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Abstract

Background: When interested in a time-to-event outcome, competing events that prevent the occurrence of the
event of interest may be present. In the presence of competing events, various estimands have been suggested for
defining the causal effect of treatment on the event of interest. Depending on the estimand, the competing events
are either accommodated or eliminated, resulting in causal effects with different interpretations. The former approach
captures the total effect of treatment on the event of interest while the latter approach captures the direct effect of
treatment on the event of interest that is not mediated by the competing event. Separable effects have also been
defined for settings where the treatment can be partitioned into two components that affect the event of interest and
the competing event through different causal pathways.

Methods: We outline various causal effects that may be of interest in the presence of competing events, including
total, direct and separable effects, and describe how to obtain estimates using regression standardisation with the
Stata command standsurv. Regression standardisation is applied by obtaining the average of individual estimates
across all individuals in a study population after fitting a survival model.

Results: With standsurv several contrasts of interest can be calculated including differences, ratios and other
user-defined functions. Confidence intervals can also be obtained using the delta method. Throughout we use an
example analysing a publicly available dataset on prostate cancer to allow the reader to replicate the analysis and
further explore the different effects of interest.

Conclusions: Several causal effects can be defined in the presence of competing events and, under assumptions,
estimates of those can be obtained using regression standardisation with the Stata command standsurv. The
choice of which causal effect to define should be given careful consideration based on the research question and the
audience to which the findings will be communicated.
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Background
When a time-to-event outcome is of interest, other events
may preclude the event of interest, which means that
it cannot be observed. For instance, when investigating
survival in a population with prostate cancer, the event
of interest is often death due to prostate cancer. How-
ever, some individuals might die due to other causes and
therefore the occurrence of a death due to prostate can-
cer is not observed. These types of events are known as
competing events [1, 2]. For simplicity, in this paper we
focus on time-to-death outcomes, however the methods
are applicable to any time-to-event outcome (e.g. time to
relapse). Currently, there is a growing interest in the esti-
mation of causal effects for treatment in the presence of
competing events for the event of interest; these are con-
trasts under different treatment arms that have a causal
interpretation given some assumptions [3]. Defining the
causal effect in a competing events setting can be com-
plex and requires special consideration of dealing with the
competing events.
Even though several statistical estimands have been sug-

gested before in the presence of competing events, these
are often described without the use a formal causal frame-
work making interpretation of the estimated effects cum-
bersome [4–6]. Recent work by Young et al. [7] utilised
a counterfactual framework to explicitly describe each of
the classical statistical estimands and define causal effects
as well as their identifying assumptions when competing
events exist. Causal effects were defined as contrasts of
counterfactuals (or potential outcomes) had everyone in
the population received treatment versus had everyone
received the placebo, comparing the whole study popula-
tion under different treatment arms. Based onwhether the
competing events are treated as censoring events or not,
the authors defined contrasts of risk as either the direct
effect of the treatment on the event of the interest that is
not mediated by the competing event or the total effect
of treatment on the event of interest. Unlike risks, regard-
less of whether competing events are defined as censoring
events, hazard ratios cannot generally be interpreted as
causal effects without making strong assumptions that
cannot be empirically evaluated [7–9]. In settings in which
the treatment exerts its effect on the event of interest and
its effect on the competing event through different causal
pathways, so called separable effects have been defined
[10]. The separable direct effect is the treatment effect
on the event of interest that is not mediated by its effect
on the competing event. The separable indirect effect is
the treatment effect on the event of interest that is only
through its effect on the competing event.
Causal effects are identifiable under certain assump-

tions and can be estimated using regression standard-
isation or inverse probability weighting [7, 11]. Doubly
robust approaches such as doubly robust standardisa-

tion have also been suggested [12, 13]. In this paper, we
focus on regression standardisation methods. To estimate
the average causal effect with regression standardisation,
first a survival model is fitted and then predictions are
obtained for every individual in the study population
under each fixed treatment arm [14]. An average of the
individual-specific estimates is calculated, and the rele-
vant contrasts between treatment arms (such as the dif-
ference between treatment arms) are formed. Regression
standardisation has recently been utilised for obtaining
estimates of various estimands in the presence of com-
peting events. Mozumder et al. [15] applied regression
standardisation for estimating the restricted mean fail-
ure time, which is the average life-years lost before a
pre-specified time in the presence of competing events,
after fitting a single Royston-Parmar flexible paramet-
ric model on either the log-cumulative subdistribution
or cause-specific hazards scale. The authors also parti-
tioned the total number of years lost into the number of
years lost due to each cause of death. Kipourou et al. [16]
estimated cause-specific cumulative probabilities using
flexible regression models for the cause-specific hazards
and applied regression standardisation to obtain marginal
estimates.
In this paper, we outline direct and total effects as well

as separable effects that may be of interest in the pres-
ence of competing events and describe how to obtain
estimates of those using regression standardisation with
the Stata command standsurv. Throughout we use an
example utilising a publicly available dataset on prostate
cancer to allow the reader to replicate the analysis and
further explore the measures. Stata code for all the anal-
ysis is also available at https://github.com/syriop-elisa/
competing_events_standsurv.
The paper is structured as follows. In “Methods” section

we introduce the illustrative example and estimands in
the absence and presence of competing events. Next, in
“Results” section, we discuss causal effects in the presence
of competing events in more detail: total, direct and sepa-
rable effects, and show how to obtain those using regres-
sion standardisation with the standsurv command. A
discussion of the methods is provided in “Discussion”
section, followed by conclusions in “Conclusions” section.

