
Brooks et al. 
BMC Medical Research Methodology          (2022) 22:190  
https://doi.org/10.1186/s12874-022-01663-0

RESEARCH

Assessing the ability of an instrumental 
variable causal forest algorithm to personalize 
treatment evidence using observational data: 
the case of early surgery for shoulder fracture
John M. Brooks1,2*, Cole G. Chapman3,4, Sarah B. Floyd4,5, Brian K. Chen2,4, Charles A. Thigpen4,6 and 
Michael Kissenberth4,7 

Abstract 

Background:  Comparative effectiveness research (CER) using observational databases has been suggested to obtain 
personalized evidence of treatment effectiveness. Inferential difficulties remain using traditional CER approaches 
especially related to designating patients to reference classes a priori. A novel Instrumental Variable Causal Forest 
Algorithm (IV-CFA) has the potential to provide personalized evidence using observational data without designat-
ing reference classes a priori, but the consistency of the evidence when varying key algorithm parameters remains 
unclear. We investigated the consistency of IV-CFA estimates through application to a database of Medicare benefi-
ciaries with proximal humerus fractures (PHFs) that previously revealed heterogeneity in the effects of early surgery 
using instrumental variable estimators.

Methods:  IV-CFA was used to estimate patient-specific early surgery effects on both beneficial and detrimental 
outcomes using different combinations of algorithm parameters and estimate variation was assessed for a popula-
tion of 72,751 fee-for-service Medicare beneficiaries with PHFs in 2011. Classification and regression trees (CART) were 
applied to these estimates to create ex-post reference classes and the consistency of these classes were assessed. 
Two-stage least squares (2SLS) estimators were applied to representative ex-post reference classes to scrutinize the 
estimates relative to known 2SLS properties.

Results:  IV-CFA uncovered substantial early surgery effect heterogeneity across PHF patients, but estimates for indi-
vidual patients varied with algorithm parameters. CART applied to these estimates revealed ex-post reference classes 
consistent across algorithm parameters. 2SLS estimates showed that ex-post reference classes containing older, frailer 
patients with more comorbidities, and lower utilizers of healthcare were less likely to benefit and more likely to have 
detriments from higher rates of early surgery.

Conclusions:  IV-CFA provides an illuminating method to uncover ex-post reference classes of patients based on 
treatment effects using observational data with a strong instrumental variable. Interpretation of treatment effect 
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Introduction
Policy makers want patients to have personalized evi-
dence when making treatment decisions [1–3]. The need 
for personalized evidence follows from recognition that 
treatment effect heterogeneity  across patients is the rule 
rather than exception in healthcare [4–10]. While rand-
omized controlled trials (RCTs) are the gold standard for 
evidence generation, with treatment effect heterogeneity 
it is difficult for RCTs to generate personalized evidence 
for many patients [4, 11–14]. Comparative effectiveness 
research (CER) using large observational databases has 
been suggested as an alternative to develop personalized 
evidence [1, 2, 15–18]. Observational data provide the 
perspective of real-world practice-based evidence and a 
diversity of patients well beyond those evaluated in RCTs 
[2, 3, 11, 17, 18]. However, inferential difficulties exist 
using traditional CER estimation approaches to provide 
personalized evidence. With traditional CER approaches 
the evidence for an individual patient is generally an aver-
age treatment effect estimate for a population subgroup 
or a “reference class” based on a combination of meas-
ured baseline factors specified prior to estimation  [19–
21]. Specifying appropriate reference classes a priori has 
been described as “the central problem when using group 
evidence to forecast outcomes (or treatment effects) in 
individuals.”[20] Even with a small number of measured 
baseline factors, a patient could be placed in an “indefi-
nite number of subgroups” [19–21], and is often unclear 
which reference class is best aligned to each patient [4, 
10, 19, 20, 22–29] Risk of misalignment is the greatest 
when using “one-variable-at-time” subgroups (e.g. young 
vs. old), as important distinctions across patients within 
a subgroup can be blended and lost [19–21]. In addition, 
because treatment variation in observational data reflects 
choices  instead of random assignment, unmeasured fac-
tors affecting both treatment choice and outcomes can 
confound estimation and lead to biased treatment effect 
estimates within each reference class [30, 31].

A novel Instrumental Variable Causal Forest Algo-
rithm (IV-CFA) described by Athey and colleagues has 
been developed with the potential to alleviate these 
issues [32]. Other similar instrumental variable-based 
causal forest algorithms have been developed [33, 34]. 
Causal forest algorithms (CFA) evolved from standard 
classification and regression tree (CART) and random 
forest ensemble methods with an objective to estimate 

personalized treatment effects without the need to 
specify reference classes a priori [32, 35–38]. However, 
CFA estimators require researchers to specify algo-
rithm parameters related to tree construction and for-
est sizes prior to estimation. In addition, when applied 
to observational data, CFAs suffer the same bias risk 
from unmeasured confounding that threatens tradi-
tional CER estimators. To reduce confounding risk when 
using observational data, IV-CFA estimates individual 
treatment effects using only the treatment variation in a 
population associated with an instrumental variable [32, 
39, 40]. An instrumental variable is a measured factor 
related to treatment choice but is assumed to be related 
to study outcomes only through its impact on treatment 
choice and has no association with unmeasured con-
founders [39, 40]. Estimates from traditional instrument 
variable estimators like two-stage least squares (2SLS) 
have known properties with respect to strength of the 
instrument to influence treatment choice [41–43] and 
have distinct estimate interpretations that are especially 
important with treatment effect heterogeneity [44–48]. 
While IV-CFA has the potential to provide personal-
ized treatment effect evidence using observational data, 
the consistency and interpretation of the personalized 
evidence based on IV-CFA estimates with respect to the 
pre-specified modeling parameters within the algorithm 
remain unclear. Estimates from IV-CFA will be more use-
ful for personalized evidence they are not dependent on 
the parameters of the algorithm.

