysis of the differences
between the imputed values in 2010 and the true observed
ones in 2017.

Discussion
Missing data are often inevitable and many approaches
have been considered to analyse data sets with these char-
acteristics as alternatives to a complete case analysis. An
imputation procedure for the missing ages at menopause
is required if the study aims at analysing the trend of
a variable in a setting that includes a cohort of women
where the majority has already reached menopause and
only a small part has not yet. This is always the case when
we have a cohort whose age range includes the more likely
age to reach the menopause. In settings, where either
all women have already reached menopause, or neither
woman is in menopause yet, there is no need to resort to
any imputation procedure. From a statistical point of view,
the first situation only requires the specification of an
analysis model. The second situation cannot be inferred
because we do not have information to predict individ-
ual menopause, unless we assume that they have the same
characteristics as the older cohorts but then we would not
be able to study the temporal trends across cohorts.

With a data set similar to the one that we worked
with, not imputing the missing ages at menopause means
that we will have to wait for all women belonging to
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the youngest cohorts to reach menopause in order to be
able to assess the temporal trends of the menopause for
a certain cohort of women. When fulfilling a data with
imputations made in a proper way, we can model the tem-
poral trends of the age at menopause immediately. This
means that, in terms of public health, we will be studying
the phenomenon of menopause without delays. The naive
approach of simply delete the women without an observed
menopause leads to biased results.

Our work presented two solutions for the problem of
missing ages at menopause. One considering the data are
MAR anf the other considering the data are MNAR.

Missingness at random is relatively easy to handle, and
several pieces of software are already available for this
task such as the R packages mice [36] or mi [37]. These
procedures generally take as many variables as possi-
ble that might affect the probability of missingness to
impute the missing values by specifying regression mod-
els without specifying a model for the probability of
missingness. We tried both approaches but the results
obtained were similar to the ones of a complete case
analysis.

There is almost always a certain degree of dependence
between the probability of missingness of the age at
menopause and the values of the age at menopause itself.
The question that can be asked is - how problematic is
that dependence for our intentions? One thing that helps
is to include as many predictors as possible in a model so
that the MAR assumption is reasonable. This design can
effectively transform MNAR data into MAR data, which is
often used as a justification for assuming MAR. This strat-
egy was followed with success in this work by adopting
the imputation procedure, along with a truncated distri-
bution for the menopause age, using the gaml ss package.
The other line of research that we pursued was to fit a
joint model for the age at menopause and the probabil-
ity of missingness. This was achieved using copulas which
allowed us to model the situation with a non-ignorable
missing mechanism.

With an unknown missingness mechanism, usually the
relationship between the missingness pattern and the
observations cannot be inferred from the data at hand.
Therefore, an analysis assuming MAR should be accom-
panied by a sensitivity analysis as we did in the accom-
panying Supplementary Material II of this work. Since
we also observed age at menopause in 2017 that we
imputed in 2010, we checked the plausibility of the results
and implicitly the underlying assumptions of the differ-
ent methodologies by comparing the imputed to the true
observed values for different models (see the Supplemen-
tary Material I).

The drawbacks of our proposed approaches are: (i)
computationally very demanding methods, particularly
because we used spatial information and smoothing
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functions (P-splines) to model some of the functional
relations; (i) data set includes only a small subset of
possible characteristics that can influence menopause age
(e.g. we did not control for smoking status which is known
to be an important factor). The aim of the paper was not
to disentangle various risk factors for earlier menopause
but rather to provide an imputation method in a screen-
ing setting with potentially a limited number of covariates
and to emphasize how popular approaches might come
to false conclusions when they do not adequately com-
plete the generational cohort. (iii) When studying the age
at menopause (a time-varying variable) one must be aware
that period effects can potentially be mistaken for cohort
effects because period, age and cohort effects are not eas-
ily separable if one wants to study the association with
menopause age. Although we emphasize that the imputed
values are not influenced by this relationship.

Conclusion

In this work, we discussed two different approaches for
dealing with missing menopause ages. One considers the
data as MNAR and therefore we jointly model the miss-
ing data mechanism and the response variable of interest.
The other approach considers an MAR data structure and
thus only the statistical process of the age at menopause
was modelled. Both are easy to understand and can be eas-
ily implemented using two packages (GJRM and gamlss,
respectively) inside the popular R software.

Opting for the GIJRM has the virtue of allowing the
construction of a bivariate distribution in an easy and nat-
ural way by typifying a copula with a specific correlation
parameter. After adjusting the model, the imputations are
obtained via the imputeSS function. On the other hand,
the imputation tools available within the gamlss are
more useful because we are allowed to use truncated dis-
tributions while in the GIJRM that feature is not available.
This detail turns out to be decisive in the results obtained
in the validation analysis presented in the Supplemen-
tary Material I. The differences between the imputed
menopause values in 2010 and the true observed ages in
2017 are always smaller for the gamlss case.
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Sensitivity analyses and validation of results to assess whether conclusions
are robust when imputing multiple unobserved values.