Methods
Introducing the illustrative example
For the remainder of the paper we use data from a trial on
prostate cancer (prostate.dta) to demonstrate how
to obtain several measures of interest using Stata. This
dataset has been used in several methodological papers,
including the recent papers by Young et al. [7] and Sten-
srud et al. [10]. Data include 502 individuals that were
randomly assigned estrogen therapy and are available at
https://hbiostat.org/data [17]. There are four treatment

https://github.com/syriop-elisa/competing_events_standsurv
https://github.com/syriop-elisa/competing_events_standsurv
https://hbiostat.org/data
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arms but for simplicity we restrict our analysis to the high-
dose estrogen therapy arm (i.e. diethylstilbestrol, DES)
and placebo.We are interested in the causal effect of treat-
ment on prostate cancer death, with death due to other
causes considered as a competing event. For simplicity,
we categorised all continuous variables and code for this
can be found in the Appendix A. We chose the same
cut-offs as in the Young et al. [7] paper, while Stensrud
et al. [10] chose slightly different cut-offs. For the anal-
ysis, we will use user-written Stata commands; a list of
these with information on how to install the commands
in Stata is also available in Appendix A. The following
variables will be used in our analysis: rx: treatment arm
(1: DES, 0: placebo), hgBinary: hemoglobin level (1:
< 12 (g/100ml), 0: ≥ 12), ageCat: age (0: 0-59, 1: 60-
74, 2: 75-100 years), hx: history of cardiovascular disease
(with values 0 and 1), normalAct: daily activity func-
tion (1: normal activity, 0: otherwise) dtime: months of
follow-up, eventType: cause of death (0: alive, 1: dead
due to prostate cancer, 2: dead due to other causes). The
Kaplan-Meier failure curves for all-cause deaths by treat-
ment group is shown in Fig. 1. The first months after
randomisation the DES group has a higher probability of
death from any cause in comparison to the placebo group.
However, approximately 20 months after randomisation
the curves cross for the first time and remain close to
each other up to 60 months, suggesting that treatment has
almost a negligible effect on all-cause death probability.
To explore the data further, we fit two cause-specific

models; one for the event of interest i.e. prostate cancer
death, and one for the competing event i.e. all other causes
of death. First we need to declare the data as survival
data. To declare the survival data with the event being
defined as death due to other causes, eventType==2,
the following command can be used:

Fig. 1 Kaplan-Meier failure curves for all-cause deaths by treatment
group

The exit option restricts follow-up time to 60 months
(5 years) since randomisation and we censor those still
alive after that or those with prostate cancer deaths.
The analysis of the data will be performed using flexible

parametric survival models (FPMs), so called Royston-
Parmar models. Flexible parametric survival modelling
is a methodology that was first introduced by Royston
and Parmar and allows a wide range of hazard func-
tions by using restricted cubic splines for the effect
of time [18]. FPMs have many advantages in terms of
modelling time-dependent effects and making predic-
tions. Flexible parametric models can be fitted within
Stata using the user-written command stpm2. Factor
variables are not supported and dummy variables must
be generated before fitting the models. For instance, to
fit a FPM survival model in the log cumulative haz-
ard scale (option scale(hazard)) including treat-
ment, daily activity function, age, history of cardiovas-
cular diseases and hemoglobin level, assuming 3 degrees
of freedom (that is equal to the number of knots
used to create the splines minus 1) for the baseline
hazard:

The above model gives the following output:

Here, _rcs1 – _rcs3 are the spline variables used to
model the baseline hazard. In this model, the youngest age
group (ageCat1) is omitted from the model and is used
as the reference. The model assumes proportional haz-
ards and thus the hazard ratio (HR) for DES compared to
placebo remains constant across follow-up with a HR of
1.31.
We can also store the model estimates as other to use

them later

Similarly to themodel fitted above for deaths from other
causes, we fit a cause specific model for death due to
prostate cancer. Once again we need to stset the data
and we define the event of interest as eventType==1.
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We then fit a FPM model for death due to prostate can-
cer and this time we assume that there are time dependent
effects:

Time-dependent effects are allowed in the model using
the option tvc() to indicate the variables (in this exam-
ple treatment) and dftvc() to denote the number of
degrees of freedom for the time-dependent effects. We
obtain the following output:

Terms _rcs_rx1 – _rcs_rx2 correspond to an inter-
action between treatment and time (time-dependent
effect). In the above model, treatment is allowed to a have
a time-dependent effect and the HR is changing over time
so it can not be obtained directly from the output. For
instance, when comparing hazard rates for an individual
in the DES group and an individual in the placebo group,
with both individuals belonging in the same groups of all
adjusting covariates, the HR is 0.52 at 12 months since
randomisation, 0.9 at 36 months since randomisation and
1.5 at 60 months since randomisation.
We will also store the model estimates as prostate to

use it later on.

The cause-specific models described above are sim-
plified models with no interactions that we will con-
sider for the remaining sections to demonstrate how to
obtain causal effects using the postestimation command
standsurv. Interactions and non-linear effects can also
be modelled and these are discussed in Appendix B. An
important point is that even after fitting complex mod-
els including interactions, time-dependent or non-linear
effects, the results can be summarised as a single estimate
for each time point using standardised survival curves. As
mentioned earlier, for the applied example we fit FPMs on
the log cumulative hazard scale. However, standsurv
also supports FPMs on log hazard scale as well as standard
parametric models.