In this paper we investigate the consistency of IV-CFA 
personalized treatment effect evidence produced when 
varying the key algorithm parameters through applica-
tion to an existing empirical database that revealed treat-
ment effect heterogeneity using instrumental variable 
estimators with a strong instrumental variable [49]. The 
database is from an instrumental variable (IV) study for 
Medicare fee-for-service patients in 2011 that assessed 
the effects of early surgery on patients with new proximal 
humerus fractures (PHF) [49]. Meta-analyses indicate 
that the benefits and detriments of early surgery rela-
tive to conservative management are likely heterogene-
ous across PHF patients [50] but consensus has not been 
reached on which patients are good candidates for early 
surgery [51–54]. It is thought that 15–30% of elderly PHF 
patients are good candidates for early surgery [55–58]. 
The benefits of early surgery on pain and function are 

estimates within each ex-post reference class using traditional CER methods remains conditional on the extent of 
measured information in the data.
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squares (2SLS) estimators, Proximal humerus fracture, Surgery



Page 3 of 16Brooks et al. BMC Medical Research Methodology          (2022) 22:190 	

thought to increase with fracture complexity (i.e. extent 
of displacement, number of fracture parts) [50] and 
the risk of detriment from early surgery are thought to 
increase with fracture complexity, patient age, number 
of comorbidities, frailty, and social independence [58–
60]. The prior study used local area surgery rates as an 
instrumental variable and revealed positive associations 
between early surgery rates and rates of detrimental out-
comes (1-year mortality and morbidity rates). In addition, 
early surgery effects on detriments varied when patients 
were stratified a priori by single baseline factors [49]. It 
remains unknown whether additional surgery effect het-
erogeneity exists across the population and the extent to 
which early surgery benefits patients.

With this database we explored the consistency of IV-
CFA estimates to provide personalized evidence using 
two steps. In the first step, we contrasted the distribu-
tions of individual early surgery effect estimates across 
the study population produced using different combi-
nations of IV-CFA parameters. In the second step we 
applied standard classification and regression trees 
(CART) to the IV-CFA estimates from the first step 
to stratify patients into ex-post reference classes  and 
assessed the consistency of ex-post reference classes to 
variation in IV-CFA parameters. In addition, for a repre-
sentative IV-CFA parameter combination as suggested in 
the literture [34, 61], we applied two-stage least squares 
(2SLS) estimators to the patients in the ex-post reference 
classes to estimate the effects of early surgery on study 
outcomes and interpret the estimates in terms of known 
2SLS properties [41–48].

Methods
Population
We used data for Medicare fee-for-service patients with 
a new proximal humerus fracture (PHF) in 2011 [49]. 
The prior study included 72,823 patients [49] and used a 
measure of local area surgical practice styles as an instru-
ment (see the description below). As recommended by 
the literature [62], additional control variables were spec-
ified for this type of instrument including county-level 
life expectancy [63] and county-level adjusted per cap-
ita Medicare spending [64]. Inconsistent links between 
county identifiers across data sources reduced the popu-
lation in this study to 72,751 patients.

Measures
Instrumental variable
Health services researchers across clinical areas have 
noted surgery rates varying dramatically across geo-
graphic areas independent of measured differences in 
patient characteristics and have labeled this phenomena 
as local area “surgical signatures” [65–70]. It is theorized 

that providers in a local areas develop “idiosyncratic 
clinical rules of thumb” leading to these signatures [68, 
69]. Local area treatment signatures have been a rich 
and practical basis for natural experiments [40] in treat-
ment choice across clinical areas [25, 49, 71–89]. Uses of 
local area treatment signatures to provide natural experi-
ments in treatment choice are based on the assumption 
that the distributions of unmeasured patient characteris-
tics that affect outcomes across local areas are independ-
ent of local area clinical rules of thumb. The prior study 
used risk-adjusted area surgery ratios (ASRs) in the use of 
early surgery for PHF patients for each Hospital Referral 
Region (HRRs) as a measure of local area surgical prac-
tice style [49]. An ASR was calculated for each HRR as 
the ratio of the number of PHF patients in the HRR who 
received early surgery over the sum of predicted prob-
abilities across the patients in the HRR to receive early 
surgery. Logistic regression estimates of early surgery 
choice as a function of measured patient baseline fac-
tors (listed in the Reference Class Factors section below) 
over the study sample was used to estimate the predicted 
probability of receiving early surgery for each patient. 
Patients were assigned the ASR value of their resident 
HRR as the instrumental variable. This instrumental 
variable provides a natural experiment in early surgery 
choice under the assumption that ASR variation across 
HRRs reflects mainly differences in surgeon practice-
styles across HRRs and not differences in the distribu-
tions of unmeasured patient characteristics like fracture 
complexity. This assumption is based on the notion that 
patient residency decisions made years prior to a PHF 
are likely unrelated to future PHF complexity. Previous 
research suggests that the bias risk associated with differ-
ences in unmeasured patient characteristics is attenuated 
when larger geographic areas such as the HRRs are used 
[88]. Nevertheless, this remains an assumption underly-
ing our estimates [88].

Treatment
PHF patients who received either reverse shoulder 
arthroplasty, hemiarthroplasty, open reduction internal 
fixation, or closed reduction internal fixation) during 
the 60 days following the PHF index visit were classified 
as early surgery patients. Surgery claims were identified 
using Medicare Part B carrier, outpatient, and inpatient 
claims files.

Outcomes
Early surgery for PHF can benefit patients relative to con-
servative care through increased mobility and reduced 
pain but can also increase the risk of detriments includ-
ing death and adverse events [49, 90]. Accordingly, a 
detriment outcome variable was set equal to 1 if the 
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patient died or had an adverse event during the period 
61–365  days following the index PHF, 0 otherwise. 
Adverse events were measured using Part A and B Medi-
care claims using ICD-9 codes listed in the prior research 
[49]. Death was measured using death dates from the 
2011 and 2012 Medicare Beneficiary Summary File. In 
addition, we calculated an “event-based [71] or “process 
of recovery” [72] measure of benefit for each patient [71–
81]. Continued shoulder treatment in the outcome period 
suggests that a patient had either not fully alleviated pain 
or not returned to normal function. Our clinical coinves-
tigators advised that PHF patients progressing toward 
full pain alleviation and normal function after treatment 
may still have as many as four evaluation and manage-
ment (E&M) visits with a surgeon or physical therapist 
during the period 61–365 days following the index PHF. 
We estimated the average E&M Medicare cost per shoul-
der-related visit around $75 in 2011. Accordingly, for 
each patient a benefit outcome variable was set equal to 1 
if the patient survived the period 61–365 days after index 
PHF with less than $300 of shoulder-related healthcare 
costs during this period, 0 otherwise. Medicare Part A 
and Part B claims during the outcome period with one 
of 192 ICD-9 shoulder diagnoses described in the prior 
paper were deemed to be shoulder-related [49].

