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Abstract 

Background:  We provide an overview of Bayesian estimation, hypothesis testing, and model-averaging and illustrate 
how they benefit parametric survival analysis. We contrast the Bayesian framework to the currently dominant frequen-
tist approach and highlight advantages, such as seamless incorporation of historical data, continuous monitoring of 
evidence, and incorporating uncertainty about the true data generating process.

Methods:  We illustrate the application of the outlined Bayesian approaches on an example data set, retrospective 
re-analyzing a colon cancer trial. We assess the performance of Bayesian parametric survival analysis and maximum 
likelihood survival models with AIC/BIC model selection in fixed-n and sequential designs with a simulation study.

Results:  In the retrospective re-analysis of the example data set, the Bayesian framework provided evidence for the 
absence of a positive treatment effect of adding Cetuximab to FOLFOX6 regimen on disease-free survival in patients 
with resected stage III colon cancer. Furthermore, the Bayesian sequential analysis would have terminated the trial 
10.3 months earlier than the standard frequentist analysis. In a simulation study with sequential designs, the Bayes-
ian framework on average reached a decision in almost half the time required by the frequentist counterparts, while 
maintaining the same power, and an appropriate false-positive rate. Under model misspecification, the Bayesian 
framework resulted in higher false-negative rate compared to the frequentist counterparts, which resulted in a higher 
proportion of undecided trials. In fixed-n designs, the Bayesian framework showed slightly higher power, slightly ele-
vated error rates, and lower bias and RMSE when estimating treatment effects in small samples. We found no notice-
able differences for survival predictions. We have made the analytic approach readily available to other researchers in 
the RoBSA R package.

Conclusions:  The outlined Bayesian framework provides several benefits when applied to parametric survival 
analyses. It uses data more efficiently, is capable of considerably shortening the length of clinical trials, and provides a 
richer set of inferences.
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Background
There has been a steady increase in the popularity and 
interest in Bayesian statistics in the past years [1]. In 
this paper, we leverage the advantages of the longstand-
ing Bayesian estimation [2], hypothesis testing [3], and 
model-averaging [4] approaches and apply them to 

parametric survival analysis. This type of Bayesian sur-
vival analysis is possible thanks to the recent develop-
ment of flexible tools for fitting Bayesian models (such as 
JAGS [5] and Stan [6]) and efficient techniques for esti-
mating marginal likelihoods (such as bridge-sampling 
[7–9]).

Survival analysis is a frequently used method with 
important applications in evaluating lifetime outcomes 
in clinical trials [10, 11]. The most commonly used ver-
sion of survival analysis is the non-parametric Cox 
proportional hazard model, which does not require 
specification of the baseline hazard [12]. There are, 
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however, good reasons to use parametric survival mod-
els instead: (1) generalizability, the models can be eas-
ily extended to deal with interval censored data [13], 
(2) simplicity, the models can be defined using only few 
parameters, (3) completeness, both hazard and sur-
vival functions are fully specified, (4) consistency with 
theoretical survival functions [11], and (5) the ability 
to extrapolate survival functions beyond the measure-
ment time frame [14] (predictions for the Cox’s propor-
tional hazard model can be obtained by combination 
with the Breslow’s [15] estimate of baseline hazard). For 
these reasons, we focus on parameteric survival models 
here. Yet, the advantages of parametric models come at 
the cost of additional assumptions about the data gen-
erating process—assumptions that can result in model 
missspecification, which can be addressed with the 
Bayesian approach outlined here.

The Bayesian approaches offer multiple benefits to 
parametric survival analysis, which we elaborate below: 
(1) the seamless incorporation of external knowledge, (2) 
the possibility to monitor the evidence continuously, and 
(3) the possibility to embrace uncertainty about the data 
generating process.1

Bayesian estimation allows us to seamlessly incorpo-
rate external knowledge into statistical models via prior 
distributions [16–19] (see [20] for frequentist alterna-
tives). Incorporating either historical data or expert 
opinions is not a novel concept. In medicine, it was pro-
posed more than 45 years ago [21] and repeatedly advo-
cated for [22–25]. Such external knowledge can improve 
the precision of estimates, lower error rates, grant bet-
ter small sample properties, and improve the preci-
sion of survival estimates [24, 26–31]. While improper 
incorporation of external knowledge might bias esti-
mates and increase error rate [32], safeguards against 
adverse effects of external knowledge exist. For example, 
researchers can use meta-analytic predictive priors [30] 
that incorporate the information about between-study 
heterogeneity to adjust for dissimilarities to previous 
studies [33].

Bayesian hypothesis testing allows us to continuously 
monitor the evidence in favor of (against) a hypothesis 
with Bayes factors [34–37]. Bayes factors quantify the 
relative evidence for two competing hypotheses, which 
stands in contrast to frequentist hypothesis tests that 
reference hypothetical error rates under the assumption 
that the null hypothesis is true [38] (see ’Bayesian Evi-
dence’ section for detailed treatment). Moreover, where 
frequentist alternatives usually examine the data only 

a limited, pre-specified number of times [39, 40], Bayes 
factor optional stopping is capable of monitoring the 
evidence in a truly continuous manner [36, 41] (see Lan-
DeMets spending function for an alternative [42]). This 
is advantageous because continuous monitoring may 
increases the efficiency of clinical studies that are not 
only expensive but also costly in terms of life and harm 
[43–45]. As shown in different settings, the Bayes factor 
sequential analysis might further increase the benefits of 
frequentist group sequential designs [34, 46–48]. Note 
that Bayesians can continuously monitor evidence via 
Bayes factors but not posterior parameter distributions 
as sometimes claimed [22, 23, 49] (see Ibrahim and col-
leagues [50] for details).

Finally, Bayesian model-averaging (BMA) [51–53] 
allows us to embrace uncertainty about the data gen-
erating process by basing inference on multiple mod-
els simultaneously2 (an alternative is using Akaike 
weights for frequentist model averaging [54–58] or to 
use smoothing approach [13]). BMA is especially rel-
evant for the parametric survival analysis where models 
based on different parametric families may not lead to 
the same conclusions, estimates, and/or predictions [14, 
59, 60]. BMA also simplifies the analysis for researchers. 
Instead of drawing inference informally after inspecting 
the results from various model specifications and sub-
jectively evaluating their fit [10, 29, 55, 61], BMA allows 
researchers to automatically combine models based on 
their posterior model probabilities—that is their suitabil-
ity to the current application.

Despite all the advantages, Bayesian survival analysis is 
rarely used in practice. E.g., external information rarely 
enters the analysis via informed priors on parameters 
of interest [62] and only about 15% of studies in pedi-
atric medicine use historical information [63]. While 
sequential analyses are common in medicine, they are 
rarely based on Bayes factors [50, 64]. And even though 
the advantages of BMA are recognized [65, 66], Gal-
lacher, Auguste, and Connock [67] found that BMA was 
not used in any of the recent 14 appraisals performing 
extrapolation based on survival models.

We suspect that the outlined Bayesian approaches 
remain under-utilized because researchers are rela-
tively unfamiliar with them and because easily acces-
sible software implementations are currently not 
available [34, 68]. Moreover, there is a noteworthy lack 
of official FDA and EMA guidelines for Bayesian analy-
ses [69]. The goal of this paper is therefore three-fold. 
First, we review the Bayesian approaches for survival 

1  Many arguments raised in this paper apply to the non-and semi-parametric 
survival models as well (see [50, 102, 132, 133]) and sources therein for Bayes-
ian versions of non-and semi-parametric survival models).

2  Whereas some empirical Bayesian literature uses Bayesian information cri-
teria for “pseudo” BMA [e.g., 65, 66], we perform proper BMA based on mar-
ginal likelihoods which allow us to properly incorporate prior information and 
test informed hypotheses.
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analysis, including Bayesian estimation, Bayesian 
hypothesis testing, and Bayesian model-averaging. We 
discuss the critical differences between Bayesian and 
frequentist frameworks to quantify evidence and how 
to reconcile them. Second, we apply both frameworks 
and showcase their respective benefits with an exam-
ple from a colon cancer trial [70]. We demonstrate 
that incorporating historical data and specifying an 
informed hypothesis could shorten the trial by more 
than a year and possibly increase the participants’ pro-
gress-free survival by 1,299 years in total. Finally, we 
support our claims with a simulation study. We show 
that the Bayesian framework can decrease the dura-
tion of sequential trials by almost half, slightly increase 
power in fixed-n designs, and improve the precision of 
treatment effect estimates in small samples. The only 
downside is a minor impact on the false-negative rate 
under model misspecification. We make the methodol-
ogy available to the research community by implement-
ing the analyses in the RoBSA R package [71].

Bayesian survival analysis
In this section, we outline a coherent, fully Bayesian 
framework for survival analysis. We start with Bayes-
ian estimation, move towards the less common Bayesian 
hypothesis testing, and extend both estimation and test-
ing to multi-model inference with Bayesian model-aver-
aging (BMA; see [51, 72] for in-depth tutorials on BMA). 
For simplicity, we use a single treatment variable, right 
censoring, and parametric models with accelerated failure 
times (AFT) specifications which later allows us to obtain 
a model-averaged estimate of the acceleration factor (AF) 
across all specified models.3 The AFT models assume 
that the ratio of the survival times between groups, the 
acceleration factor is constant over time. An AF larger 
than one indicates a longer than expected survival for a 
given group (in contrast to proportional hazard models, 
PH, where a higher hazard ratio, HR, means an increased 
risk of the event). More specific topics, such as comparing 
the interpretation of Bayes factors and p-values, specify-
ing prior parameter distributions, prior model probabili-
ties, or Bayes Factor Design Analysis are outlined in the 
’Bayesian Evidence’ and ’Example’ sections.