We also create a variable for the time points at which
we want to obtain predictions. Below we create a variable
called timevar that includes 121 timepoints from time 0
to 60 months (every half month):

When no competing events exist
Let X denote treatment (taking values 1 for treatment and
0 for placebo) and let also Z denote a set of measured
confounders that is sufficient for confounding control.
Lowercase letters, such as x, denote a specific (fixed) level
for treatment while lowercase letters with subscript i,
such as zi denote the observed value of an individual i.
Assume that we are interested in death due to any cause so
that there are no competing events and assume also non-
informative censoring. Let the conditional all-cause prob-
ability of death before or at time t be F(t|X = xi,Z = zi)
and let Fx(t) denote the counterfactual all-cause proba-
bility of death before or at time t had all individuals in
the population, possibly contrary to fact, been assigned
X = x. Under the assumption that Z is sufficient for
confounding control,

Fx(t) = E[ F(t|X = x,Z)] (1)

with the expectation taken over the marginal distribution
of Z. For the rest of the paper, we will assume that Z is suf-
ficient for confounding control to link the counterfactual
outcomes to the observed data. F(t) = 1 − S(t) with S(t)
denoting the all-cause survival.
The causal difference in all-cause probabilities of death

before or at time t can then be defined as

F1(t) − F0(t) (2)

with the first term being the all-cause probability of death
when setting X = 1 and the second term is the all-cause
probability of death when setting X = 0 for everyone in
the study population. Difference (2) corresponds to the
probabilities of death under hypothetical interventions
and compares the probabilities in the whole population
had everyone received treatment versus had everyone
received the placebo. This is different to simply comparing
the observed probabilities of those who received treat-
ment versus those who received placebo. Equation (2) is
conceptually similar to Eq. (2) in Young et al. that define
the estimand of interest in the absence of competing
events as the counterfactual risk of the event.
Under assumptions, the marginal all-cause probability

of death Eq. (1) can be estimated by the standardised
all-cause probability of death using regression standard-
isation. After fitting a survival model, individual-specific
predictions are obtained for everyone in the study popu-
lation (of size N) for fixed X = x and these are averaged
over the marginal distribution of the observed covariate
pattern Z = zi:
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E[̂F(t|X = x,Z)]= 1
N

N
∑

i=1

̂F(t|X = x,Z = zi)] (3)

Estimates for all other estimands described below will
also be obtained using regression standardisation with
the command standsurv, as the average of individual-
specific predictions for fixed X = x as described in Eq. (3).
More information on regression standardisation can be
found elsewhere [14, 19].

When competing events exist
Often, competing events that prevent the occurrence of
the event of interest will be present. For instance, in our
illustrative example where the event of interest is death
due to prostate cancer, death due to other causes acts as a
competing event. In the presence of competing events the
cause-specific hazard functions are defined as

hk(t) = lim
�t→0

P[ t ≤ T < t + �t,D = k|T ≥ t]
�t

(4)

with D denoting the cause of death i.e. k = c if the event
of interest is death due to prostate cancer and k = o for
death due to other causes.
The cause-specific survival functions can also be

defined through the standard transformation from hazard
to survival function; let Sc(t) and So(t) denote the prostate
cancer and other cause survival respectively.
In the presence of competing events there are several

estimands that may be of interest for the average causal
effect depending on the research question: total effects,
direct effects and separable effects. Total effects of treat-
ment refer to a real-world setting where both competing
events are present (accommodating competing events)
and entail no hypothetical interventions regarding censor-
ing of competing events. However, total effects provide
no information about whether the treatment effect on
the event of interest is partly driven by the treatment
effect on the competing event. In contrast to total effects,
direct effects refer to a hypothetical world where the only
possible cause of death is the outcome of interest (e.g.
death due to prostate cancer) and all competing events
are eliminated. Direct effects isolate the effect of treat-
ment on the event of interest without being influenced by
the treatment effect on the competing events. If treatment
can be partitioned into two components that affect the
event of interest and the competing event through differ-
ent causal pathways, separable effects can be defined and
these require no conceptual interventions on eliminating
competing events. Separable effects require though that
the treatment components can be set to different values.
In the following section, we define and discuss in more

detail total, direct and separable effects of interest and

show how to obtain estimates of those by applying regres-
sion standardisation to the prostate cancer data described
above.

Results
Total effects
Below we define the total effect as the difference either in
cause-specific cumulative incidence functions in the pres-
ence of competing events or expected loss in life due to a
cause of death, using a counterfactual framework to com-
pare outcomes had everyone received treatment versus
had everyone received placebo.

Cause-specific cumulative incidence functions in the presence
of competing events
The total effect of treatment on the event of interest can be
defined using cause-specific cumulative incidence func-
tions (CIFs) in the presence of competing events [20]. In
cancer studies, these are often referred to as crude proba-
bilities of death. In this paper, instead of focusing on CIFs
in terms of observed outcomes, we focus on contrasts of
CIFs in a counterfactual framework, comparing probabili-
ties had everyone received treatment versus had everyone
received the placebo. Let Fx

c (t) denote the cumulative inci-
dence for death due to prostate cancer in the presence of
death due to other causes as the competing event when
setting treatment to a fixed value X = x. Under the
assumption that Z is sufficient for confounding control,

Fx
c (t) = E

[∫ t

0
S(u|X = x,Z)hc(u|X = x,Z)du

]

(5)

where S(u|X = x,Z) = Sc(u|X = x,Z)So(u|X = x,Z) is
the all-cause survival and hc(u|X = x,Z) is the prostate
cancer hazard when setting X = x. The causal difference
in cumulative incidence of death due to prostate cancer
in the presence of competing events under treatment and
under placebo is:

F1
c (t) − F0

c (t) (6)

and is the total effect of treatment (through all causal
pathways) on prostate cancer death and includes those
possibly mediated by the competing event. For instance,
if treatment results in more deaths due to cardiovascular
diseases, then the probability of death due to prostate can-
cer under DES will be lower since fewer patients would be
at risk of dying of prostate cancer and not necessarily due
to a protective treatment effect. Considering total effects
both on the event of interest and all competing events
improves understanding of this issue.
Similarly, the total effect for other causes of death is

given as the difference in cumulative incidences of death
due to other causes under treatment and under placebo:
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F1
o (t) − F0

o (t) (7)

and under the assumption that Z is sufficient for con-
founding control

Fx
o (t) = E

[∫ t

0
S(u|X = x,Z)ho(u|X = x,Z)du

]

(8)

where ho(u|X = x,Z) is the cause-specific hazard for
other causes when setting X = x. Eqs. (6) and (7) are con-
ceptually similar to Eqs. (8) and (10) in the paper by Young
et al. [7].