Reference class factors
Baseline factors for the IV-CFA algorithm and reference 
class creation were the patient baseline factors used in the 
prior study: patient age grouped as 66–69, 70–75, 76–79, 
80–85, 86 + , sex, race, Medicaid dual eligibility, and pre-
vious shoulder diagnoses of osteoarthritis, rheumatoid 
arthritis, rotator cuff arthropathy, and avascular necrosis. 
Medicare claims in the year prior to the index PHF were 
used to estimate the Charlson Comorbidity Index (CCI) 
[91, 92], the Frailty Risk Index (FRI) score [93], and quin-
tiles of patient-specific total Medicare spending in the 
year prior to index [52, 94–96]. Prior healthcare spending 
has been shown to be indicative of patient health status 
and health care utilization preferences [52, 95, 96]. For 
the IV-CFA, the five age groups, CCI, FRI, and the prior 
health cost quintiles were each specified as single ordinal 
index variables so that concept “cut-offs” produced by 
IV-CFA implied monotonic relationships (e.g. a cut-off of 
less than or equal to age group 3 implies all patients age 
less than or equal to 79, versus 80 and above). In 2SLS 
estimation, the baseline factors which were free to vary 
within a reference class were specified using binary vari-
ables for each level of the concept. It should be noted 
that Medicare data has limited ability to measure certain 
factors suggested by the literature to affect early surgery 
effectiveness across patients. Of significant note, the 
International Classification of Diseases, Ninth Revision 

(ICD-9) diagnosis codes used in 2011 do not differenti-
ate PHFs by fracture complexity and our results must be 
interpreted accordingly.

Empirical approach
Causal forest algorithms (CFAs) evolved from standard 
classification and regression trees (CART) and random 
forest ensemble methods [32, 35–38]. CART predic-
tive modeling procedures iteratively partition “nodes” 
of observations of a study sample into subgroups or 
sub-nodes based on values of measured baseline factors 
in a manner which maximizes the differences in an out-
come across sub-nodes[37]. A tree is formed by viewing 
the partitions as “branches” from the full study popula-
tion into the sub-nodes. The final sub-nodes in a tree are 
referred to as “leaves”. Minimum “leaf size” parameters in 
terms of number of observations are available in CART 
algorithms to stop the branching process. The random 
forest approach is an ensemble method for prediction 
which generates a “forest” of CART trees through resam-
pling from the underlying population [36]. The predicted 
outcome for each patient in a study population is the 
average outcome across the leaves in the trees in the for-
est containing the patient. The number of trees in a for-
est is also a parameter to be specified in random forest 
algorithms. CFAs extend the random forest approach to 
the goal of estimating the causal effect of a predictor of 
interest (e.g. a treatment) on an outcome. CFAs partition 
observations based on baseline factors which maximize 
the expected differences in the estimated treatment effect 
on an outcome [32, 35, 38].  When applied to observa-
tional data, CFAs suffer the same bias risk from unmeas-
ured confounding that afflicts standard regression. To 
reduce confounding risk, IV-CFA partitions patients into 
causal trees using baseline factor combinations which 
maximize the differences in estimated treatment effect 
on an outcome using only the treatment variation associ-
ated with an instrumental variable [32, 39, 40]. For each 
tree in a forest, IV-CFA assigns to each patient in the 
population the estimated treatment effect for the leaf on 
the tree that matches the patient’s baseline factor values. 
The final estimate of the treatment effect for each patient 
equals the average estimated effect across the trees in the 
forest.

In this study we applied IV-CFA to the population of 
PHF patients and estimated separate models for detri-
ment and benefit outcomes. IV-CFA was implemented 
using the “grf” package in R [97]. This package provides 
parameters to vary the number of trees in a forest and 
the minimum population leaf size in each tree. For each 
outcome we repeated estimation by varying the forest 
size and minimum leaf size parameters. Models were 
run using combinations of either 3000, 4000 or 5000 
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trees to support large sample properties and minimum 
leaf sizes of 50, 100, 200, 300, or 400 observations. CFA 
studies have suggested that larger minimum leaf sizes 
are needed to avoid over-fitting the models but there is 
little additional guidance available as to the inferential 
tradeoffs associated with this parameter choice [98–100]. 
All IV-CFA scenarios were estimated using the “honest” 
approach suggested by the algorithm creators in which 
each tree was estimated using a randomly selected 25% 
of the study population [38]. To assess the consistency 
of estimates across algorithm parameters we report the 
distribution of estimated surgery effects for both the 
detriment and benefit outcomes by combinations of the 
parameters.

In the second step, we use standard classification and 
regression trees (CART) to stratify patients into ex-post 
reference classes  based on the early surgery effect esti-
mates from IV-CFA in the first step using baseline patient 
factors and assessed the consistency of these ex-post ref-
erence classes to variation in IV-CFA model parameters. 
In addition, for a representative IV-CFA model parameter 
combination, we applied two-stage least squares (2SLS) 
estimators to the patients in each ex-post reference class 
to estimate the effects of early surgery on each study out-
come and interpret the estimates from each ex-post ref-
erence class in terms of known 2SLS properties [41–48]. 
In contrast to the IV-CFA estimator, the 2SLS estimator 
statistically controls for the remaining baseline factors 
not used in creating the reference class. Instrumental 
variable estimators require strong relationships between 
treatment choice and the specified instrument to yield 
valid results [101]. 2SLS provides an F-statistic assess-
ing the strength of this relationship between the instru-
ment from the 1ststage of 2SLS and early surgery choice, 
whereas IV-CFA does not provide such evidence. 2SLS 
estimates a local average treatment effect (LATE) for the 
subset of patients within each ex-post reference class 
whose early surgery choice were sensitive to the instru-
mental variable [22, 25, 26, 43, 102–106]. Early surgery 
effects will remain heterogeneous across patients within 
each ex-post reference class if the baseline factors affect-
ing early surgery effectiveness are incompletely measured 
in an empirical database. If early surgery choice within 
an ex-post reference class reflects these unmeasured fac-
tors (what is known as essential heterogeneity or sorting 
on the gain), estimates will not generalize to all patients 
within an ex-post reference class and must be properly 
interpreted [22, 26, 44–48]. To gain insight into these 
inferential distinctions, for each ex-post reference class 
we provide the percentage of patients who received early 
surgery, the range of early-surgery rates across patients 
grouped by the quintiles of the instrument, the 1st stage 
F-statistic, and the 2SLS-estimated effect of early surgery 

on the probability of patients attaining the respective 
outcome. 2SLS estimates are displayed in 2-way tables 
showing the ex-post reference classes for both benefit 
and detriment outcomes to enable decision-makers to 
find evidence appropriately personalized (to the extent 
possible) for a new patient.