Bayesian estimation
Following the standard notation, we use Sd(.), and hd(.) 
to denote the survival and hazard function, respectively, 
of a parametric family d (e.g., exponential, Weibull, 

log-normal, log-logistic, or gamma) that describes the 
observed survival times ti with the censoring indicator 
ci (ci = 1 for observed events) for each participant i. We 
use β to denote the treatment effect of the dummy coded 
treatment xi, and use αd and γd for intercepts and auxil-
iary parameters (if applicable). The likelihood of the data 
= {t, c} under a survival model Md given the parameters 
θd = {β, αd, γd} can be written as:

We finish the model specification by assigning prior 
distributions (p(θd | Md)) to each parameter (β ∼ fβ(.), 
αd ∼ fα,d(.), and γd ∼ fγ,d(.); see ’Model Specification’ sub-
section of the ’Example’ section for more details about 
specifying prior distributions) and obtain the posterior 
parameter distributions according to the Bayes theorem:

where p(data | Md) denotes the marginal likelihood, an 
integral of the likelihood weighted by the prior parameter 
distributions over the whole parameter space,

which also quantifies the models’ prior predictive per-
formance for the observed data [73].

Bayesian hypothesis testing
Whereas Bayesian estimation allows us to obtain poste-
rior parameter distributions assuming the treatment has 
an effect, it does not quantify the evidence in favor of 
presence/absence of the treatment effect. In other words, 
in order to test the hypothesis that a treatment effect is 
non-zero, one must compare a model assuming absence 
of the effect to a model assuming presence of the effect 
[41, 74]. To do that, we adopt Sir Harold Jeffreys’ Bayes-
ian hypothesis testing framework [3, 75] and split the 
specified models into two variants. Models assuming the 
absence of the treatment effect (β = 0), M0,d, and models 
assuming the presence of the treatment effect (β ∼ fβ(.)), 
M1,d. In the following equations we explicitly, and some-
what unconventionally, condition on the parametric fam-
ily d to highlight that the results depend on this particular 
choice. We assign prior model probabilities, p(Md | d), to 
each variant of the model, and apply Bayes rule one more 
time to obtain the posterior model probabilities,

(1)
p
(
data|θd ,Md

)
=
∏

hd
(
ti|xi, θd

)I(ci=1) × Sd
(
ti|xi, θd

)
.

(2)

p(θd |data,Md) =
p(data|θd ,Md)× p(θd |Md)

p(data|Md)
,

(3)

p
(
data|Md

)
= ∫

�d

p
(
data|θd ,Md

)
× p

(
θd|Md

)
d�d ,

3  The framework can be easily generalized to multiple covariates, left and 
interval censoring, and frailties. Furthermore, PH models can also be incor-
porated into the framework and they can be used to (a) jointly assess the 
evidence for either the AFT or PH effect of the treatment but also (b) to test 
which assumption is more plausible.
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where p(data|d) follows from the law of total 
probability,

More importantly, Bayesian hypothesis testing allows 
us to quantify the evidence for either of the models, irre-
spective of the prior model probabilities with Bayes fac-
tors (BF) [4, 76–78],

as a ratio of marginal likelihoods. Bayes factors are 
a continuous measure of evidence and their size can be 
directly interpreted as the attained support for one of the 
models over the other model.

As can be seen from Equation 3, the model comparison 
is determined by both data and the prior distributions 
for the parameters, which effectively specify the model 
comparison/hypothesis test. However, since both mod-
els contain the same prior distributions for αd and γd, the 
BF10 depends only on the prior distribution for β—the 
treatment effect we intended to test.

The Bayes factor quantifies the updating rate from 
prior to posterior model probabilities. Consequently, we 
can reformulate the Equation 6 as the change from prior 
model odds to posterior model odds [78, 79],

which is useful when comparing multiple models 
simultaneously.

Bayesian model‑averaging
So far, we summarized how to obtain the posterior 
parameter distribution with Bayesian estimation and how 
to evaluate evidence for the presence vs. absence of an 
effect with Bayesian testing. Now, we expand both Bayes-
ian estimation and testing with Bayesian model-averaging 
(BMA), which allows us to relax the commitment to a 
single set of auxiliary assumptions [80]. This assumption 
is visible in Equation  5, which shows that all inference 
is conditional on the assumed data generating process, 
the specific parametric family d (which, of course, also 
applies to the corresponding frequentist analysis). We 
relax this assumption by specifying multiple models 
based on different parametric families and combining 

(4)
p
(

M0,d |data, d
)

=
p(data|M0,d ,d)×p(M0,d |d)

p(data|d)
,

p
(

M1,d |data, d
)

=
p(data|M1,d ,d)×p(M1,d |d)

p(data|d)
,

(5)p data | d = p data|M0,d , d × p M0,d |d + p data|M1,d , d × p M1,d |d .

(6)BF10 =
p
(

data|M1,d , d
)

p
(

data|M0,d , d
) ,

(7)

p
(

data|M1,d , d
)

p
(

data|M0,d , d
) =

p
(

M1,d |data, d
)

p
(

M0,d |data, d
)/

p
(

M1,d |d
)

p
(

M0,d |d
) ,

them according to their relative predictive performance 
[51–53]. In this way, our posterior parameter distribu-
tions and evidence for the absence vs. presence of the 
treatment effect are no longer based on the assumption 
of one particular data generating mechanism. In other 
words, “not putting all eggs into one basket” protects 

researchers from idiosyncrasies in the data and leads to 
more robust inference [81].

Bayesian model‑averaged estimation  To use BMA for 
estimation, we rely on models assuming the presence of 
the treatment effect from competing parametric families 
(H1,d). We aim to obtain a posterior distribution of the 
treatment effect (assuming the treatment effect exists) 
that takes the uncertainty about the competing para-
metric families into account. Here, we limit ourselves to 
models that share an AFT parameterization and quan-
tify the treatment effect as accelerated failure. The AF 
has the same interpretation in all parametric families, 
which allows us to directly combine the treatment effect 
estimates across all models into a single pooled estimate. 
In general, we could add models with different parame-
terizations, such as PH models which quantify the treat-
ment effect as hazard ratio. In this case, we would pool 
the different measures of the treatment effect separately 
(and determine the posterior probabilities of each param-
eterization), however, we could still obtain survival and 
hazard functions pooled across all models.

We start by specifying prior model probabilities for each 
model and expanding Equation 5 to accommodate mod-
els of all parametric families assuming presence of the 
treatment effect,

Then we obtain posterior model probabilities for each 
model assuming presence of the treatment effect via 
Bayes theorem (analogously to Equation 4).

Because we focus only on models with AFT param-
eterization, the treatment effect β, and its prior distri-
bution fβ(.), can be specified interchangeably as log(AF) 
across models from all parametric families. The poste-
rior model probabilities, based on the marginal likeli-
hoods, are therefore independent of the common prior 
distribution on the treatment effect. Any difference in 
posterior probabilities among the models M1,d, assum-
ing the presence of an effect, reflect differences in their 

(8)
p(data|M1) =

∑5

d=1
p
(

data|M1,d

)

× p
(

M1,d

)

.
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prior predictive performance due to scaling and shapes 
of their survival time distributions. These differences 
flow from the parametric assumptions and the associ-
ated model-specific prior distributions for intercepts 
and auxiliary parameters.

Now, we can combine the posterior distributions of the 
treatment effect from the competing parametric fami-
lies by weighting them according to the posterior model 
probabilities [3, 4]. The resulting model-averaged poste-
rior distribution of the treatment effect then corresponds 
to a mixture distribution,

In the same manner, we also obtain the posterior model-
averaged survival and hazard functions assuming the 
presence of the treatment effect,

Bayesian model‑averaged hypothesis testing  To apply 
BMA to Bayesian hypothesis testing we compare mod-
els assuming the absence of a treatment effect to models 
assuming its presence for all distributional families. Our 
aim is to quantify the evidence for or against a treatment 
effect that takes the uncertainty about the competing 
parametric families into account.

We, again, start by specifying prior model probabilities 
for each model and by further expanding Equation 8 to 
also accommodate models assuming absence of the treat-
ment effect,

(9)

p
(
�|data,M1

)
=

5∑

d=1

p
(
�|M1,d , data

)
× p

(
M1,d|data

)
.

(10)
S(.) =

∑5
d=1S1,d(.)× p

(

M1,d |data
)

h(.) =
∑5

d=1h1,d(.)× p
(

M1,d |data
)

.

where m = 0 indicates models assuming the absence of a 
treatment effect and m = 1 models assuming the presence 
of a treatment effect. We, again, obtain posterior model 
probabilities for each model via Bayes theorem (analo-
gously to Equation 4).