Example The total effect as a contrast of cause-specific
cumulative incidence functions under different treat-
ment arms can be estimated by fitting separate mod-
els for each cause of death. Recall that we have
already stset the prostate cancer data and have fit-
ted cause-specific flexible parametric survival models
for death due to prostate cancer and death due to
other causes, in “Introducing the illustrative example”
section. By applying regression standardisation with the
standsurv command, we can obtain the standard-
ised cause-specific CIFs in the presence of compet-
ing events under DES and under placebo. For this,
we use the cif option which ensures that the cause-
specific CIFs are estimated (the default is overall survival)
and the further option crmodels(cancer other)
which gives the names of the cause-specific model esti-
mates that were stored previously. Each of the model
estimates need to have been stored in memory using
estimates store.

Each of the atn() options creates a standardised CIF
based on the fixed covariate values specified in the atn()
options. Above, with the at1() option we force the
covariate rx to be set to 0 (placebo) for all subjects and
then in the at2() option we force the covariate rx to be
set to 1 (DES) for all subjects. This is different to using
the observed values of treatment. The key point is that the
distribution of the remaining confounders is forced to be
the same under DES and placebo and any covariates not
specified in the atn() options keep their observed val-
ues. In this way we compare the same population under
different treatment arms. Although in this example we
have only included treatment in the atn() options, other
covariates can also be specified. The contrast() option
asks for a comparison of the two CIFs (under DES and
under placebo) with the difference argument asking
to take differences in the CIFs. By default at1() is the
reference, i.e. the contrast will be at2–at1, but this can
be changed using the atref() option. Option atvar()
gives the names of the new variables to be created for

each atn() option and contrastvar() gives the new
variables to be created when using the contrast()
option. In the example above, the following variables
are created: the standardised CIFs of death due to
prostate cancer will be CIF0_prostate under placebo,
CIF1_prostate under DES, CIF_diff_prostate
for their difference, and similarly the standardised CIFs
of death due to other causes will be CIF0_other under
placebo, CIF1_other under DES, CIF_diff_other
for their difference. As the ci option was specified there
will be upper and lower bounds for the confidence interval
(CI, 95% by default) for each estimate. Standard errors for
the estimates are obtained using the delta method [21, 22].
Figure 2 shows the standardised CIFs of prostate can-

cer death and CIFs of other cause of death under DES,
under placebo as well as their difference by time since
randomisation. Sixty months (5 years) after randomiza-
tion, the standardised CIF of prostate cancer death is
equal to 21.3% (95% CI: 15.3%-29.5%) under DES while
under placebo is higher and equal to 27.7% (95% CI:
21.2%-36.2%). Treatment appears to have a protective
effect on prostate cancer mortality, however, it is not clear
whether this is driven by an adverse effect of treatment
on other-cause mortality (e.g. increased risk for cardio-
vascular deaths) that prevents prostate cancer deaths. A
way to assess the plausibility of such mechanism is to
estimate the CIFS of the competing events. For the stan-
dardised CIFs of death from other cause the pattern is
reversed and is much higher; in particular it is equal to
53.5% (95% CI: 45.9%-62.2%) under DES and equal to
43.1% (95% CI: 35.9%-51.7%) under placebo. DES reduces
prostate cancer mortality but increases other cause
mortality.

Expected loss in life due to a cause of death
Total effects of treatment can also be expressed in terms
of the expected life lost before time t∗ [15, 23]. The
marginal expected life lost before time t∗ (also referred
to as restricted mean failure time (RMFT)) when setting
treatment to a fixed value X = x is Lx(0, t∗) and under
sufficient control for confounding Z

Lx(0, t∗) = E
[ K
∑

k=1

∫ t∗

0
Fk(u|X = x,Z)du

]

(9)

with k denoting the cause of death. The RMFT can
also be partitioned further to the life lost due to
each cause k before time t∗ when setting X = x,
denoted by Lxk(0, t

∗), and under sufficient control for
confounding

Lxk(0, t
∗) = E

[

∫ t∗

0
Fk(u|X = x,Z)du

]

(10)
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Fig. 2 Standardised cumulative incidence of prostate cancer death and other cause of death under DES and under placebo and the difference
between treatment arms, with 95% confidence intervals

The expected life lost under X = x corresponds
to a comparison had everyone in the study population
received treatment arm X = x to an immortal cohort
where all individuals remain alive at the end of the follow-
up period at time t∗. This comparison can make interpre-
tation of themeasure challenging as it involves a hypothet-
ical construct, however, the expected years lost is still a
useful measure for exploring the impact of different causes
of death.
The causal difference in expected loss in life due to

cause k before time t∗ when setting X = 1 and setting
X = 0 is:

L1k(0, t
∗) − L0k(0, t

∗) (11)

Example For the estimation of the expected loss in life
under DES and placebo, in the prostate cancer data
example, we need to select a timepoint t∗. The esti-
mates will vary by the choice of t∗. Here we choose 60
months:

After fitting cause-specific models, the standard-
ised expected loss in life due to each cause can be
obtained by using the option rmft together with options
crmodels() and cif:

To list the estimates of the standardised life lost due to
prostate cancer before 60 months:

Similarly, to list the estimates of the standardised life lost
due to other causes before 60 months:
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When 60 months were chosen, death due to other
causes resulted in more months lost than prostate can-
cer. The number of months lost due to other causes had
everyone been treated with DES would be higher; 19.8
(95%: 16.5 –23.8)) months under DES in comparison to
15.6 (95%:12.6–19.3) months under placebo, resulting in
a difference of 4.2 (95%: -0.6 – 8.9) months. The num-
ber of months lost due to prostate cancer would, however,
be higher had everyone received the placebo; under DES
6.9 (95%: 4.7- 10.1) months would have been lost while
under placebo 10.1 (95%: 7.5- 13.6) months would have
been lost, resulting in a difference of -3.2 (95%: -7.2 – 0.8)
months between DES and placebo. We found that even
though DES results in fewer months lost due to prostate
cancer, DES has an adverse effect on the months lost due
to other causes, highlighting once again the importance
of considering total effects on all competing events for a
more complete picture.
We can also calculate the total expected loss in life as

the sum of the months lost from each cause and it quan-
tifies the average months of life that a patient would lose
from time 0 up to a pre-defined timepoint t∗ had everyone
received treatment or had everyone received the placebo
[24–27]. Even though this can also be obtained after fit-
ting an all-cause model, here we show how to obtain
estimates after fitting cause-specific models. The total
number of months lost due to all causes can be obtained
within standsurv using option lincom(#...#) that
calculates a linear combination of atn() options and it
also provides confidence intervals using the delta method.
Option lincom(#...#) is used here instead of the
contrast() option that we used above to calculate the
difference between atn() options. For the total months
that would have been lost had everyone received the
placebo, the first two # in lincom() that correspond to
at1() should be set to 1 (these refer to the months lost
due to prostate cancer and the months lost due to other
causes):

The total months that would have been lost within 60
months since randomisation had everyone received the
placebo were 25.8 (95%: 22.3–29.3) months:

Similarly, the total months that would have been lost had
everyone been treated with DES are obtained by setting
the last two # in lincom() to 1 (these refer to the months

lost due to prostate cancer and the months lost due to
other causes):

The total months that would have been lost within 60
months since randomisation had everyone been treated
with DES were 26.7 (95%: 23.2 –30.2) months:

This results in a difference of total loss of approximately
1 month under placebo and DES and is effectively the
same as the sum of the differences calculated above for
each specific cause (-3.2 and 4.2).
Total effects described above consider the effect of treat-

ment on the event of interest in the presence of competing
events. If a patient is at high risk of dying from a com-
peting cause, then this will reduce their risk of dying from
the cause of interest. Measures that accommodate com-
peting events are thus useful for healthcare planning and
risk counselling between patients and clinicians as they
quantify risk in the present circumstances [28, 29]. How-
ever, it is not clear whether a protective total treatment
effect on the event of interest is partly driven by an adverse
total treatment effect on the competing events. If interest
is on isolating the direct effect of treatment on the event
of interest, the direct effect can be defined instead.

Direct effects
Consider a hypothetical intervention that sets So(t|X =
x,Z) = 1 i.e an intervention that eliminates the competing
deaths due to other causes. Contrasts of counterfactuals
for treatment and placebo under such an intervention are
known as the controlled direct effect which quantify the
treatment’s effect on the event of interest not mediated by
competing events (by eliminating these). In the competing
risks literature, a related measures that refers to the prob-
ability of death under elimination of competing events is
the net probability of death.
In this paper, instead of using observed outcomes for

its definition, we apply a counterfactual framework. To
link the counterfactual to the observed outcomes, in addi-
tion to Z being sufficient for confounding control between
treatment and all the competing events, Z must include
common causes of both the event of interest and the
competing events. Under these assumptions, the marginal
counterfactual probability of death under an intervention
d of eliminating competing events when setting X = x
for everyone (possibly contrary to their observed value),
Fx
c,d(t), can be expressed as
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Fx
c,d(t) = E

[∫ t

0
Sc(u|X = x,Z)So(u|X = x,Z)hc(u|X = x,Z)du

]

= E
[∫ t

0
Sc(u|X = x,Z)hc(u|X = x,Z)du

]

This is similar to Eq. (5), but here So(t|X = x,Z) is equal
to 1 through an intervention d of eliminating competing
events. The causal difference in probabilities of prostate
cancer death if competing events were eliminated,under
treatment and under placebo, is then expressed as:

F1
c,d(t) − F0

c,d(t) (12)

and it is the direct effect of treatment on prostate cancer
mortality not driven by competing events.
The above equations are conceptually similar to

equations (5) and (6) in the paper by Young et al [7].
Despite their interpretation in a hypothetical world, direct
effects correspond to the treatment effect on the the event
of interest that is not influenced by the potential treatment
effect on competing events. For instance, when compar-
ing cancer survival between different populations, such
as countries, there will be differences in cancer survival
that are driven by differences in non-cancer mortality
across countries. If focusing on cancer mortality alone is
of interest, direct effects allow to compare cancer sur-
vival between countries without being influenced by the
effect of the competing events [30]. Direct effects can,
thus, be useful when interest is on isolating the impact
of cancer across populations or studying temporal trends
without capturing differences driven by competing events
[31, 32]. Such questions cannot be addressed otherwise,
by the use of total effects for example (even if total effects
on all competing events are presented). An alternative

measure that does not assume elimination of competing
events (e.g. reference-adjusted all-cause death probabil-
ities), have been suggested recently [33] and separable
effects are also introduced below.