Results
For context, Tables A.1 and A.2 in the Additional file  1 
reproduces the format of the patient factor summary 
tables found in the prior research for this study popu-
lation [49]. Table A.1 groups patients by early surgery 
choice and Table A.2 distributes patients across quintiles 
of local area early surgery ratios (ASRs). Early surgery 
patients in Table A.1 were more likely to have a detri-
ment outcome and less likely to have a benefit outcome 
than conservatively managed patients. In Table A.2, 
higher early surgery rates across ASR quintiles were also 
associated with higher probabilities of the detriment out-
come, but in contrast to Table A.1, higher early surgery 
rates across ASR quintiles were associated with higher 
probabilities of the benefit outcome.

Tables 1 and 2 show summary statistics of the distribu-
tions of IV-CFA estimated effects of early surgery relative 
to conservative management across the study population 
by combinations of algorithm parameters for the benefit 
and detriment outcomes, respectively. IV-CFA yields esti-
mates of the absolute effect of early surgery on the proba-
bility of the specified outcome occurring for each patient. 
For example, the estimated absolute effect of early sur-
gery on the benefit outcome using 4000 trees with a min-
imum node size of 200 patients for the patient at the 75% 
percentile in Table  1 is 0.312. This means that IV-CFA 
estimates that early surgery increases the probability of 
the benefit outcome for that patient by 31.2%. Likewise, 
with 4000 trees and a minimum node size of 200 patients 
in Table 2, 2-CFA estimates that early surgery increases 
the probability of the detriment outcome for the patient 
at the 25% percentile in that distribution by 4.7%. With 
4000 trees and a minimum node size of 200 patients 
the inter-decile range of early surgery effect was (-0.038 
to 0.421) for benefit and (-0.017 to 0.283) for detriment 
which suggests substantial heterogeneity in early surgery 
effects across the study population for each outcome. 
Tables 1 and 2 show that the average absolute early sur-
gery effects (mean and median) remain consistent across 
minimum leaf sizes for both outcomes, but the ranges of 
the estimates across the population increase substantially 
as the minimum leaf size falls from 400 to 50. Using 4000 
trees, the inter-decile range of early surgery effect on the 
benefit outcome with a minimum leaf size of 400 is (0.031 
to 0.236) in contrast to (-0.188 to 0.462) with a minimum 
leaf size of 50. In addition, for each patient we estimated 
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the range of early surgery effect estimates across the min-
imum leaf size values (50,100,200,300,400) for 4000 trees. 
Over half of the patients had early surgery effect estimate 
ranges across these minimum leaf sizes of more than 
0.150 for the benefit outcome and 0.120 for the detriment 

outcome. These range estimates are large when compared 
to the mean estimated effects of early surgery on the ben-
efit outcome (0.196) and the detriment outcome (0.135) 
across the population. Increasing the number of trees in 
each IV-CFA forest lowered the standard deviation of 

Table 1  Distribution of Instrumental Variable Causal Forest Algorithm Early Surgery Absolute Effects on the Benefit Outcomea for 
Medicare Patients with Proximal Humerus Fractures in 2011 by Number of Trees in IV-CFA Forest and Minimum Leaf Node Population 
Size in Each Tree

a 1 if patient survives 61–365 days after index proximal humerus fracture with less than $300 of shoulder-related healthcare costs, 0 otherwise

Trees in 
IV-CFA 
Forest

Minimum Leaf Node 
Population Size

Mean St Dev Percent of Patients 
with Positive Effect

Min 10th 25th 50th

Median
75th 90th Max

3000 50 .198 .327 75% -1.448 -.193 .0001 .203 .411 .586 1.368

100 .196 .236 81% -.729 -.088 .056 .204 .350 .481 .908

200 .197 .175 88% -.449 -.033 .100 .210 .311 .418 .675

300 .198 .147 90% -.284 -.005 .110 .213 .299 .373 .587

400 .198 .131 91% -.220 .013 .118 .214 .290 .358 .518

4000 50 .197 .331 75% -1.457 -.208 -.004 .200 .413 .593 1.366

100 .197 .237 81% -.727 -.094 .058 .204 .353 .480 .906

200 .196 .177 87% -.434 -.038 .096 .208 .312 .421 .659

300 .197 .148 90% -.283 -.008 .109 .213 .299 .374 .565

400 .198 .132 91% -.206 .014 .116 .215 .290 .362 .512

5000 50 .198 .327 75% -1.389 -.201 .003 .202 .413 .590 1.375

100 .197 .234 81% -.721 -.087 .060 .201 .352 .477 .882

200 .197 .172 87% -.417 -.032 .100 .209 .308 .414 .663

300 .198 .145 90% -.278 -.004 .112 .214 .296 .369 .560

400 .198 .129 91% -.189 .018 .117 .217 .286 .354 .505

Table 2  Distribution of Instrumental Variable Causal Forest Algorithm Early Surgery Absolute Effects on the Detriment Outcomea for 
Medicare Patients with Proximal Humerus Fractures in 2011 by Number of Trees in IV-CFA Forest and Minimum Leaf Node Population 
Size in Each Tree

a 1 the patient died or had an adverse event during the period 61–365 days following the index PHF, 0 otherwise