In contrast to Bayesian model-averaged estimation, the set 
of models now also includes those that assume the absence 
of a treatment effect. That is, in addition to their parametric 
assumptions the models now differ with respect to the prior 
distribution for the treatment effect. This critical difference 
separates the two sets of models compared by the model-
averaged inclusion Bayes factor for the treatment effect: (1) 
all models assuming the presence of a treatment effect (in 
the nominator) and (2) all models assuming the absence of 
the treatment effect (in the denominator) [51, 81],

Similarly to the Bayesian model-averaged estimation, the 
posterior model probabilities are influenced by the prior 
predictive accuracy of each parametric family. Neverthe-
less, since each parametric family is represented in both 
the nominator and denominator, possible miss-specifica-
tion of a parametric family results in downweighting its 
contribution into the model-averaged evidence.

We can also evaluate the evidence supporting employment 
of one parametric family over the remaining families. To 
do so, we compare the predictive performance of models 
from a given parametric family to the rest of the model 
ensemble. Suppose d = 1 denotes the exponential family, 
then the inclusion Bayes factor in support of the exponen-
tial family over all other specified parametric families is

(11)

p(data) =

1
∑

m=0

5
∑

d=1

p
(

data|θd ,Mm,d

)

× p
(

Mm,d

)

,

(12)
BF10
⏟⏟⏟

Inclusion Bayes factor for effect

=

∑5

d=1
p
�
M1,d�data

�

∑5

d=1
p
�
M0,d�data

�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Posterior inclusion odds for models assuming effect

� ∑5

d=1
p
�
M1,d

�

∑5

d=1
p
�
M0,d

�

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

Prior inclusion odds for models assuming effect

.

(13)
BFexp
⏟⏟⏟

Inclusion Bayes factor for exponential family

=

∑1

m=0
p
�
Mm,1�data

�

∑1

m=0

∑5

d=2
p
�
Mm,d�data

�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Posterior inclusion odds for exponential family

� ∑1

m=0
p
�
Mm,1

�

∑1

m=0

∑5

d=2
p
�
Mm,d

�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Prior inclusion odds for exponential family

.
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Since we use models assuming the absence and presence 
of the treatment effect, the resulting inclusion Bayes fac-
tor in support of the parametric family accounts for the 
uncertainty about the presence of the treatment effect.

Lastly, we can evaluate the evidence in favor of or against 
the inclusion of any single model into the model ensem-
ble. For example, if M0,1 denotes the exponential family 
model assuming the absence of a treatment effect, the 
inclusion Bayes factor in favor of adding this single model 
to the ensemble is defined as,

In contrast to Equation  12, the comparison of different 
parametric families as well as single models is dependent 
on the prior distributions for the intercept and auxiliary 
parameters that are not shared across the competing par-
ametric families and thus do not cancel out.

Bayesian evidence
Although Bayes factors are based on sound statistical 
methodology [82] and despite repeated calls for their usage 
(e.g., [34, 38, 83, 84]), they are rarely used in medicine. In 
this section, we explain the appeal of Bayes factors, by high-
lighting two notable differences from the currently domi-
nant p-value based Neyman-Pearson approach [85] and 
conceptually similar approaches based on posterior param-
eter distributions (e.g., [86, 87]): The Bayes factor’s interpre-
tation and its behavior under sequential analysis. The Bayes 
factor’s interpretation, and its behavior under sequential 
analysis. An additional desirable property of Bayes factors 
in comparison to basing inference on posterior param-
eter distributions, is the contrasting dependency on prior 
parameter distributions. Bayes factors provide the most 
evidence in favor of the alternative hypothesis when speci-
fying the alternative hypothesis as the maximum likelihood 
estimate (turning the Bayes factor test to a likelihood ratio 
test [88]) and any other specification results in less evidence 
in favor of the alternative hypothesis; posterior param-
eter distribution and inference based on posterior credible 
intervals can be shifted to provide an inflated rate of false 
positives [34], an even higher rate than we would see with 
frequentist p-values. This makes the Bayes factor a con-
servative measure of evidence, and its benefits are particu-
larly pronounced when informed hypotheses are specified, 
for example on the basis of historical data.

(14)BFM0,1
︸ ︷︷ ︸

Inclusion Bayes factor for M0,1

=
p
(

M0,1|data
)

1− p
(

M0,1|data
)

︸ ︷︷ ︸

Posterior inclusion odds for M0,1

/

p
(

M0,1

)

1− p
(

M0,1

)

︸ ︷︷ ︸

Prior inclusion odds for M0,1

.

Also note the difference between the information pro-
vided by the Bayesian estimation and Bayesian hypoth-
esis testing (described in the previous section). Posterior 
parameter distributions obtained by Bayesian estimation 
inform us about the degree of the effect assuming it is 
present whereas Bayes factors inform us about the evi-
dence in favor of the presence of the effect. Consequently, 
the 95% credible interval might contain the number zero 
while a Bayes factor shows evidence for the presence of 
the effect (or vice versa). These two pieces of information 
are however not at odds since each of them answers a dif-
ferent question.

Interpretation of Bayes factors
The strength of evidence measured by Bayes factors cor-
responds to the relative prior predictive performance 
of one model compared to another model [4, 76–78]. 
In other words, obtaining BF10 = 5 means that the data 
are 5 times more likely under the alternative hypothesis 
than under the null hypothesis [89]. This interpretation is 
notably different from that of p-values; it does not mean 
that we would reject a true null hypothesis in 1/5 cases or 
that we would observe such or more extreme data in 1/5 
cases if the null hypothesis were to be true.4

To illustrate, consider a simple binomial example 
where we attempt to treat ten patients. Let us assume 
that the patients spontaneously recover in 50% of the 
cases, so we set our null hypothesis of no effect to θ0 
= 0.5. Furthermore, we define two alternative hypoth-
eses, the first specifies θ1 = 0.6 and the second one 
specifies θ2 = 0.7, corresponding to a recovery rate of 
60% or 70% after treatment. Let us say that we observe 
8/10 patients recover. That leads to two different 
Bayes factors, BF10 = 2.75 and BF20 = 5.31 quantify-
ing the evidence in favor of the first and second effi-
cacy hypothesis over the null hypothesis respectively.5 

4  Although Bayes factors are a truly continuous measure of evidence, some 
researchers suggested general rules of thumb to provide intuition about the 
strength of evidence. E.g., Bayes factors between 1 and 3 (between 1 and 1/3) 
are regarded as anecdotal evidence, Bayes factors between 3 and 10 (between 
1/3 and 1/10) are regarded as moderate evidence, and Bayes factors larger than 
10 (smaller than 1/10) are regarded as strong evidence in favor of (against) a 
hypothesis ([75], Appendix I; [112], p. 105).
5  These settings simplify the outlined methodology such that all prior 
parameter distributions are reduced to a point, i.e., all probability mass is 
concentrated to a single point. These simplified parameter priors result in 
a standard likelihood ratio test, which is a special case of Bayes factors. The 
Bayes factors can be computed as a ratio of binomial distributions of given 
data (8 successes out of 10 trials) under the probability parameter θ corre-
sponding to θ specified by the alternative and null hypothesis.
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Unsurprisingly, comparing different hypotheses about 
the treatment effect yields different evidence in favor 
of presence or absence of the treatment effect. Conse-
quently, setting the same criterion for a decision, e.g., 
BF = 5, to make a binary choice between the null and 
each alternative hypothesis would lead to difference 
in choices and subsequently different rates of mislead-
ing evidence if the null hypothesis were to be true. In 
the example, the evidence would mislead us to incor-
rectly choose the alternative hypothesis in 5.5% when 
comparing the null to the first alternative hypothesis 
and in < 0.1% of the cases when comparing the null to 
the second alternative hypothesis. We deliberately use 
the term “misleading evidence” in order to highlight 
the fact that while the obtained evidence corresponds 
to the data, in other words, observing 8/10 successes 
is truly 5.31 more likely under the second alternative 
hypothesis, the sampling variability of the data itself 
mislead us into a wrong decision [90].

This is a starring difference to the currently dominant 
p-value based Neyman-Pearson approach [91–93] that 
builds statistical inference around a binary decision to 
either accept or reject the null hypothesis with given 
Type I and Type II error rates. Whereas controlling for 
the rate of mislead decisions is not the objective of the 
Bayes factor, the expected proportion of mislead deci-
sions can be evaluated via the means of the Bayes factor 
design analysis [94, 95]. The Bayes factor design analy-
sis allows researchers to assess how likely a decision at a 
given Bayes factor leads to false-positive and false-neg-
ative evidence. We illustrate how to obtain the frequen-
tist characteristics of Bayesian hypothesis testing with 
both the fixed-n and sequential design in the ’Bayes Fac-
tor Design Analysis’ subsection (located in the ’Exam-
ple’ section). Alternatively, decision makers can specify 
a full decision function based on the costs and benefits 
of the competing hypotheses and their posterior model 
probabilities, coherently following from the Bayesian 
framework. This however goes beyond the scope of the 
current paper and is discussed elsewhere [96].

Bayes factor sequential analysis
Another crucial difference between Bayes factors and 
the p-value based approach lies in sequential analy-
sis. Bayes factors follow the likelihood principle and are 
therefore independent of the sampling plan [35–37, 41]. 
In other words, researchers can decide to collect data 
until reaching a satisfactory evidence level without affect-
ing the interpretation of Bayes factors. In contrast, the 
probability of incorrectly rejecting a true null hypoth-
esis approaches unity under continuous monitoring of 
p-values [39, 40]. This crucial difference is due to the fact 
that p-values have a uniform distribution under the null 

hypothesis and freely “drift” between 0 and 1, whereas 
Bayes factors approach either 0 or ∞ with increasing 
sample size, dependent on whether the null or alternative 
hypothesis is true [97].