Additional file 1: Supplementary Material I.
Additional file 2: Supplementary Material II.

Acknowledgements
The authors would like to thank the Portuguese Cancer League for providing
the data.


https://doi.org/10.1186/s12874-022-01658-x

Martins et al. BMC Medical Research Methodology (2022) 22:187

Authors’ contributions

RM, BS, TK, MH, NK performed the data analysis and wrote the manuscript with
advice from ED and VR. All authors then revised and approved the manuscript
prior to submission.

Funding

This work was partially funded by Fundagéo para a Ciéncia e a Tecnologia
(FCT) through the projects INIC-DAAD — DAAD 441.00, UIDB/00006/2020 and
POCI/01/0145/FEDER/029443 — SHSADReM — Addressing Social and Health
Challenges through new developments in Structured Additive Distributional
Regression Models. Nadja Klein acknowledges support through the Emmy
Noether grant KL 3037/1-1 of the German research foundation (DFG).

Availability of data and materials
The data sets used and/or analysed during the current study are available from
the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate

This project has used data from the Breast Cancer Screening data from
Portugal, which have ethical approval from the Faculty of Psychology of the
University of Coimbra Ethics Committee and the Portuguese Cancer League.
Usage of data derived from the records is according to Portuguese and
European laws and regulations. All women signed the informed consent prior
to the screening procedure.

Consent for publication
All authors consent to this publication.

Competing interests
The authors declare that they have no competing interests.

Author details

! Departamento de Estatistica e Investigacdo Operacional, Faculdade de
Ciéncias, Universidade de Lisboa, Portugal; Centro de Estatistica e Aplicaces
da Universidade de Lisboa (CEAUL), Lisboa, Portugal. 2Faculty of Psychology
and Education Sciences (FPCE); Center for Research in Neuropsychology and
Cognitive and Behavioral Intervention (CINEICC), University of Coimbra,
Coimbra, Portugal. 3University of Goettingen, Chair of Statistics, Humboldtallee
3, 37073 Goettingen, Germany. “Humboldt-Universitat zu Berlin, School of Bus.
Econ, Applied Statistics, Unter den Linden 6, 10099 Berlin, Germany. >Faculty
of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal.
5Liga Portuguesa Contra o Cancro, Nicleo Regional do Centro, Rua Dr.
Antonio José de Almeida,329 - piso 2 - Sala 56, Coimbra, Portugal.

Received: 1 September 2021 Accepted: 6 June 2022
Published online: 11 July 2022

References

1. Collaborative Group on Hormonal Factors in Breast Cancer. Type and
timing of menopausal hormone therapy and breast cancer risk: individual
participant meta-analysis of the worldwide epidemiological evidence.
Lancet. 2019;394(10204):1159-68.

2. Rubin DB. Inference and missing data. Biometrika. 1976;63(3):581-92.

3. Little RJA, Rubin DB. Statistical Analysis with Missing Data, 3rd ed.
Hoboken: Wiley; 2019.

4. Duarte E, de Sousa B, Cadarso-Suarez C, Rodrigues V, Kneib T. Structured
additive regression modeling of age of menarche and menopause in a
breast cancer screening program. Biom J. 2014;56(3):416-27.

5. DratvaJ, Real F, Schindler C, Ackermann-Liebrich U, Gerbase M,
Probst-Hensch N, Svanes C, Omenaas ER, Neukirch F, Wjst M, Morabia
A, Jarvis D, Leynaert B, Zemp E. Is age at menopause increasing across
europe? results on age at menopause and determinants from two
population-based studies. Menopause. 2009;16(2):385-94.

6. Rodrigues V. Geographical epidemiology of cancer. application of
empirical bayesian estimation to the analysis of the geographical
distribution of mortality from malignant tumors in portugal. PhD thesis,
University of Coimbra. 1993.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

Page 16 of 17

Duarte E, de Sousa B, Cadarso-Sudrez C, Kneib T, Rodrigues V. Exploring
risk factors in breast cancer screening program data using structured
geoadditive models with high order interaction. Spat Stat. 2017;22(2):
403-18.

Marra G, Radice R. Bivariate copula additive models for location, scale and
shape. Comput Stat Data An. 2017;112:99-113.

Rigby RA, Stasinopoulos DM. Generalized additive models for location,
scale and shape, (with discussion). J R Stat Soc Ser C Appl Stat. 2005;54(3):
507-54.

Gomes M, Radice R, Camarena Brenes J, Marra G. Copula selection
models for non-gaussian outcomes that are missing not at random. Stat
Med. 2019;38(3):480-96.

. Wood S. Generalized Additive Models: an Introduction with R. Boca Raton:

Chapman and Hall/CRC; 2017.

De Jong R, Van Buuren'S, Spiess M. Multiple imputation of predictor
variables using generalized additive models. Commun Stat Simul
Comput. 2016;45(3):968-85.

Aro AR, De Koning H, Absetz P, Schreck M. Two distinct groups of
non-attenders in an organized mammography screening program. Breast
Cancer Res Treat. 2001;70(2):145-53.