Trees in 
IV-CFA 
Forest

Minimum Leaf Node 
Population Size

Mean St Dev Percent of Patients 
with Positive Effect

Min 10th 25th 50th

Median
75th 90th Max

3000 50 .139 .265 72% -1.369 -.186 -.021 .143 .304 .468 1.107

100 .137 .172 77% -.376 -.086 .013 .138 .254 .354 .679

200 .137 .115 87% -.207 -.014 .048 .146 .218 .288 .457

300 .136 .093 92% -.158 .012 .067 .141 .202 .255 .383

400 .137 .077 96% -.105 .032 .082 .143 .191 .239 .351

4000 50 .135 .264 72% -1.254 -.188 -.020 .136 .297 .462 1.090

100 .136 .171 77% -.357 -.086 .015 .136 .251 .350 .703

200 .135 .115 86% -.200 -.017 .047 .142 .219 .283 .430

300 .136 .093 92% -.145 .009 .067 .142 .203 .256 .373

400 .135 .078 95% -.106 .031 .081 .140 .190 .236 .338

5000 50 .136 .263 71% -1.209 -.189 -.023 .139 .300 .462 1.152

100 .137 .171 77% -.381 -.081 .013 .136 .251 .350 .697

200 .138 .114 87% -.194 -.014 .048 .144 .218 .286 .435

300 .136 .091 93% -.142 .012 .069 .142 .202 .254 .384

400 .136 .078 95% -.089 .031 .080 .141 .191 .237 .350



Page 7 of 16Brooks et al. BMC Medical Research Methodology          (2022) 22:190 	

mean outcomes but had no appreciable effects on the dis-
tribution of estimated effects across the population.

In the second step, we assessed the consistency of ex-
post reference classes derived from the IV-CFA estimates 
in the first step using standard classification and regres-
sion trees (CART). Because the number of trees had no 
appreciable effects on the estimates in Tables  1 and 2, 
we focused on scenarios using 4000 trees and varied the 
minimum leaf size in IV-CFA. To illustrate this approach, 
Figs. 1 and 2 show the CART results using the minimum 

leaf size of 200 on the benefit and detriment outcomes, 
respectively. The values above the red node label in each 
figure equal the average IV-CFA early surgery abso-
lute effect estimate on the respective outcome for the 
patients in that node. Node 1 in both figures contains 
estimates for the full population with values consistent 
with the means in Tables  1 and 2. For the benefit out-
come in Fig. 1, CART divided the population initially by 
whether patients had a CCI score of 0 (node 2) or greater 
than zero (node 3). The average IV-CFA estimate of early 

Fig. 1  Regression Tree for Causal Instrumental Variable-Based Early Surgery Effect on the Probability of Benefit#

Fig. 2  Regression Tree for Causal Instrumental Variable-Based Early Surgery Effect on the Probability of Detriment#
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surgery effect on the benefit outcome in node 2 (0.340) 
was nearly 130% higher than in node 3 (0.148). Age < 86 
caused the second level of splits (nodes 4–7) with aver-
age early surgery benefits higher for the patients under 
86. In the third-level of splits (nodes 8–14), patients with 
higher levels of Medicare spending prior to a PHF had 
higher probabilities of benefiting from early surgery. The 
estimated average absolute effect of early surgery on the 
benefit outcome for the ex-post reference classes in the 
third-level split in Fig. 1 ranged from a low of (-0.061) in 
node 13 to (0.429) in node 9. Figure 2 displays the CART 
result for the effects of early surgery on the detriment 
outcome. Patients with higher CCI, lower pre-PHF Medi-
care spending, older age, and higher FRI scores were 
more likely to have a detrimental outcome from early 
surgery. The estimated effect of early surgery for the ex-
post reference classes on the detriment outcome in the 
third-level split in Fig. 2 ranged from a low of (0.034) in 
node 10 to (0.291) in node 13. This approach isolated 
ex-post reference groups with combinations of baseline 
patient factors which showed distinct levels early surgery 

effects for both detriment and benefit outcomes which 
were not identified in the previous research that specified 
reference classes a priori [49].

Tables  3 and 4 describe the ex-post reference classes 
in terms of the patient baseline factors used to construct 
the third-level CART nodes for the minimum leaf sizes in 
Tables  1 and 2 for the benefit and detriment outcomes, 
respectively. In Table  3 the third-level nodes are sorted 
from left to right from the highest early surgery effect on 
the benefit outcome to the least. In Table 4 the third-level 
nodes are sorted from left to right from the least early 
surgery effect on the detriment outcome to most. Despite 
the broad variation in the ranges of early surgery effect 
estimates in Tables  1 and 2 across minimum leaf sizes, 
the patient baseline factors used by CART to construct 
ex-post reference classes (CCI, age, pre-fracture Medi-
care spending, FRI) were consistent across minimum leaf 
sizes. For the detriment outcome in Table 4, the ex-post 
reference class definitions are identical for minimum leaf 
sizes greater than 100 with only the effect order differ-
ing for the first two nodes at minimum leaf size of 100. 

Table 3  Third-level Split Ex-Post Reference Class Designations by Minimum Leaf Node Size in IV-CFA Estimation on the Benefit 
Outcome for Medicare Patients with Proximal Humerus Fractures in 2011 with 4000 Trees in the Forest

CCI: Charlson Comorbidity Index score based on Medicare claims in the year prior to index proximal humerus fracture

FRI: Frailty Risk Index score based on Medicare claims in the year prior to index proximal humerus fracture

Cost Quintiles: Based on Medicare spending in the 365 days prior to the index PHF

Benefit: 1 if patient survives 61–365 days after index proximal humerus fracture with less than $300 of shoulder-related healthcare costs, 0 otherwise