Sequential analysis is, of course, still possible with the 
p-value based Neyman-Pearson approach. However, 
it requires adjustment of the alpha level accordingly to 
a pre-specified analysis plan that outlines how often, 
when, and what decisions are going to be made [98]. In 
contrast to many alpha spending functions for the fre-
quentist sequential analysis that usually result in either 
rejecting or accepting the null hypothesis at the end of 
the pre-specified sampling plan, Bayes factor sequential 
analysis does not necessarily yield decisive evidence in 
favor of either of the hypotheses. Frequentist proper-
ties of the Bayes factor sequential analysis (i.e., the rate 
of false-positive and false-negative evidence) can, again, 
be assessed with a Bayes factor design analysis if neces-
sary. Bayes factors sequential stopping rules calibrated 
for frequentist properties (in contrast to their evidence 
interpretation) must be adjusted to a more stringent 
evidence criterion than Bayes factor stopping rules for 
fixed-n analyses. That is, like p-values Bayes factors 
are influenced by the sampling variability of the data. 
However, unlike p-values the evidence level for Bayes 
factor sequential analysis is adjusted to account for 
the sampling variability of the data under both hypoth-
eses. This is fundamentally different from the multi-
ple testing adjustment made to p-values due to their 
“free drift” behavior when a null hypothesis is true. As 
a consequence, unlike p-values Bayes factors are con-
sistent under both hypotheses and on average provide 
increasing support for the true hypothesis as sample size 
increases [47, 94, 95].

Example
In this section, we apply the outlined modeling frame-
work retrospectively to a real data set and discuss fur-
ther details, such as the specification of prior parameter 
distributions and prior model probabilities. All analysis 
scripts, using the newly developed RoBSA R package 
[71], are available at https://​osf.​io/​ybw9v/. All data sets 
can be obtained from the Project Data Sphere [99] fol-
lowing a simple registration at https://​www.​proje​ctdat​
asphe​re.​org/.

Data
We use data provided by Project Data Sphere [99] which 
contains n = 2,968 patients [100] attending a randomized 
phase III trial of adjuvant therapy for resected stage III 
colon cancer [101]. The data set is an extended version 
of the Alberts and colleagues [70] published study (n = 
2,686) and yields essentially the same results despite 

https://osf.io/ybw9v/
https://www.projectdatasphere.org/
https://www.projectdatasphere.org/
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having a slightly larger sample size. The published study 
was run from 2004 to 2009 and primarily evaluated the 
effect of adding Cetuximab to the standard sixth version 
of FOLFOX regimen on disease-free survival. The trial 
was halted after a planned interim analysis which did 
not show an improved outcome in patients in the FOL-
FOX + Cetuximab condition. The authors of the original 
study adjusted the analyses for several covariates. For the 
sake of simplicity, we analyse the data without adjusting 
for the covariates. Omission of the covariates had no sig-
nificant impact on the main comparison of interest: the 
disease-free survival in the FOLFOX regime (comparator 
arm, n = 1247, 22.9% events) vs. the FOLFOX + Cetuxi-
mab regime (experimental arm, n = 1251, 25.1% events) 
in patients with metastatic wild-type KRAS.

Model specification
To use the outlined Bayesian model-averaging frame-
work, we need to specify three components: (1) the 
model space, including the parametric families d that 
specify the plausible data  generating mechanisms, their 
prior model probabilities, and prior model probabili-
ties of models assuming the presence and absence of the 
treatment effect, (2) the prior distribution for the treat-
ment effect β, separately for both the Bayesian model-
averaged estimation and the Bayesian model-averaged 
testing (because we focus on AFT models here, in the fol-
lowing we will refer to the treatment effect β more spe-
cifically as log(AF)), and (3) the prior distributions for the 
supporting parameters, including the prior distributions 
for the intercept αd and auxiliary parameters γd.

Model space  We define the model space by focusing 
on five AFT survival parametric families: exponential, 
Weibull, log-normal, log-logistic, and gamma. Since we 
do not have a strong a priori preference for any single 
parametric family, we follow a common convention in 
BMA and spread the prior model probabilities equally 
across all parametric families and models assuming the 
presence and absence of the effect (i.e., we set prior model 
probability for each model in Bayesian model-averaged 
estimation to 1/5 and to 1/10 in Bayesian model-averaged 
testing) [19, 77, 81, 102–107].

Treatment effect  In Bayesian model-averaged estima-
tion, the prior distribution for the treatment effect flog(AFT) 
does not play a large role because it is shared by all mod-
els that assume the presence of the effect. Consequently, 
the prior distribution on the treatment effect does not 
influence the posterior model probabilities of models 
assuming the presence of the effect (Equation  8) which 
in turn determine weighting of the posterior distribu-
tion of the model-averaged treatment effect (Equation 9). 

We therefore aim to specify a weakly informative prior 
distribution for the treatment effect log(AF)—a distribu-
tion across all plausible values, without range constraints, 
which allows us to incorporate as much information from 
the data as possible while excluding a priori unrealistic 
values (e.g., AF > 10) [108]. One possible candidate for 
such a prior distribution is a standard normal distribution 
(that places 95% of the prior probability mass within the 
range of acceleration factors from ∼ 0.14 to ∼ 7.10).

In contrast to Bayesian model-averaged estimation, the 
prior distribution on the treatment effect plays a crucial 
role in Bayesian model-averaged testing. As outlined 
in Equation  12, the prior distribution for the treatment 
effect defines the alternative hypothesis, which posits 
the presence of an effect, and subsequently determines 
the computed model-averaged inclusion Bayes factor for 
the effect. Therefore, the prior distributions correspond 
to the effect sizes that we would expect to observe if 
the treatment was effective. In our example, we specify 
log(AFT) ∼ Normal(0.30, 0.15)[0,∞] on the log(AF) scale. 
This normal distribution bounded to positive numbers is 
centered at the effect size of interest as specified in  the 
preregistration protocol (90% power for a hazard ratio 
of 1.3),6 and the small standard deviation quantifies our 
interest in effect sizes slightly smaller or larger (see John-
son and Cook [34] for more complex alternatives).

Supporting parameters  In contrast to simple Bayesian 
estimation and Bayesian hypothesis testing, the prior dis-
tributions on the intercepts αd and auxiliary parameters γd 
that are specific to each parametric family play an essen-
tial role in determining the posterior model probabilities. 
The posterior model probabilities weight (1) the posterior 
distributions of the treatment effect across the parametric 
families in Bayesian model-averaged estimation (Equa-
tion 9) and (2) the evidence from the individual paramet-
ric families in the inclusion Bayes factor for the treatment 
effect in Bayesian model-averaged testing (Equation  12). 
Therefore, a gross miss-specification of supporting 
parameters for any single parametric family (e.g., survival 
times distribution on different time scales) will decrease 
its predictive performance and down-weight the influence 
of the parametric family on the model-averaged results.

In our example, we used historical information about 
previous colon cancer trials on disease-free survival and 
combined them into meta-analytic predictive prior dis-
tributions. Meta-analytic predictive prior distributions 

6  Should the treatment be harmful and result in a negative acceleration fac-
tor, the result would be much better predicted by the models assuming the 
absence of a treatment effect. Hence, the trial would be quickly terminated 
(see upper left panel of Fig. 5).
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incorporate information about the between-study het-
erogeneity of the past studies that down-weights influence 
of the past data in accordance to their dissimilarities [30, 
33].7 This allows us to not only calibrate the prior distri-
butions for the supporting parameters but also to use 
already present information about the scaling and shapes 
of the survival time distributions, making our analysis 
more efficient. To obtain the historical data, we searched 
the remainder of the Project Data Sphere database and 
identified another 24 studies under the ’Colorectal’ tumor 
type. We successfully extracted relevant participant-level 
data from k = 3 data sets corresponding to studies assess-
ing disease-free survival (combined n = 2,860) [109–111]. 
While three data sets provide only limited information, 
especially with regard to the between study heterogeneity, 
we used Bayesian meta-analysis with weakly informative 
prior distributions to estimate the meta-analytic predictive 
prior distributions (see Additional file 1: Appendix A for 
details).8

The resulting prior distributions are summarized in 
Table 1 show that all meta-analytic prior distributions for 
the intercepts are fairly similar, with means slightly below 
9 and similar standard deviations around 2. The same 
is true for the auxiliary parameters where the mean-log 
parameters are close to 0 and the standard deviations 
around 0.30. The left panel of Fig. 1 visualizes similarities 
in the scaling and shapes of the different parametric fam-
ilies, with the full lines corresponding to the predicted 
mean survival function (in the comparator arm) and the 
shaded areas to 95% prior predictive intervals. The right 
panel of Fig.  1 visualizes the prior model-averaged sur-
vival function for the comparator arm (in light green) 
vs. the model-averaged survival function for the experi-
mental arm (in deep purple; predicted by the models 
assuming the presence of the treatment effect specified 
by the Bayesian model-averaged testing). The predicted 
model-averaged survival function for the experimental 
arm is slightly above the predicted model-averaged sur-
vival function for the comparator arm since the speci-
fied alternative hypothesis describes a positive treatment 
effect, in other words, longer survival times (note that in 
the estimation ensemble there is no difference between 

the model-averaged prior predicted survival functions 
because we do not constrain the estimated effect to be 
positive a priori). The shaded 95% prior predictive inter-
vals show a considerable uncertainty based on the histor-
ical data, which warrants enough flexibility for the Bayes-
ian updating process.