Example The probability of prostate cancer death under
DES and placebo as well as their difference, if compet-
ing events were eliminated, can be obtained by applying
regression standardisation as follows. For this only the
cause-specific model for prostate cancer death will be
considered (the estimates of this model were stored ear-
lier under prostate). All other competing events are
censored.
We load the model estimates under prostate and use

the post estimation command standsurv with option
failure:

Figure 3 shows the standardised probability of death
under DES and placebo as well as their difference by
time since randomisation, if competing events were elim-
inated. Under elimination of competing events, sixty
months after randomisation, the standardised probability
of death from prostate cancer under DES was equal to
34% (95% CI: 24.6%–47%) and under placebo 38% (95%
CI: 29.2%–49.2%), resulting in a difference of -4% (95%: -
18.6%–10.7%). In contrast to “Total effects” section, these
estimates assume that prostate cancer is the only pos-
sible cause of death and that it is not possible to die
from other causes. Such interpretation might be challeng-
ing, however this expresses the direct effect of treatment

Fig. 3 Standardised probability of death from prostate cancer under DES and under placebo and their difference by time since randomisation,
under an intervention of eliminating competing events, with 95% confidence intervals
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on prostate cancer mortality that is not mediated by an
adverse treatment on other cause mortality.

Separable effects
In situations where treatment can be decomposed into
distinct components, separable effects can be estimated
[10]. Suppose that the treatment X can be conceptualised
as having two binary components that act through dif-
ferent causal pathways: one component Xc that affects
the cancer of interest and one component Xo that affects
the competing event. To link the counterfactual to the
observed outcomes, we assume that Z is sufficient to
control for confounding between treatment and the com-
peting events. Additionally, we assume that after adjusting
for Z, the event of interest is independent of the treatment
component that affects the competing event and, simi-
larly, the competing event is independent of the treatment
component that affects the event of interest. The separa-
ble direct effect of treatment on the probability of death
from cancer is given by

Fxc=1,xo=x
c (t) − Fxc=0,xo=x

c (t) (13)

that is, the effect of the component of treatment that
affects the event of interest when the component of treat-
ment that affects the competing event Xo is set to a
constant value x, with x = 1 or x = 0, for everyone in the
study population.
Analogously, the separable indirect effect of treatment

on the probability of death from cancer is

Fxc=x,xo=1
c (t) − Fxc=x,xo=0

c (t) (14)

that is, the effect of the component of treatment that
affects the competing event when the component of treat-
ment that affects the event of interest is set to a constant
value for everyone in the study population.
The above definitions involve no hypothetical inter-

vention of eliminating competing events, which was the
case when defining the direct effects. However, separa-
ble effects assume a hypothetical intervention in which
a different value is assigned in each component of the
treatment.
Example To estimate the separable effects for the

prostate cancer example, we need to make a copy of
the treatment variable so that we can manipulate these
separately in standsurv.

We can now fit cause-specific models including either
variable rx_c or rx_o:

The parameters estimates are identical to the previous
models and are not shown.
Using a similar syntax as the one used to estimate the

CIFs in “Cause-specific cumulative incidence functions
in the presence of competing events” section and adding
more atn() options we can get the total and separable
indirect effects:

The standardised cumulative incidence of death from
prostate cancer under DES (equal to 14.5%, with 95%
CI: 9.8%–21.5%, at 36 months since randomisation) and
under placebo (equal to 21.7%, with 95% CI: 16%–29.5%,
at 36 months since randomisation) as well as under the
hypothetical intervention where the treatment compo-
nent into other causes of death is fixed to zero (equal to
15.6%, with 95% CI: 10.6%–23%, at 36 months since ran-
domisation) is shown in Fig. 4 (solid lines). When the
treatment component for other causes of death is fixed
at zero, the cumulative incidence of prostate cancer death
(blue line) is very close to the cumulative incidence of
prostate cancer death under DES (black line), suggesting
that the total treatment effect on prostate cancermortality
is mostlymade up of the direct separable effect on prostate
cancer mortality. The standardised total difference in the

Fig. 4 Cumulative incidence of death from prostate cancer (solid
lines) and cumulative incidence of death from any cause (dash lines),
under DES, under placebo as well as under the hypothetical
intervention where the treatment component into other causes of
death is fixed at zero (in blue)
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cumulative incidence of death from prostate cancer under
DES and placebo as well as the separable indirect effect are
given as a function of time since randomisation in Fig. 5.
The indirect separable effect is increasing with time but
remains low during the whole follow-up. At 36 months (3
years) since diagnosis, when the total difference in stan-
dardised cumulative incidence of prostate death cancer is
equal to 7.2% (95% CI:-1.4%–15.8%), the estimate of the
indirect effect is 1.1% (=15.6%–14.5%) with 95%CI:-0.4%–
2.5%. This corresponds to the reduction in prostate cancer
mortality under DES compared to placebo that is due
to the DES effect on mortality from other causes. Thus,
under the structural assumptions, the total effect of treat-
ment on prostate cancer mortality is not highly driven by
a harmful effect on death from other causes.
An interesting point here is that treatment has almost a

null effect on the probability of overall death (dash lines
in Fig. 4) and that can be explained by the two treatment
components acting in opposite directions on the two com-
peting causes of death. If we could imagine a treatment
that only acted on the prostate mortality, but did not have
the corresponding negative impact on other causes (e.g.
by "removing" one treatment component) we can arrive
at the blue line (i.e. a reduced deaths overall, and corre-
sponding reduced deaths due to prostate cancer). If the
separability assumption holds, this is the separable effect
of treatment acting only on prostate cancer mortality.