Third-level Split Nodes

Minimum 
Leaf Node 
Size

Highest ← Early Surgery Effect on Benefit Outcome → Lowest

50  < 86,
CCI = 0,
Not in lowest 
2 pre cost 
quintiles

 ≥ 86, High-
est pre cost 
quintile,
CCI > 4

 < 86,
CCI = 0,
Lowest 2 pre 
cost quintiles

 < 86,
CCI > 0, High-
est pre cost 
quintile

 < 86,
CCI > 0,
Not highest 
pre cost 
quintile

 ≥ 86, High-
est pre cost 
quintile,
CCI ≤ 4

 ≥ 86,
Not high-
est pre cost 
quintile,
FRI ≤ 2

 ≥ 86,
Not highest pre 
cost quintile,
FRI > 2

100  < 86,
CCI = 0,

Not in lowest 
pre cost quintile

 ≥ 86, High-
est pre cost 
quintile,
CCI > 4

 < 86,
CCI = 0, Low-
est pre cost 
quintile

 < 86,
CCI > 0, High-
est pre cost 
quintile

 < 86,
CCI > 0,
Not highest 
pre cost 
quintile

 ≥ 86,
Not high-
est pre cost 
quintile,
CCI ≤ 1

 ≥ 86, High-
est pre cost 
quintile,
CCI ≤ 4

 ≥ 86,
Not highest pre 
cost quintile,
CCI > 1

200 CCI = 0,
 < 86,

Not in lowest 
pre cost quintile

CCI = 0,
 < 86,
Lowest pre 
cost quintile

CCI > 0,
 < 86, High-
est pre cost 
quintile

CCI > 0,
 ≥ 86, High-
est pre cost 
quintile

CCI = 0,
 ≥ 86

CCI = 0,
 ≥ 86

CCI > 0,
 < 86,
Not high-
est pre cost 
quintile

CCI > 0,
 ≥ 86,
Not highest pre 
cost quintile

300 CCI = 0,
 < 86,

Not in lowest 
pre cost quintile

CCI = 0,
 < 86,
Lowest pre 
cost quintile

CCI > 0,
 < 86, High-
est pre cost 
quintile

CCI = 0,
 ≥ 86

CCI = 0,
 ≥ 86

CCI > 0,
 ≥ 86, High-
est pre cost 
quintile

CCI > 0,
 < 86,
Not high-
est pre cost 
quintile

CCI > 0,
 ≥ 86,
Not highest pre 
cost quintile

400 CCI = 0,
 < 86,

Not in lowest 
pre cost quintile

CCI > 4, High-
est pre cost 
quintile

CCI = 0,
 < 86,
Lowest pre 
cost quintile

CCI = 0,
 ≥ 86

CCI = 0,
 ≥ 86

0 < CCI ≤ 4,
Highest pre 
cost quintile

CCI > 0,
 < 86,
Not high-
est pre cost 
quintile

CCI > 0,
 ≥ 86,
Not highest pre 
cost quintile
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For the benefit outcome in Table 3, the ex-post reference 
classes are consistent from minimum leaf sizes greater 
that 200 with only a difference in benefit effect ordering 
across ex-post reference classes moving from 200 to 300 
minimum leaf sizes.

Table  5 summarizes 2SLS estimates for the ex-post 
reference classes at the third-level splits found in 
Figs.  1 and 2 using IV-CFA parameters of 4000 trees 
and minimum leaf size of 200. The 2SLS early surgery 
effect estimates on the benefit outcome for the ex-post 
reference classes in nodes 8–14 in Fig. 1 are described 
in the rows and the 2SLS early surgery effect estimates 
on the detriment outcome for the ex-post reference 
classes in nodes 8–15 in Fig. 2are described in the col-
umns. The rows are arranged with the estimated effects 
of early surgery on the benefit outcome for each ex-
post reference class decreasing from top to bottom. The 
right-most column summarizes the 2SLS estimates for 
the ex-post reference class represented by each row, 
including the early-surgery rate (R), the interquartile 
range of early surgery rate across local areas defined by 

Hospital Referral Regions (HRRs), the F-statistic of the 
effect of the instrument on early-surgery choice in the 
first stage of 2SLS, the 2SLS estimated absolute effect 
of early surgery on the benefit outcome (IVE), and the 
number of patients in the ex-post reference class (N). 
Likewise, the detriment ex-post reference classes are 
represented in the columns and are arranged with the 
estimated effects of early surgery on the detriment out-
come for each ex-post reference class increasing mov-
ing from left to right. The bottom row summarizes the 
2SLS estimates for the ex-post reference class repre-
sented by each column. The “southeast” cell in Table 5 
provides the 2SLS results for the full study population 
with the absolute effect of early surgery on the ben-
efit outcome (B_IVE) and the absolute effect of early 
surgery on the detriment outcome (D_IVE). Follow-
ing 2SLS literature [22, 25, 26, 43, 102–106], the 2SLS 
estimates in this table represent the local average early 
surgery effect on the respective outcome for the PHF 
patients in each ex-post reference class whose early 
surgery choices were sensitive to the instrument value. 

Table 4  Third-level Split Ex-Post Reference Class Designations by Minimum Leaf Node Size in IV-CFA Estimation on the Detriment 
Outcome for Medicare Patients with Proximal Humerus Fractures in 2011 with 4000 Trees in the Forest

CCI: Charlson Comorbidity Index score based on Medicare claims in the year prior to index proximal humerus fracture

FRI: Frailty Risk Index score based on Medicare claims in the year prior to index proximal humerus fracture

Cost Quintiles: Based on Medicare spending in the 365 days prior to the index PHF

Detriment: 1 the patient died or had an adverse event during the period 61–365 days following the index PHF, 0 otherwise. Adverse events include pneumonia, 
cardiac dysrhythmias, congestive heart failure, deep vein thrombosis or pulmonary embolism, infection, nerve injury, prosthetic complication, hematoma, avascular 
necrosis, adhesive capsulitis, and instability or dislocation