Bayes factor design analysis
We use a Bayes factor design analysis [47, 94, 95] to eval-
uate the frequentist properties of the specified Bayes-
ian model-averaged testing model. First, we evaluate 
the expected rate of the false-positive and false-negative 
evidence when using symmetrical decision criteria to 
make a decision about the evidence in favor of presence/
absence of the treatment effect either under a fixed-n 
analysis based on the whole sample or a sequential anal-
ysis. Second, we calibrate the decision criteria to match 
the expected rate of the false-positive and false-negative 
evidence to the frequentist Type I (α = 0.05) and Type II 
(β = 0.10) errors. The calibrated decision criteria allow us 
to analyze the example data in the same way as Alberts 
and colleagues intended [101].

Settings  To evaluate the properties of the specified 
model, we simulate data from the specified prior distri-
butions (Table  1) under two scenarios. In the first sce-
nario, we simulate data under the assumption that the 
models assuming the absence of the effect are true. In the 
second scenario, we simulate data under the assumption 
that the models assuming the presence of the effect are 
true. We repeat the simulations 1,000 times and divide 
them equally amongst the true data generating para-
metric families (i.e., we simulate data 200 times from the 
exponential parametric family assuming absence of the 
treatment effect, 200 times from the exponential fam-
ily assuming presence of the treatment effect...).9 For the 
fixed-n design, we analyze all expected 2070 participants 
[101] after a 5 years period. For the sequential design, 
we simplified the trial by assuming that all 2070 partici-
pants start at the same time and analyze their data every 
month until reaching a 5 year period (or if the Bayes fac-
tor drifts outside the range of 1/15 to 15 to speed up the 
computation).

Evaluating misleading evidence  The left panel of Fig. 2 
visualizes the distribution of inclusion Bayes factors 

7  In the case that we do not have access to historical information or partici-
pant level data, we can still utilize more easily obtainable information, such as 
the expected median and interquartile survival times. The expected informa-
tion about survival can be used to solve for the means of prior distributions 
of αd and γd parameters, so they produce survival time distributions with the 
appropriate summary statistics. Then, we set standard deviations of the prior 
distributions in a way that produces a suitable amount of flexibility.
8  Ideally, more informed prior distributions for the usual treatment effects 
and their heterogeneities would be available for different sub-fields of medi-
cine, such as the ones developed by Bartoš and colleagues [19]. These sug-
gestions would provide better starting points for obtaining meta-analytic 
predictive prior distributions in case of few primary studies.

9  We used the Weibull parametric family to simulate the censoring times 
since (1) the censoring process itself is not modeled by the survival models, 
(2) estimating meta-analytic predictive prior distribution for a flexible para-
metric spline model is not a straightforward task, and (3) it was the best fit-
ting distribution to the censoring times according to AIC and BIC across all 3 
historical data sets.
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for the presence of the treatment effect in the fixed-n 
design. The light green density corresponds to the inclu-
sion Bayes factors for the presence of the treatment 
effect when computed on the data simulated from mod-
els assuming the absence of the treatment effect. The 
deep purple density corresponds to the inclusion Bayes 
factors for the presence of the treatment effect when 
computed on the data simulated from models assuming 
the presence of the treatment effect (32.5% Bayes factors 
were larger than 1000 and are omitted from the Figure). 
We can see a visible separation of the densities, 87.2% of 
Bayes factors under the null hypothesis are lower than 1, 
correctly favoring the null hypothesis, and 78.1% Bayes 
factors under the alternative hypothesis are higher than 
1, correctly favoring the alternative hypothesis. We can 
also compute the proportion of misleading evidence if 
we were to apply a decision at a symmetric boundary 
BF10 = 10/BF10 = 1/10 corresponding to strong evi-
dence [75, 112]. The strong evidence boundary would 
lead us to wrongly accept the alternative hypotheses in 
0.3% of the cases (assuming the null hypotheses were 
true) and wrongly accept the null hypotheses in 3.7% 
of cases (assuming the alternative hypotheses were 
true). This is a much lower percentage of errors than 
we would obtain with the commonly recommended fre-
quentist settings of α = 0.05 and β = 0.10. Note that the 

error rates for a any given evidence level depend on the 
sample size, which is why Bayes factor design analyses 
are needed.

The right panel of Fig.  2 visualizes the trajectories of 
inclusion Bayes factors for the presence of the treat-
ment effect in the sequential design. The light green 
density corresponds to 95% of the most supportive 
inclusion Bayes factors trajectories for the presence of 
the treatment effect when computed on the data simu-
lated from models assuming the absence of the treat-
ment effect. The deep purple density corresponds to 
90% of the most supportive inclusion Bayes factors tra-
jectories for the presence of the treatment effect when 
computed on the data simulated from models assuming 
the presence of the treatment effect. The right panel of 
Fig. 2 also shows ten example trajectories of the Bayes 
factors. As discussed in the ’Bayesian Evidence’ section, 
Bayes factors tend to converge towards the evidence 
in favor of the true hypothesis. Nevertheless, the sam-
pling variance of the data can introduce oscillations in 
the trajectories, which is the reason behind a higher 
rate of positive and negative evidence in the Bayes fac-
tor sequential analysis [47, 94, 95]. In our case, using 
the same decision criteria corresponding to strong evi-
dence (a symmetric boundary BF10 = 10/BF10 = 1/10 ), 

Table 1  Overview of the prior distributions for the treatment effect β, intercepts αd, and auxiliary parameters γd across the competing 
parametric families for both Bayesian model-averaged testing (upper Table) and estimation (lower Table). “Pr. prob.” denotes the 
prior model probabilities, “Post. prob.” the posterior model probabilities, “log(marglik)” the log of marginal likelihood, and “Incl. BF” the 
inclusion Bayes factor for including each model into the model ensemble

S denotes a Spike prior distribution, N denotes a Normal prior distribution, and LogN denotes a Log-Normal prior distribution

Bayesian Model-Averaged Testing
Distribution Prior β Prior α Prior γ Pr. prob Post. prob log(marglik) Incl. BF

Exponential S(0) N(8.70, 2.04) 0.10 0.00 5158.39 0.00

Weibull S(0) N(8.80, 2.20) LogN(− 0.07, 0.22) 0.10 0.00 -5151.96 0.00

LogN S(0) N(8.70, 1.95) LogN(0.62, 0.25) 0.10 0.95 -5138.23 182.44

Log-logistic S(0) N(8.54, 2.37) LogN(0.02, 0.27) 0.10 0.03 -5141.65 0.29

Gamma S(0) N(8.88, 2.05) LogN(− 0.10, 0.39) 0.10 0.00 -5149.33 0.00

Exponential N(0.3, 0.15)[0,∞] N(8.70, 2.04) 0.10 0.00 -5162.05 0.00

Weibull N(0.3, 0.15)[0,∞] N(8.80, 2.20) LogN(− 0.07, 0.22) 0.10 0.00 -5155.86 0.00

LogN N(0.3, 0.15)[0,∞] N(8.70, 1.95) LogN(0.62, 0.25) 0.10 0.02 -5142.37 0.14

Log-logistic N(0.3, 0.15)[0,∞] N(8.54, 2.37) LogN(0.02, 0.27) 0.10 0.00 -5145.66 0.01

Gamma N(0.3, 0.15)[0,∞] N(8.88, 2.05) LogN(− 0.10, 0.39) 0.10 0.00 -5153.30 0.00

Bayesian Model-Averaged Estimation
Distribution Prior β Prior α Prior γ Pr. prob Post. prob log(marglik) Incl. BF

Exponential N(0, 1) N(8.70, 2.04) 0.20 0.00 -5159.70 0.00

Weibull N(0, 1) N(8.80, 2.20) LogN( 0.07, 0.22) -0.20 0.00 -5153.36 0.00

LogN N(0, 1) N(8.70, 1.95) LogN(0.62, 0.25) 0.20 0.99 -5137.99 363.90

Log-logistic N(0, 1) N(8.54, 2.37) LogN(0.02, 0.27) 0.20 0.01 -5142.50 0.04

Gamma N(0, 1) N(8.88, 2.05) LogN(-0.10, 0.39) 0.20 0.00 -5150.61 0.00
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we would wrongly accept the null hypothesis in 3.3% of 
the cases and wrongly accept the alternative hypothesis 
in 3.1% of cases.10Again, a lower percentage of errors 
than in the common frequentist settings and with the 
possibility to continuously monitor the evidence with-
out adjusting the boundaries.

Calibration for frequentist properties  To make the 
results of our example directly comparable to the fre-
quentist analysis, we calibrate the decision boundaries on 
Bayes factors to lead to a rate of false-positive and false-
negative evidence corresponding to the expected Type I 
and Type II error rate (α = 0.05, β = 0.10). We calibrate 
the Bayes factors by computing the 95%th and 10%th 
quantile of the Bayes factors under the null and alterna-
tive hypotheses respectively for the fixed-n design, and 
by finding upper and lower bounds that are not crossed 
by more then 5% and 10% of the trajectories for the 
sequential design.