Zackrisson S, Andersson |, Manjer J, Janzon L. Non-attendance in breast
cancer screening is associated with unfavourable socio-economic
circumstances and advanced carcinoma. Int J Cancer. 2004;108(5):754-60.
Huard D, Evin G, Favre A-C. Bayesian copula selection. Comput Stat Data
An. 2006;51(2):809-22.

Sklar M. Fonctions de repartition a n dimensions et leurs marges. Publ Inst
Statist Univ Paris. 1959,8:229-31.

Genest C, Rivest L-P. Statistical inference procedures for bivariate
archimedean copulas. J Am Stat Assoc. 1993,88(423):1034-43.

Nelsen RB. An Introduction to Copulas: Springer; 2007.

Joe H. Dependence Modeling with Copulas. Boca Raton: Chapman and
Hall/CRC; 2014.

Genest C, Neslehovd J. A primer on copulas for count data. ASTIN Bull J
IAA. 2007,37(2):475-15.

Marra G, Wyszynski K. Semi-parametric copula sample selection models
for count responses. Comput Stat Data An. 2016;104:110-29.

Leurent B, Gomes M, Faria R, Morris S, Grieve R, Carpenter J. Sensitivity
analysis for not-at-random missing data in trial-based cost-effectiveness
analysis: a tutorial. PharmacoEconomics. 2018;36(8):889-901.

Ogundimu E, Collins GS. A robust imputation method for missing
responses and covariates in sample selection models. Stat Methods Med
Res. 2017;28(1):102-16. https://doi.org/10.1177/0962280217715663.
Zhou X, Reiter JP. A note on bayesian inference after multiple imputation.
Am Stat. 2010;64(2):159-63.

Gelman A, Carlin B, Stern HS, Rubin DB. Bayesian Data Analysis:
Chapman and Hall/CRC; 2004.

Paulino CD, Amaral Turkman M, Murteira B, Silva GL. Estatistica
Bayesiana, 2nd ed. Lisboa: Fundagao Calouste Gulbenkian; 2018.

Harris IR. Predictive fit for natural exponential families. Biometrika.
1989;76(4):675-84.

Fushiki T. Bayesian bootstrap prediction. J Stat Plan Inference. 2010;140(1):
65-74.

Salfran D, Spiess M. Generalized additive model multiple imputation by
chained equations with package imputerobust. R J. 2018;10(1):61-72.
Fahrmeir L, Kneib T, Lang S. Penalized structured additive regression for
space-time data: a bayesian perspective. Stat Sin. 2004;14(3):731-61.
Eilers P, Marx B. Flexible smoothing with b-splines and penalties. Stat Sci.
1996;11(2):89-102.

Rue H, Held L. Gaussian Markov Random Fields: Theory and Applications.
Boca Raton: Chapman and Hall/CRC; 2005.

Fahrmeir L, Kneib T, Lang S, Marx B. Regression: Models, Methods and
Applications. Berlin Heidelberg: Springer Science & Business Media; 2013.
Besag J, York J, Mollié A. Bayesian image restoration, with two
applications in spatial statistics (with discussion). Ann | Stat Math.
1991;43(1):1-59.

Nichols H, Trentham-Dietz A, Hampton J, Titus-Ernstoff L, Egan K,
Willett W, Newcomb P. From menarche to menopause: trends among US
women born from 1912 to 1969. Am J Epidemiol. 2006;164(10):1003-11.
van Buuren S, Groothuis-Oudshoorn K. mice: Multivariate imputation by
chained equations in R. J Stat Softw. 2011;45(3). https://doi.org/10.18637/
Jss.v045.i03.


https://doi.org/10.1177/0962280217715663
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.18637/jss.v045.i03

Martins et al. BMC Medical Research Methodology (2022) 22:187

37. SuY-S, Gelman A, Hill J, Yajima M. Multiple imputation with diagnostics
(mi) in R: Opening windows into the black box. J Stat Softw. 2011;45(2).
https://doi.org/10.18637/jss.v045.i02.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Page 17 of 17

Ready to submit your research? Choose BMC and benefit from:

o fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress. B

Learn more biomedcentral.com/submissions



https://doi.org/10.18637/jss.v045.i02

	Abstract
	Background
	Methods
	Results
	Conclusion
	Keywords

	Introduction
	Breast cancer screening data from Portugal
	Bivariate conditional copula regression
	Bivariate joint distributions through copulas
	Mixed binary-continuous copulas
	The likelihood

	Imputation methodology
	Imputing with a copula approach
	Imputing with GAMLSS models

	Modelling the age at menopause in central Portugal
	Semiparametric predictors
	Copula model
	Marginal models
	Flexible effects
	Spatial effects
	Selected marginal distributions


	Results
	Model selection
	Estimated effects

	Discussion
	Conclusion
	Supplementary InformationThe online version contains supplementary material available at https://doi.org/10.1186/s12874-022-01658-x.
	Additional file 1
	Additional file 2

	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