Third-level Split Nodes

Minimum 
Leaf Size

Lowest ← Early Surgery Effect on Detriment Outcome → Highest

50 CCI ≤ 2, Low-
est pre cost 
quintile,
FRI > 0

CCI ≤ 2,
Not lowest pre 
cost quintile,
FRI ≤ 1

CCI > 6, High-
est pre cost 
quintile

CCI ≤ 2,
Not lowest pre 
cost quintile,
FRI > 1

CCI > 6,
Not high-
est pre cost 
quintile

2 < CCI ≤ 6,
70 + 

CCI ≤ 2, Low-
est pre cost 
quintile,
FRI = 0

2 < CCI ≤ 6,
 < 70

100 CCI > 6, High-
est pre cost 
quintile

CCI ≤ 2,
Not lowest pre 
cost quintile,
FRI ≤ 1

CCI ≤ 2, Low-
est pre cost 
quintile,
FRI > 0

CCI ≤ 2,
Not lowest pre 
cost quintile,
FRI > 1

2 < CCI ≤ 6,
Highest pre 
cost quintile

CCI > 2,
Not high-
est pre cost 
quintile,
 < 86

CCI ≤ 2, Lowest 
pre cost quintile,

FRI = 0

CCI > 2,
Not highest pre 
cost quintile,
86 + 

200 CCI ≤ 2,
Not lowest pre 
cost quintile,
FRI ≤ 1

CCI > 6, High-
est pre cost 
quintile

CCI ≤ 2, Low-
est pre cost 
quintile,
FRI > 0

CCI ≤ 2,
Not lowest pre 
cost quintile,
FRI > 1

2 < CCI ≤ 6,
Highest pre 
cost quintile

CCI > 2,
Not high-
est pre cost 
quintile,
 < 86

CCI ≤ 2, Lowest 
pre cost quintile,

FRI = 0

CCI > 2,
Not highest pre 
cost quintile,
86 + 

300 CCI ≤ 2,
Not lowest pre 
cost quintile,
FRI ≤ 1

CCI > 6, High-
est pre cost 
quintile

CCI ≤ 2, Low-
est pre cost 
quintile,
FRI > 0

CCI ≤ 2,
Not lowest pre 
cost quintile,
FRI > 1

2 < CCI ≤ 6,
Highest pre 
cost quintile

CCI > 2,
Not high-
est pre cost 
quintile,
 < 86

CCI ≤ 2, Lowest 
pre cost quintile,

FRI = 0

CCI > 2,
Not highest pre 
cost quintile,
86 + 

400 CCI ≤ 2,
Not lowest pre 
cost quintile,
FRI ≤ 1

CCI > 6, High-
est pre cost 
quintile

CCI ≤ 2, Low-
est pre cost 
quintile,
FRI > 0

CCI ≤ 2,
Not lowest pre 
cost quintile,
FRI > 1

2 < CCI ≤ 6,
Highest pre 
cost quintile

CCI > 2,
Not high-
est pre cost 
quintile,
 < 86

CCI ≤ 2, Lowest 
pre cost quintile,

FRI = 0

CCI > 2,
Not highest pre 
cost quintile,
86 + 
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2SLS estimation directly controls for the baseline fac-
tors free to vary within each ex-post reference class, so 
that these estimates differ from the IV-CFA estimates 
in Figs. 1 and 2which do not control for these factors. 
For each benefit and detriment ex-post reference class 
in Table 5, the instrument had a statistically significant 
“non-weak” (F statistic greater than 10) effect on early 
surgery choice [101]. Early surgery effect heterogeneity 
is apparent for both outcomes across ex-post reference 
classes. The 2SLS estimated absolute effects of early 
surgery on benefit outcome varied from (0.589) in ex-
post reference class 9 to (-0.323) in ex-post reference 
class 13. The 2SLS estimated absolute effect of early 
surgery on detriment varied from (0.677) in detriment 

ex-post reference class 13 to (-0.291) in detriment ex-
post reference class 15.

It should be noted that the ex-post reference classes 
found using this approach for the benefit and detri-
ment outcomes are different and the cells within Table 5 
describe the patients represented by the intersection of 
the respective benefit and detriment ex-post reference 
classes including number of patients, the early surgery 
rate, and the interquartile range in early surgery rates 
across local areas for those patients. Green cells contain 
patients with a positive and statistically significant ben-
efit increase from higher rates of early surgery and no 
statistically significant detriment increase from higher 
early surgery rates. Red cells contain patients with no 

Table 5  Two-Stage Least Squares (2SLS) Estimates by Benefit and Detriment by Ex-Post Reference Classes for Third-level CART Splits

R = early surgery rate; (*,*) = the inter-quintile range in early surgery rates across patients in the node; F = F-statistic of the effect of the instrument on early surgery 
choice in the first stage; IVE = the 2SLS estimated absolute effect of early surgery on the probability of the respective outcome; N = the number of patients in the 
node; D_IVE the study population wide 2SLS absolute effect of early surgery on detriment; and B_IVE the study population wide 2SLS absolute effect of early surgery 
on benefit. CCI: Charlson Comorbidity Index score based on Medicare claims in the year prior to index proximal humerus fracture. FRI: Frailty Risk Index score based on 
Medicare claims in the year prior to index proximal humerus fracture
* , **, *** p < .1, p < .05, p < .01 respectively
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statistically significant benefit increase from higher early 
surgery rates and a statistically significant detriment 
increase from higher early surgery rates. Yellow cells 
contain patients with a statistically significant benefit 
increase from higher early surgery rates and a statistically 
significant detriment increase from higher early surgery 
rates. Orange cells contain patients no statistically signifi-
cant benefit increase from higher early surgery rates and 
no statistically significant estimated detriment increase 
from higher early surgery rates. Note that the overall 
study population is a yellow cell as higher early surgery 
rates across the full population are associated with both 
higher rates of benefit and detriment outcomes.

Discussion
With acknowledged treatment effect heterogeneity [4–
10], getting personalized evidence to patients is a policy 
priority [1–3].Randomized controlled trials cannot gen-
erate personalized evidence for many patients [4, 11–14]. 
The use of comparative effectiveness research (CER) 
methods to exploit treatment variation in the diverse 
patients in large observational databases has been offered 
as an alternative [1–3, 11, 15–18]. With traditional CER 
methods, finding personalized evidence involves aligning 
a patient with “reference class” of patients using baseline 
factors specified prior to estimation  and summarizing 
treatment effect evidence for those patients [19–21]. IV-
CFA was developed to directly estimate patient-specific 
treatment effects within a study population using obser-
vational data based on measured baseline patient fac-
tors without having to specify a reference class a prioir 
[32]. To avoid confounding bias, IV-CFA uses treatment 
variation only from a specified instrumental variable. 
However, IV-CFA estimates are conditional on param-
eters in the algorithm. For a population of Medicare ben-
eficiaries with proximal humerus fractures we assessed 
the usefulness of IV-CFA to generate personalized evi-
dence by varying key algorithm parameters and assess-
ing (1) the consistency of individual IV-CFA estimates of 
early surgery effects on benefit and detriment outcomes 
and (2) the consistency of ex-post reference classes pro-
duced from a CART procedure that grouped patients 
with similar IV-CFA estimated effects from early surgery. 
We then applied 2SLS instrumental variable estimator 
to the patients within representative ex-post reference 
classes and interpreted results with respect to known 
2SLS properties.