The left panel of Fig.  2 visualizes the calibrated deci-
sion criteria for the fixed-n design as two dashed verti-
cal lines corresponding to BF01 = 2.72 and BF10 = 1.72. 
These boundaries, calibrated to the common frequentist 
error rates, correspond to much weaker evidence. Simi-
larly, the right panel of Fig.  2 visualizes the calibrated 
decision criteria for the sequential design as two dashed 
horizontal lines corresponding to BF01 = 4.4 and BF10 = 
6.9. These boundaries are considerably wider than the 

boundaries for the fixed-n design due to the sampling 
variance of the data that would lead to misleading deci-
sions when crossing a tighter boundary. Nevertheless, 
the calibrated boundaries are still noticeably tighter than 
boundaries corresponding to strong Bayesian evidence. 
It is worth considering whether such weak evidence, in 
both the fixed-n and sequential designs warrants permis-
sion to draw strong conclusions.

Implementation
While analytical solutions for certain combinations of 
prior distributions and parametric families exist [50], we 
use MCMC sampling to estimate the posterior distribu-
tions (Equation 4; implemented in the runjags R package 
[113] accessing the JAGS statistical programming lan-
guage on the background [5]). We use bridge-sampling 
[8, 9] to estimate each model’s marginal likelihoods 
(Equation 3; implemented in the bridgesampling R pack-
age [7]). We combined all of the required functionality to 
fit, interpret, and plot Bayesian model-averaged survival 
analyses into the RoBSA R package [71].

Results
The upper part of Table  1 summarizes the results of 
the Bayesian model-averaged testing ensemble. It con-
tains five models assuming the absence of a treatment 
effect and five models assuming the presence of a posi-
tive treatment effect. We find strong evidence against 
the models assuming the presence of the positive treat-
ment effect BF01 = 62.5, which crosses the Bayesian 
strong evidence threshold as well as the threshold cali-
brated for frequentist properties. The obtained evidence 
decreases the prior probability of the positive treatment 

Fig. 1  Left: The prior predicted survival function for the comparator arm in each parametric family. The shaded areas correspond to 95% prior 
predictive intervals. Right: Model-averaged prior predicted survival function in the comparator arm (light green) and experimental arm (deep 
purple) assuming the presence of the treatment effect specified by the Bayesian model-averaged hypothesis testing approach. The shaded areas 
correspond to 95% prior predictive intervals

10  The fact that we observe a slight decrease of false-positive evidence is 
due to the sampling variance of the data which can lead to an earlier cor-
rect acceptance of the null hypothesis, eliminating the chance of crossing the 
wrong boundary, and due to the variance in the Bayes factor design analysis 
itself.
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effect from 0.50 to 0.02. We inspect the inclusion Bayes 
factors for the competing parametric families and find 
strong evidence supporting the models based on the 
log-normal parametric family, BFlog-normal = 122.0 
(averaged across models assuming both presence and 
absence of the effect, i.e., Equation  13). We find more 
fine-grained results in the upper part of Table 1, which 
shows that the data were most consistent with the log-
normal model assuming the absence of the positive 
treatment effect, increasing its posterior model prob-
ability from 0.10 to 0.95.

The Bayesian model-averaged estimation ensem-
ble contains only models assuming the presence of the 
treatment effect, with a wider, unbounded, prior distri-
bution over the treatment effect. The fact that we found 
strong evidence for models assuming the absence of the 
treatment effect over the models assuming the presence 
of the positive treatment effect does not mean that the 
effect is necessarily zero— negative values of the treat-
ment effect would also provide evidence against models 
assuming the presence of the positive treatment effect. 
Indeed, we find a mostly negative model-averaged esti-
mate of the treatment effect, log(AF) = -0.188, 95% CI 
[-0.346, -0.034]. The left panel of Fig.  3 visualizes the 
prior (dashed grey line) and posterior (full black line) 
distribution for the treatment effect. The peaked pos-
terior distribution signifies the amount of information 
learned from the observed data. Another example of the 
learning process is visualized in the right panel of Fig. 3, 
where the posterior credible intervals of the survival 
functions is noticeably tightened. As shown in the lower 

part of Table 1 we find that most of the posterior model 
probability, 0.99, is, again, ascribed to the log-normal 
parametric family.

These results lead to qualitatively similar conclusions 
as the results obtained by the Cox proportional hazard 
model presented by Alberts and colleagues (HR = 1.21, 
95% CI [0.98, 1.49], p = .08; [70]).

Sequential analysis
We can take advantage of the ability to update the evidence 
in a truly sequential manner and inspect how it accumu-
lates throughout the trial. Since the data provided at Pro-
ject Data Sphere do not contain the time of enrollment 
into the study, we simplify our settings by assuming that all 
participants start the study at the same time. We re-esti-
mate the model ensemble for the Bayesian model-averaged 
testing (upper part of Table 1) every month (30 days) and 
evaluate the evidence for the presence vs. absence of the 
specified treatment effect (with observations with sur-
vival/censoring times beyond the current time scope being 
censored at the current evaluation time).

The left panel of Fig. 4 visualizes the flow of evidence 
with time towards the models assuming the absence of 
the effect. We find that the evidence against the alterna-
tive hypothesis of positive treatment effect accumulates 
rather quickly. The Bayes factor for the presence of the 
treatment effect falls below the Bayesian strong evidence 
threshold at 6 months from the start of the trial. Further-
more, the Bayes factor crosses the calibrated sequen-
tial threshold for frequentist properties (BF01=4.4) at 3 
months from the start of the trial.

Fig. 2  Left: Distribution of the inclusion Bayes factors for the presence of the treatment effect in the fixed-n design under the null hypothesis 
(assuming the absence of the treatment effect; light green) and the alternative hypothesis (assuming the presence of the treatment effect; deep 
purple). 32.5% Bayes factors under the alternative hypothesis are larger than 1000 and not shown. The vertical dashed lines visualize boundaries 
for obtaining 10% false-negative evidence and 5% false-positive evidence. Right: Trajectories of the inclusion Bayes factors for the presence of the 
treatment effect in the sequential design under the null hypothesis (assuming the absence of the treatment effect; light green) and the alternative 
hypothesis (assuming the presence of the treatment effect; deep purple). Ten example trajectories are visualized in the full colored lines. The 
bounds are truncated in the range of 1/15 and 15. The horizontal dashed lines visualize boundaries for obtaining 10% false-negative evidence and 
5% false-positive evidence



Page 13 of 22Bartoš et al. BMC Medical Research Methodology          (2022) 22:238 	

The right panel of Fig. 4 visualizes the flow of evidence 
with time towards the competing parametric families as 
a posterior probability of a given parametric family. We 
can see the advantages of model-averaging, especially 
early in the data collection when there is a lot of uncer-
tainty about the most likely parametric family.

We can compare the results to the analysis plan of 
the original study that specified interim analysis after 
reaching 25%, 50%, and 75% of the planned number of 
515 events using an O’Brien-Fleming stopping bound-
ary [43], truncated at ±3.5, resulting in boundaries at 
±3.5, ±2.996, ±2.361, and ±2.015 for each step [101]. 

Using our simplified version of the trial, the registered 
analysis plan would lead to early stopping at the sec-
ond interim analysis (at 50% of the expected observed 
events) after 13.3 months. That is 10.3 months later 
in comparison to stopping at the calibrated sequen-
tial threshold or 7.3 months later than stopping upon 
reaching strong evidence. Using the full data set and 
Bayesian model-averaged estimation, we find that the 
mean progression-free survival is 19.1 years in the 
experimental arm vs. 23.1 years in the comparator arm. 
Ending the trial 10.3 months earlier and switching the 
patients from the experimental to the comparator arm 

Fig. 3  Left: Prior (grey dashed line) and posterior (full black line) distribution of the treatment effect obtained with the Bayesian model-averaged 
estimation. Right: Model-averaged prior (dashed lines) and posterior (full lines) survival function in the comparator arm (light green) and 
experimental arm (deep purple) obtained with the Bayesian model-averaged estimation. The shaded areas correspond to a 95% prior (less 
saturated) and posterior (more saturated) credible intervals. The mean of model-averaged prior distribution in the experimental arm for Bayesian 
model-averaged estimation is slightly bellow the mean in the control arm due to the non-linear transformations involved in computing survival, 
despite the prior distribution being centered at zero treatment effect

Fig. 4  Left: Trajectory of the Bayes factors for the presence of the treatment effect in the sequential analysis. The horizontal dashed line visualizes 
the lower decision boundary calibrated for 10% false-negative evidence (BF01 = 4.4 crossed at 3 months since the start of the trial) and the 
horizontal dotted line visualizes the strong evidence in favor of the null hypothesis boundary (BF01 = 10 crossed at 6 months since the start of the 
trial). Right: Trajectories of the posterior model probabilities of the individual parametric families
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would increase their mean progress-free survival time 
by 12.5 months.11 With 1251 patients in the experimen-
tal arm, the difference makes 1,299 progress-free sur-
vival years in total.

Simulation Study
We designed a simulation study closely based on the exam-
ple data set to evaluate the described methodology in real-
life like settings while controlling for potential confounds 
and unknown factors specific to the example data set. The 
simulation code is available at https://​osf.​io/​ybw9v/.