Discussion
We have described causal effects that might be of inter-
est in the presence of competing events and have shown
how to estimate those using regression standardisation
with the Stata command standsurv. Causal effects can
be defined as the total effect of treatment through all
causal pathways between treatment and the event of inter-
est as well as the direct effect of treatment on the event

Fig. 5 Standardised total difference in cumulative incidence of death
from prostate cancer under DES and placebo by time since
randomisation and the separable indirect difference

of interest that blocks any effect of treatment on the
competing event. For settings where treatment can be
decomposed into distinct components, separable effects
have also been defined, with the separable indirect effect
of treatment corresponding to the treatment effect on the
event of interest only through its effect on the compet-
ing event. We have demonstrated how to obtain estimates
for all estimands of interest with the post-estimation com-
mand standsurv using an example of publicly available
prostate cancer data. Even though the illustrative example
is on cancer data the described methods are applica-
ble also to other clinical areas. Confidence intervals can
also be derived using the delta method. Even though the
focus of this paper is on regression standardisation, other
approaches can also be applied to obtain the relevant
estimates such as inverse probability weighting [7, 10].
Total effects refer to a setting that entails no elimina-

tion of competing events while direct effects assume an
intervention of eliminating competing events. Each causal
effect has a different interpretation and the choice is based
on the question of interest [7]. An intervention of elim-
inating competing events might not be straightforward
to realise in practice. For instance, even though we may
be able to imagine an intervention (e.g. a vaccine) for
eliminating mortality associated with deaths from a spe-
cific infectious disease, this will not always be feasible.
Also, contrasts that are interpreted in a hypothetical world
where it is not possible to die from causes other than
the event of interest are not useful for understanding the
anticipated prognosis of patients. For risk communica-
tion and healthcare planning, total effects that refer to a
setting where competing events are present are more rele-
vant. However, the total effect of treatment on the event of
interest has a challenging interpretation when treatment
also affects the competing events; it provides no infor-
mation about whether part of the treatment effect on the
event of interest is due to the treatment effect on the com-
peting event. Reporting both total effects of treatment on
the event of interest and competing events helps address
this issue. If interest is on studying the direct effect of
treatment on the event of interest without capturing a
potential indirect effect through competing events, direct
effects are more relevant. For instance, direct effects can
facilitate comparisons of cancer survival as a direct result
of the cancer, across population subgroups with differ-
ential background mortality. In general, using a variety
of measures can help to understand different aspects of
the impact of disease. Separable effects can also be use-
ful for situations where the treatment can be partitioned
into two components, one component affecting the event
of interest and another component affecting the compet-
ing event through a different causal pathway. Separable
effects require no conceptual interventions that elimi-
nate competing events [10, 34]. However, when defining
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and interpreting separable effects, it is important to care-
fully consider a hypothetical intervention under which a
different value is assigned in each component of the treat-
ment so that there are well-defined effects. Sometimes
decomposition of treatment might be difficult in practice,
not allowing verification of separable effects in a future
experiment. However, exploring a well-defined treatment
decomposition within a formal causal framework can be
a valuable tool for answering important research ques-
tions on whether treatment directly affects the event of
interest, even if the decomposition is not yet possible in
practice [10]. Similarly, utilising a counterfactual frame-
work and exploring direct effects can be meaningful even
when interventions of eliminating the competing events
are not feasible currently, as they provide a first step on
improving our understanding of how a treatment directly
affects the event of interest.
One of the total effects discussed in this paper was the

difference in expected loss in life due to a cause of death
within a restricted time period had all individuals been
assigned to a specific treatment arm compared to another
arm. The interpretation of this measure as the life lost is
more intuitive in comparison to probabilities. However,
it requires the choice of a pre-specified timepoint which
adds some complexity in its interpretation. The expected
loss in life measure is also defined as a comparison of
the disease population with an immortal cohort where
patients are alive for the whole interval from 0 to time t∗
[15]. The total effect could alternatively be defined as the
difference in loss in expectation of life (LLE) or number
of life years lost under different treatment arms [35]. LLE
is defined as the difference in the life expectancy of an
individual from the general population that is disease-free
to the life expectancy of a patient with similar character-
istics and corresponds to the number of years lost due
to the disease. However, LLE requires extrapolation of
the mortality rates beyond the available data. To avoid
strong extrapolation assumptions, the LLE within the first
t∗ years (restricted LLE) could be estimated instead and
this would provide a comparison of the disease population
to the general population had all patients received a spe-
cific treatment arm versus had all individuals received the
placebo [26].
In cancer registry based studies, direct effects can be

defined using either the cause-specific approach or the
relative survival approach. The former approach was
demonstrated in “Direct effects” section. However, the
cause-specific approach requires appropriate classifica-
tion of the cause of death. As the cause of death infor-
mation obtain by death certificates may not be available
or not accurate, the relative survival approach is often
preferred. In the relative survival framework, separating
deaths due to the cancer of interest from competing events

(death due to other causes) is done indirectly by com-
paring all-cause survival in the cancer population to the
survival of a comparable group of the general population
with similar characteristics. Causal effects in the relative
survival framework have also been defined using coun-
terfactuals and estimation can be performed using the
standsurv command. These are discussed elsewhere
[19]. A measure, conceptually similar to separable effects,
has also been suggested in the relative survival frame-
work; this is the avoidable deaths under an intervention
that is assumed to affect only the cancer mortality rates
and has no effect on the rates of other cause mortality (i.e.
keeping the treatment component that affects other cause
mortality fixed) [19, 36].
Identification assumptions for the causal effects