The study population consisted of Medicare benefi-
ciaries with new proximal humerus fractures (PHFs) in 
2011 from an earlier study which showed heterogeneity 
in effect of early surgery on detriments based on refer-
ence classes specified prior to analyses [49]. With its large 
sample size and a  “strong” instrumental variable, this 

database supplied a solid foundation to assess the proper-
ties of the IV-CFA approach to generate consistent per-
sonalized evidence on the effects of early surgery across 
outcomes. It should be noted that fracture complexity is 
a recognized source of early surgery effect heterogene-
ity for this population [58–60], and complexity could not 
be measured using Medicare claims in 2011. The instru-
mental variable approach used in this study assumes 
that the distributions of fracture complexity across PHF 
patients are similar across HRRs. However, with fracture 
complexity unmeasured for each patient, we can state, a 
priori, that if early surgery choice reflects unmeasured 
factor complexity which affects early surgery effective-
ness (what is known as essential heterogeneity or sorting 
on the gain), early surgery effect estimates will not gener-
alize to all patients with the same combination of meas-
ured baseline factors and must be properly interpreted 
[22, 26, 44–48].

IV-CFA estimates showed substantial heterogeneity 
in the effects of early surgery on both benefit and detri-
ment outcomes across patients with PHF. However, the 
estimated effects for each PHF patient were conditional 
on the minimum leaf size used in the algorithm. There 
is little guidance in the literature or algorithm to sup-
port an optimal minimum leaf size. CFA studies suggest 
that larger minimum leaf sizes are needed to avoid over-
fitting the models, but no information exists to designate 
what is meant by “larger” and the tradeoffs involved with 
the selection of a minimum leaf size [98–100].

In the second step of our assessment, though, we found 
that applying a standard CART procedure to the IV-
CFA estimates provided ex-post reference classes that 
remained relatively consistent across the minimum leaf 
sizes used in IV-CFA. These ex-post reference classes 
revealed early surgery effect heterogeneity that was not 
observed in the previously published instrumental vari-
able analyses of these data [49]. 2SLS estimation within 
each ex-post reference class of patients showed substan-
tial early surgery effect heterogeneity in both detriment 
and benefit outcomes. The 2SLS estimates for the abso-
lute effect of early surgery for entire sample were (0.146) 
on the detriment outcome and (0.203) on the benefit 
outcome as shown in the lower right corner of Table 5. 
Those overall estimates are very different from the esti-
mates for each ex-post reference class for each outcome. 
Older PHF patients with more comorbidities, who were 
frailer, and did use healthcare extensively prior to an 
index PHF were less likely to have a benefit outcome and 
more likely to have a detriment outcome from early sur-
gery. As a result, at a minimum, it is clearly inappropri-
ate to generalize estimates from the whole population to 
many of the ex-post reference classes identified.
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However, the 2SLS estimates for each ex-post reference 
class must be interpreted given the properties of 2SLS 
estimation and the existence of essential heterogeneity 
within each ex-post reference class. 2SLS estimates a local 
average treatment effect (LATE) for the subset of patients 
within a sample whose treatment choices were sensitive 
to the instrumental variable [22, 25, 26, 43, 102–106]. 
With essential heterogeneity, estimates of LATE are best 
interpreted as evidence of an average treatment effect 
on an outcome associated with treatment rate changes 
around the observed treatment rate [22, 26, 43, 103, 105, 
107]. Strong additional assumptions are required for 
LATE estimates to be valid estimates of the average treat-
ment effect across a reference class (ATE), the average 
treatment effect on the treated in a reference class (ATT), 
or the average treatment effect on the untreated (ATU) in 
a reference class [22, 48, 106, 108–110]. For PHF patients, 
it is well-known that unmeasured fracture complexity 
impacts the effectiveness of early surgery on benefits and 
detriments and also likely affects the choice of early sur-
gery. Consequently, 2SLS estimates in Table 6  should be 
interpreted in the context of early surgery variation asso-
ciated with the instrumental variable within each ex-post 
reference class and not in terms of overall effects across 
all patients within each ex-post reference class. For exam-
ple, these estimates suggest that higher early surgery rates 
in the green cells of Table  5  would have increased the 
benefit probability with little increased detriment risk. In 
contrast, lower early surgery rates in the red cells would 
have reduced detriment risk without a benefit loss. Early 
surgery rate changes in the yellow and orange cells would 
involve tradeoffs between benefit and detriment changes. 
With fracture complexity unmeasured for these patients, 
though, there are likely patients in each ex-post reference 
class who were perfect candidates for early surgery and 
perfect candidates for conservative management so that 
the “right” early surgery rate in each reference class is not 
likely to be zero or one hundred percent [65, 111–116]. In 
addition, the estimates within in each ex-post reference 
class reflect the knowledge and practices in 2011 and the 
early surgery rates in 2011. If since 2011 early surgery 
rates in the cells changed, the true LATE for each ex-post 
reference class will change to reflect the new rates. The 
dependence of these estimates on the early surgery rates 
within reference classes makes it risky to make compari-
son estimates across reference classes in terms of base-
line factors. For example, in Table 5  if the early surgery 
rate for benefit node 9 in 2011 was closer to the higher 
quintile for that group (28.1%), the estimated benefits 
from higher early surgery rates would likely be lower as 
the additional treated patients in this ex-post reference 
class would have likely gained less from early surgery. The 
2SLS estimated effect of early surgery for node 9 patients 

would fall in comparison to the other ex-post reference 
classes without changing the make-up of each class [22].

Conclusion
In summary, because early surgery effect estimates for 
individual patients vary with IV-CFA algorithm param-
eters, the value of using IV-CFA estimates for direct evi-
dence for individuals is questionable. However, applying 
standard CART procedures to IV-CFA estimates uncov-
ers ex-post reference classes that are robust across ranges 
in IV-CFA parameters. Because the two-stage least 
squares (2SLS) estimator yields a local average treatment 
effect (LATE) for the subset of patients within each ex-
post reference class whose early surgery choices were 
sensitive to the instrumental variable, the extent to which 
2SLS estimates can be attributed to individual patients 
within each ex-post reference class is limited. But these 
estimates are well-suited to help surgeons assess whether 
the early surgery rates in their practices for PHF patients 
within an ex-post reference class reflect over or under 
utilization. Surgeons with low early surgery rates in green 
cell ex-post reference classes could feel confident with 
expending early surgery rates for those patients, and sur-
geons with higher early surgery rates in red cell reference 
classes should likely reduce early surgery rates for those 
patients.
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