We evaluated estimation and testing performance of 
Bayesian model-averaging and compared it to model 
selection over the parametric families with either Bayes 
factor or AIC/BIC implemented in the flexsurv R pack-
age.12 For the Bayesian approaches we used the historical 
data to specify prior distributions (as in the example, c.f., 
Table 1).13 We evaluated the performance of the methods 
in a fixed-n design and a sequential design. To assess per-
formance under realistic conditions, i.e., when the true 
data generating process is unknown and may not match 
any parametric family, we omitted the family used to sim-
ulate the data from the set of models used in the model 
selection/model-averaging analyses. For example, if the 
data were simulated from the exponential parametric 
family, the results for all methods were computed with-
out considering the exponential parametric family mod-
els (see Supplementary Materials for more details and 
similar results when including all parametric families).

We based the data generating process for the simu-
lation study on the example data set from Alberts and 
colleagues [111]. We considered five parametric fami-
lies (exponential, Weibull, log-normal, log-logistic, 
and gamma) for the fixed-n design and one parametric 
family (Weibull) for the sequential design as the true 
data  generating mechanisms for the survival times. 
We used a parametric spline model [114] as the true 
data  generating mechanism for the censoring times. 
This allowed us to compare the performance of the 
methods across different, controlled, data  generating 
processes while leaving the censoring process flexible. 
We censored all survival times larger than 5 years. In 
the sequential design, we started with all participants 
being censored and revealing their true or censor-
ing times as the time of the trial progressed (as in the 

example). We estimated the parameters for simulating 
survival and censoring times by fitting the correspond-
ing maximum-likelihood parametric models to the 
Alberts and colleagues’ data set [111]. Furthermore, 
we manipulated the true acceleration factor (log(AF) = 
-0.2, 0, 0.2, 0.4) and considered different sample sizes (N 
= 50, 200, 1000 for the fixed-n design, and N = 2070 
for the sequential design). That resulted in 5 (data gen-
erating mechanisms) × 4 (AF) 3 (samples sizes) = 60 
simulation conditions in the fixed-n design and 1 (data 
generating mechanisms) × 4 (AF) × 1 (samples sizes) 
= 4 simulation conditions in the sequential design. We 
repeated each simulation condition 500 times in both 
designs. The number of repetitions was limited by the 
computational resources required for estimating the 
Bayesian model-averaged methods.

Results: fixed‑n design
We evaluated the performance of the methods accord-
ing to the bias (the difference between the true value and 
the estimate), root mean square error (RMSE, the square 
root of the mean square difference between the true value 
and the estimate), and confidence interval coverage of the 
log(AF) estimate. Ideally, we would like to observe as low 
RMSE as possibly, indicating high precision of the esti-
mates, no or with sample size decreasing bias, indicating 
that our estimates are converging to the true values, and a 
nominal confidence interval coverage, indicating properly 
calibrated confidence intervals. We evaluated the error rate 
and power when making decisions about the presence of 
the treatment effect (with α = 0.05, one-sided, for the fre-
quentist methods, and Bayes factors thresholds calibrated 
for the corresponding frequentist properties with the his-
torical data, as in the ’Example’ section).14 Ideally, we would 
like to observe an error rate around the nominal α level, 
indicating proper calibration of p-values and Bayes factors, 
and as high power as possible, indicating high efficiency of 
test. We also evaluated bias and RMSE for the mean pre-
dicted survival at 20 years period. We used formulas pro-
vided by Morris and colleagues [115] to compute MCMC 
errors (SE) of the bias, confidence interval coverage, error 
rate, and power. We used the jackknife estimate of variance 
[116] to compute the standard error of the RMSE.

RMSE, bias, and confidence interval coverage of the 
estimated mean log(AF) as well as the power and error 
rate were comparable across the different data generating 
mechanisms. Therefore, we present aggregated results 
across the different data generating mechanisms (tables 
with detailed results for each parametric family are avail-
able in Supplementary Materials).

14  That led to BF10 = 1.9, 2.3, 2.2 and 1.9, 2.4, 2.2, and BF01 = 1.6, 2.2, 2.6 and 
1.6, 2.2, 2.6 for N = 50, 200, 1000 for Bayesian model-averaging and Bayes fac-
tor model selection respectively.

13  Each Bayesian model was estimated with two chains, each run for 1000 
burnin and 5000 sampling iterations.

11  Under the assumption that spending 3 vs. 13.3 months in the experimental 
comparator would “take” 1.3 vs. 5.8% of their mean progress-free survival time 
and the rest of their progress-free survival time would be based on the mean 
progress-free survival in the comparator arm.
12  BIC model selection corresponds to Bayes factor model selection when a 
unit information prior is used (e.g., [134]).

https://osf.io/ybw9v/
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The left panel of Fig.  5 visualizes the RMSE of the 
mean log(AF) estimates aggregated across true log(AF), 
all of which led to comparable RMSEs. We see that both 
Bayesian model-averaging and Bayesian model selection 
with Bayes factors outperformed the frequentist model 
selection with AIC/BIC in small to medium sample 
sizes. This benefit is a result of the regularizing proper-
ties of the prior distributions that reduce the otherwise 
large variability of the log(AF) estimates under small 
sample sizes. Results of bias showed a similar pattern as 
the RMSE (see  Additional file  1: Appendix B), however, 
whereas the frequentist methods lead to overestimation 
of the log(AF) in small sample sizes (i.e., more extreme 
estimates of the log(AF) estimates regardless of the direc-
tion) the Bayesian methods lead to underestimation of 
the log(AF) (i.e., more conservative estimates regardless 
of the direction due to shrinkage introduced by the prior 
distributions). Regardless of the differences in RMSE and 
bias, the confidence interval coverage did not seem to dif-
fer by methods— all achieving proper confidence interval 
coverage (see Additional file 1 Appendix B).

The right panel of Fig.  5 visualizes the RMSE of the 
predicted survival at twenty years. We see that Bayes-
ian model-averaging and AIC/BIC model selection out-
perform Bayesian model selection with Bayes factors in 
all but the largest sample sizes, where all models con-
verge to similar results. Results of bias favored the AIC/
BIC model selection over the Bayesian methods. Results 
of bias of the predicted survival at twenty years showed 
a similar pattern as the RMSE (see  Additional file  1: 
Appendix B).

Figure 6 visualizes the error rate (first row) and power 
(second row) for the test of negative or null and positive 
log(AF) respectively. We see that all methods showed 

similar error rate in case of the negative log(AF) (upper 
left), however, the Bayesian model-averaging and model 
selection with Bayes factors exhibited an  inflated error 
rate for n = 200 participants in the case of no treatment 
effect (upper right). The elevated error rate was balanced 
by increased power in settings with presence of the posi-
tive treatment effect (log(AF) = 0.2 in bottom left and 
log(AF) = 0.4 in bottom right).15

Results: sequential design
We evaluated the performance of the methods accord-
ing to the error rate and power when making decisions 
about the presence of the treatment effect and time to 
make the decision. For the Bayesian model-averaging 
and Bayes factor model selection we used the Bayes fac-
tor thresholds calibrated for the corresponding frequen-
tist properties with the historical data, as in the ’Example’ 
section.16 Ideally, we would like to observe an error 
rate around the nominal α level, indicating proper cali-
bration of p-values and Bayes factors, as high power as 
possible, indicating high efficiency of test, and as short 
times to make decisions as possible, indicating high 
efficiency of the sequential testing procedure. Similarly 
to the example, we re-estimated the models to monitor 
the evidence every month. For the frequentist methods, 
we used varying numbers of steps (k = 2, 4, 5, 10, 20), 
to assess the different degrees of sequential efficiency, for 
sequential analysis with binding asymmetric boundaries, 

Fig. 5  Left: Root mean square error (RMSE, y-axis; 95% confidence intervals are not shown as they are shorter than the symbols) of the mean log 
acceleration factor estimates for different sample sizes (x-axis) and methods (colors/shapes) averaged across all simulation conditions. RMSE of 
AIC and BIC model selection with n = 50 estimates is out of the plotting range (AIC = 1.78, BIC = 1.91). Right: Root mean square error and 95% 
confidence intervals (RMSE, y-axis) of the predicted mean survival at 20 years estimates for different sample sizes (x-axis) and methods (colors/
shapes) averaged across all simulation conditions. Methods: Bayesian model-averaging (BMA, deep purple circles) and model selection over 
parametric families with: Bayes factors (BF = light green triangles), AIC (light green circles), and BIC (deep purple squares)

15  Power of the different methods in conditions with log(AF) = 0.2; 
BMA = .09, .22, .48 and BF = .09, .21, .49, vs. AIC = .08, .17, .48 and BIC = .07, 
.16, .48, and log(AF) = 0.4, BMA = .15, .46, .92 and BF = .15, .44, .92 vs. 
AIC = .12, .38, .91 and BIC = .12, .37, .91, for 50, 200, and 1000 observations 
respectively.
16  That led to BF10 = 4.4 and 4.7, and BF01 = 6.9 and 7.1 for Bayesian model-
averaging and Bayes factor model selection, respectively.
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Hwang-Shih-DeCani spending function [98, 117], and 
α = 0.05 for one-sided test. The Hwang-Shih-DeCani 
spending function allows stopping both for efficacy and 
futility while leading to optimal sample size [118]. We 
used formulas provided by Morris and colleagues [115] 
to compute MCMC errors (SE) of the error rate, and 
power, and conventional standard errors for the required 
time to reach the decision.