described in this paper are discussed in detail else-
where [7, 10, 37]. Briefly, the consistency and positivity
assumptions of causal inference need to hold for all
causal effects discussed in this paper. For total effects,
sufficient confounding control between treatment and
all the competing events is required. For direct effects,
there should be sufficient control for factors that affect
both the event of interest and the competing events so
that there is no unmeasured common cause of the event
types. Even in a randomized clinical trial setting, con-
founding between competing events should be controlled
for. Finally, separable effects require that the event of
interest is independent of the treatment component that
affects the competing event and the competing event is
independent of the treatment component that affects
the event of interest, after adjusting for confounding Z.
In some settings, the validity of the assumptions related
to sufficient confounding control for the direct and total
effects, will be more plausible if accounting for time-
varying confounding. In this paper, we have focused on
baseline covariates that do not change over time. For
settings where time-varying covariates may be present,
various estimators has been suggested [7, 38] and this also
consists part of future work. Separable effects that are
applicable to general time-varying structures and allow
for time-varying common causes of the event of interest
and the competing events were recently proposed [39]. In
addition to the causal assumptions required for identify-
ing the causal effects, correct specification of the survival
models fitted is required [40]. Thus, it is important to use
statistical models that allow incorporation of interactions
and non-proportional effects when these are relevant.
This was enabled in this paper by the use of flexible para-
metric survival models that can easily incorporate such
complex effects and an example of Stata code is provided
in Appendix B [18].
Finally, even though the standsurv command was

developed for obtaining marginal effects, it can also be
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used to obtain non-marginalised estimates. This can be
done by specifying the entire covariate pattern so that the
predictions are not averaged over any covariate distribu-
tion and an example can also be found in Appendix B.

Conclusions
Several estimands can be defined in the presence of com-
peting events using a counterfactual framework for causal
inference. Under assumptions, estimates of those can be
obtained using regression standardisation with the Stata
command standsurv. The choice of causal effect should
be given careful consideration based on the research
question and the audience to which the findings will be
communicated.

Appendix A: Data preparation
We use data from a trial on prostate cancer

(prostate.dta) to demonstrate how to obtain several
measures of interest using regression standardisation with
the Stata command standsurv. Data include 502 indi-
viduals that were randomly assigned estrogen therapy and
are available at https://hbiostat.org/data/ [17]. To prepare
the data for the analysis we run the following commands

For the analysis, we use some user-written Stata com-
mands. These can be installed within Stata from the
Boston College Statistical Software Components (SSC)
archive as follows:

The standsurv command will be used to obtain
marginal (and non-marginal) estimates using regression
standardisation and it can be installed by running

Appendix B: Advancedmodelling details
For simplicity, in the main paper, we have only consid-
ered FPM with linear effects and no interactions between
covariates. However, these can easily be incorporated in
the survival model. Using standsurv we can, then,
obtain estimates of interest in a similar way as in the
previous sections but with further specifying the atn()
options. Below we provide some examples for obtain-
ing cause-specific cumulative incidence after fitting more
complex FPMs but other estimates of interest could also
be obtained in a similar way. For the remaining section,
we keep the same model for other causes as the one
described in “Introducing the illustrative example” section
but allow more complex models for prostate cancer. For
instance, the interaction term for age and treatment can
be generated by:

and included in the model:

Under this model, the marginal CIFs defined in Eqs. (5)
and (8) can be estimated as the standardised CIFs by fur-
ther specifying the atn() options for the interactions
terms since these include the treatment of interest rx:

We can also include non-linear effects in the survival
model. For example, instead of modelling age as a categor-
ical variable, age can be modelled continuously allowing
for non-linearity using restricted cubic splines. To gen-
erate the restricted cubic spline functions in Stata the
user-written command rcsgen can be used.
To generate restricted cubic splines with 4 knots

(3 restricted cubic spline terms) for age at diagnosis:

For 3 degrees of freedom, 3 new age spline variables
are created, agercs1 - agercs3. Here we store the

https://hbiostat.org/data/
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knot locations and the “R Matrix”, so that we can derive
post-estimation predictions for specific ages later on.
Interactions involving the age splines can also be

included in the model. For instance, to generate interac-
tions between age splines and treatment:

The model can be fitted as:

To obtain the standardised CIFs under DES and under
placebo from the above model:

Even though command standsurv was developed for
obtaining marginal effects, it can also be used to obtain
non-marginalised estimates. These can be obtained by
specifying the entire covariate pattern so that the pre-
dictions are not averaged over any covariate distribution.

For instance, age-specific predictions can be derived by
calculating the spline variables at that particular age with
the same knot locations and projection matrix as before.
An example is given below when interest is in the CIF of
death from prostate cancer and we focus on individuals
with normal daily activity (normalAct=1), no history
of cardiovascular disease (hx=0) and hemoglobin level
lower than 12 (g/100ml) (hgBinary=1) and compare
CIFs of prostate cancer death under DES with CIFs under
placebo, for ages 55, 65 and 75 years old. Below, the spline
variables for specific ages are stored in the local macros
c1, c2 and c3.

As we do not average over each observation, we use if
_n == 1 to tell standsurv to only take the first obser-
vation in the stacked data to calculate non-marginalised
predictions. The age-specific CIF for individuals with
normal daily activity, no history of cardiovascular disease
and hemoglobin level lower than 12 (g/100ml) are shown

Fig. 6 Age-specific cumulative incidence of death from prostate cancer under DES and placebo and their difference for individuals with normal
daily activity, no history of cardiovascular disease and hemoglobin level lower than 12 (g/100ml) by time since randomisation, with 95% confidence
intervals
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Fig. 7 Standardised cumulative incidence prostate cancer under DES and placebo and their ratio (in black) by time since randomisation with 95%
confidence intervals

in Fig. 6. The difference in CIF of death from prostate
cancer is large for young patients but the CIFs are almost
identical for older ages.
Finally, in this paper the contrast of interest was defined

as the difference under DES and placebo. Instead of the
difference the ratio can also be calculated with the option
contrast(ratio). For instance, the ratio of standard-
ised CIFs under DES and under placebo can be obtained
by specifying contrast(ratio) within standsurv
command:

and this is shown in Fig. 7 by time since randomisation.
In principle, any contrast can be obtained with

standsurv by creating a user-defined mata function
which can be called in the option userfunction()
instead of the contrast().
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