Figure  7 visualizes the distribution of times to reach 
either the correct decision (deep purple), the incor-
rect decision (light green), or not reaching a decision 
at all (grey) in the sequential analysis with different 
true log(AF) depicted in different panels (see Table A1 
in Appendix B for numerical summaries of the times to 
and probabilities of making a decision). Different rows 
compare different methods (with AIC/BIC correspond-
ing to a sequential analysis with the most optimal k = 
20 steps; tables with detailed results for each number of 
steps are available in Table 15 of Supplementary Mate-
rials). We see that both Bayesian model-averaging and 
Bayesian model selection with Bayes factors outper-
formed the frequentist model selection with AIC/BIC 
in terms of time to reach either the correct or incorrect 

decisions regardless of the true log(AF). Table  A1 in 
Appendix B shows that the time to reach either the 
correct or incorrect decisions was almost half for the 
Bayesian methods in comparison to the frequentist 
alternatives. The error rate was either lower or about 
equal to the set significance threshold for all the meth-
ods in conditions with negative or no log(AF), and the 
power was essentially the same for all methods in con-
ditions with positive log(AF). However, while the fre-
quentist methods had a higher proportion of undecided 
trials in the log(AF) = 0.2 condition (AIC = 0.212, BIC 
= 0.208) in contrast to the Bayesian methods (BMA = 
0.136, BF = 0.152), conversely, the Bayesian methods 
had a higher proportion of incorrect decisions (BMA = 
0.184, BF = 0.164) in contrast to the frequentist meth-
ods (AIC= 0.112, BIC = 0.116).

Discussion
We described benefits of the Bayesian framework con-
sisting of estimation, hypothesis testing, and model-
averaging when applied to survival analysis. Specifically, 
we highlighted how to: (1) include historical data into 
the analysis, (2) specify and test informed hypotheses, 

Fig. 6  First row: Error rate and 95% confidence intervals (y-axis; 95% confidence intervals are not shown in cases where they are shorter than the 
symbols) for the test of the positive acceleration factor for different sample sizes (x-axis), methods (colors/shapes), and true acceleration factors 
(columns) averaged across all simulation conditions. Second row: Power and 95% confidence intervals of the test of the positive acceleration factor 
(y-axis) for different sample sizes (x-axis), methods (colors/shapes), and true acceleration factors (columns) averaged across conditions with different 
parametric families. Methods: Bayesian model-averaging (BMA, deep purple circles) and model selection over parametric families with: Bayes factors 
(BF = deep purple triangles), AIC (light green circles), and BIC (light green squares). Note the different scaling of the y-axis for the error rate (first row) 
and power (second row)



Page 17 of 22Bartoš et al. BMC Medical Research Methodology          (2022) 22:238 	

and (3) incorporate uncertainty about the true data 
generating process into the analysis. Furthermore, we 
discussed the differences between the frequentist and 
Bayesian frameworks towards evidence, showed how to 
calibrate the Bayesian analyses for frequentist proper-
ties (if needed) with Bayes factor design analysis, and 

demonstrated efficiency of the Bayesian framework in an 
example and a simulation study. In this simulation study 
we found the Bayesian approach had (1) shorter times 
required for sequential designs, (2) slightly higher statis-
tical power and false-positive rate in fixed-n designs, and 

Fig. 7  Time until reaching a conclusion in sequential analysis for different true acceleration factors (panels). The upper part of each histogram 
shows distribution of times until reaching the correct conclusion (deep purple), the lower part of the histogram shows distribution of times until 
reaching the wrong conclusion (light green), and the double sided bar at the end shows the proportion of undecided sequential analyses at the 
end of the trial (grey). Methods: Bayesian model-averaging (monitored every month, first row) and model selection over parametric families with: 
Bayes factors (monitored every month, second row), AIC (with 20 interim analyses, third row), and BIC (with 20 interim analyses, fourth row)
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(3) more precise estimates of the treatment effect in small 
and medium sample sizes.

Including historical data into current studies can 
greatly improve efficiency of the analyses, especially 
when including more participants is costly. As other 
researchers repeatedly stressed: there is plenty of 
historical data, and not utilizing them is a waste of 
resources [21–25]—resources that could be used to 
provide better treatment to the current patients and 
develop new treatments [43–45]. Specifying hypoth-
eses in accordance with the expectations of the treat-
ment efficiency, i.e., performing an informed Bayesian 
hypotheses test, further builds on this idea. Informed 
Bayesian hypothesis testing allows researchers to eval-
uate the evidence in favor or against specific claims—
making the most of the data and allowing for richer 
inference [34, 95, 119]. Finally, incorporating uncer-
tainty about the true data generating mechanism dis-
penses with the need to commit to assuming a single 
parametric family, making the analyses more robust to 
model misspecifications.

Bayesian analysis requires the full specification of pri-
ors for all parameters. While researchers may have good 
intuitions for priors on the treatment effect, auxiliary 
parameters may be more challenging to reason about—
particularly, when historical data on auxiliary parameters 
are lacking. In this case, the appropriate prior distribu-
tions can be constructed by eliciting expert knowledge 
[120–123]. Nevertheless, projections about the approxi-
mate mean, median, or interquartile range of survival are 
often important part of planning and registering clinical 
trials and can be used to calibrate prior distributions for 
the auxiliary parameters.

Importantly, Bayesian hypothesis tests are defined 
by the prior distribution on the parameter of inter-
est, usually the treatment effect. Specifying a different 
prior distribution on the treatment effect parameter 
corresponds to defining a different hypothesis about 
the treatment. Different questions necessarily lead to 
different answers, and similar questions lead to simi-
lar answers. This concept is not that dissimilar from 
frequentist hypothesis testing either. E.g., a two-sided 
frequentist test might give a different answer than a 
one-sided test which might, in turn, give a different 
answer than a frequentist test for a minimal effect size 
of clinical relevance.

 The Bayes factor design analysis also highlighted one 
important fact: the routinely used Type I error rate of 
5% corresponds to weak evidence in favor/against the 
informed alternative hypothesis. This is especially true 
with increasing sample size, potentially resulting in 
the Jeffreys-Lindley paradox (see [124] for an excellent 
overview). Similar findings have already been described 

elsewhere, with authors arguing for adopting a more 
stringent significance level [125] or increasing the signifi-
cance level with increasing sample size (e.g., [126–129]). 
Alternatively, researchers may specify a utility function 
and perform a full decision analysis based on the poste-
rior parameter distributions and posterior model prob-
abilities [96].

Nonetheless, all of these advantages come at a cost. 
Setting up and executing the outlined analyses is, with-
out a doubt, more demanding than the standard frequen-
tist approach. It requires more computational resources 
and more of the researchers’ time to execute the analy-
sis. However, there are also significant tangible costs of 
keeping the status quo. In our example, we showed that 
sequential analysis with Bayesian hypothesis testing can 
decrease the trial duration by over a year—that is a whole 
year in which half of the patients could be provided with 
a treatment with less severe side effects, leading to longer 
progress-free survival [70].

We verified this result in a simulation study, show-
ing that, more generally, the Bayesian sequential anal-
ysis leads to faster decisions in clinical trials. While 
the analyses showed a higher proportion of false-
negatives under model misspecification (i.e., lower 
treatment efficiency than expected), it kept the same 
power and proper false-positive rate as the frequen-
tist sequential analyses. The fixed-n design revealed 
a considerable decrease in bias and root mean square 
error in small to medium sample sizes with slightly 
elevated error rates and power. Furthermore, we 
observed a decrease in power to accept the null 
hypothesis in case of a negative treatment effect. Sur-
prisingly, we observed little or no benefits of Bayesian 
model-averaging over Bayesian model selection with 
Bayes factors in our simulation. However, this finding 
might be limited to the specific settings derived from 
a single data set, which may not be representative for 
other diseases or treatments.

There are multiple avenues for further development 
of the outlined methodology. For example, different 
assumptions about the data generating mechanism might 
be incorporated by performing model-averaging over 
proportional hazard models or smoothing splines [13, 
130, 131]. Frailties, left and interval censoring can be also 
incorporated into the models and combined with longi-
tudinal models. Furthermore, the performance of Bayes-
ian testing when evaluating more complex hypotheses, 
e.g., non inferiority can be assessed.

In the end, the Bayesian framework is simply a coher-
ent application of the laws of probability [2–4, 74] and the 
likelihood principle [35, 41] which allows researchers to 
draw a richer and more specific set of inferences. These 
ideas were steadily developed over centuries, but only the 
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recent boom in computing power and improvements in 
computational tools enabled their application to complex 
problems. We believe that now is the time for researchers 
to utilize technological advancements, further develop 
easy-to-use statistical software, and fully take advantage 
of the offerings of Bayesian statistics.

Conclusion
In this paper, we outlined the theoretical framework 
and showed the application of the informed Bayesian 
estimation, testing, and model-averaged approaches to 
parametric survival analyses. We evaluated the method-
ology against the currently used techniques and found 
that continuously monitoring the evidence, employing 
more specific hypothesis, incorporating historical data, 
and basing the inference on multiple models leads to: 
(1) shorter times required for sequential designs, (2) 
slightly higher statistical power and false-positive rate 
in fixed-n designs, and (3) more precise estimates of 
the treatment effect in small and medium sample sizes. 
We did not find a clear advantage in predicting sur-
vival nor an advantage of Bayesian model selection with 
Bayes factors against Bayesian model-averaging in our 
simulation.
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