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Abstract

Background: Prediction models for time-to-event outcomes are commonly used in biomedical research to obtain
subject-specific probabilities that aid in making important clinical care decisions. There are several regression and
machine learning methods for building these models that have been designed or modified to account for the
censoring that occurs in time-to-event data. Discrete-time survival models, which have often been overlooked in the
literature, provide an alternative approach for predictive modeling in the presence of censoring with limited loss in
predictive accuracy. These models can take advantage of the range of nonparametric machine learning classification
algorithms and their available software to predict survival outcomes.

Methods: Discrete-time survival models are applied to a person-period data set to predict the hazard of
experiencing the failure event in pre-specified time intervals. This framework allows for any binary classification
method to be applied to predict these conditional survival probabilities. Using time-dependent performance metrics
that account for censoring, we compare the predictions from parametric and machine learning classification
approaches applied within the discrete time-to-event framework to those from continuous-time survival prediction
models. We outline the process for training and validating discrete-time prediction models, and demonstrate its
application using the open-source R statistical programming environment.

Results: Using publicly available data sets, we show that some discrete-time prediction models achieve better
prediction performance than the continuous-time Cox proportional hazards model. Random survival forests, a
machine learning algorithm adapted to survival data, also had improved performance compared to the Coxmodel, but
was sometimes outperformed by the discrete-time approaches. In comparing the binary classification methods in the
discrete time-to-event framework, the relative performance of the different methods varied depending on the data set.

Conclusions: We present a guide for developing survival prediction models using discrete-time methods and
assessing their predictive performance with the aim of encouraging their use in medical research settings. These
methods can be applied to data sets that have continuous time-to-event outcomes and multiple clinical predictors.
They can also be extended to accommodate new binary classification algorithms as they become available. We
provide R code for fitting discrete-time survival prediction models in a github repository.
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Background
Survival prediction models are often used at some base-
line time, such as time of diagnosis or treatment, to answer
questions such as “What is the probability that this patient
will be alive in 5 years, given their baseline covariate infor-
mation?” This predicted probability can then be used by
clinicians to make important decisions regarding patient
care, such as increasing monitoring frequency or imple-
menting particular therapies. Survival prediction models
are built using time-to-event data, which includes the time
that an individual is observed for the event of interest
and whether they experience the event at the end of that
follow-up time. For some individuals, we do not observe
the event of interest during their follow-up so we have
incomplete information about these individuals. That is,
we do not know when the event occurs but we know
that it happens sometime after their observation period.
These are considered to be censored observations, and
to exclude or ignore this information when analyzing the
data can lead to biased and inefficient predictions [1].
Thus, survival prediction models differ from traditional
prediction models for continuous or binary outcomes by
appropriately accommodating censoring that is present in
time-to-event data.
There is a vast class of survival prediction models, rang-

ing from those built using traditional regression methods
to more recently developed machine learning algorithms
[2]. The traditional approaches treat time-to-event as
a continuous outcome and make parametric or semi-
parametric assumptions about the distribution of the
survival times. Parametric survival models assume a par-
ticular distribution for the survival times (e.g., Weibull,
exponential), which is often based on prior knowledge
of the clinical or scientific context. These models can
be more efficient and accurate when the survival times
follow the assumed parametric distribution but can lead
to biased estimates when misspecified [3]. The semi-
parametric Cox proportional hazards model leaves the
distribution of the survival times to be estimated using
non-parametric methods, such as the Breslow estima-
tor, but incorporates covariate effects so that individuals
with different sets of predictors can have different pre-
dicted survival curves [4]. The standard Cox model relies
on a proportional hazards assumption for the survival
times that when violated can lead to inaccurate predic-
tions. This violation can be common in practice when
there are time-varying covariate effects and unobserved
heterogeneity [5].
An increasingly common approach to building sur-

vival prediction models are machine learning (ML) algo-
rithms that use mathematical procedures to model the
relationships between covariates. Common ML algo-
rithms for survival have been extended from those devel-
oped for classification problems or traditional survival

models and include penalized or boosted Cox regression
[6, 7], random survival trees and forests [8–11], support
vector methods [12, 13], and artificial neural networks
[14–17]. The advantages of ML approaches are that they
are algorithms designed for achieving optimal predic-
tive performance, they do not require specification of
covariate relationships, and they are able to capture com-
plex and nonlinear relationships in the data. As well,
unlike parametric and semi-parametric survival models,
they do not make distributional or proportional hazards
assumptions about the survival times. The disadvantages
include lack of interpretability, computational intensity,
and overfitting that results in poor external validation.
In situations of high-dimensionality or complex covari-
ate relationships, ML methods have been shown to have
superior predictive performance compared to traditional
regression-based approaches. However, in application to
time-to-event data, machine learning algorithms can have
mixed performance for predicting survival outcomes in
comparison with Cox regression models [1, 18, 19]. Thus,
the extent to which these machine learning approaches
are necessary or useful may depend on the particular
application and data set.
The survival prediction models that we have described

thus far are built using methods or algorithms for contin-
uous time-to-event outcomes, while accommodating cen-
sored observations. These include ML algorithms origi-
nally built for classification or continuous outcomes that
have been adapted to accommodate censoring. Unlike
classification models that have been implemented in uni-
fied R packages, such as ‘caret’ and ‘h2o’, survival pre-
diction models are usually hosted in separate packages
(e.g., ‘survival’, ‘fastcox’, ‘randomForestSRC’ in R) and often
in different software (e.g., ‘PySurvival’ in Python) [20–
25]. Thus, to take advantage of the predictive power of
existing ML classification algorithms and their available
and unified software, we consider a class of discrete-time
survival prediction models that are built using classifica-
tion prediction models but are able to take into account
censoring.
In a discrete-time survival framework [26, 27], we can

transform continuous survival time data into a discrete-
time format using a person-period data set. Each indi-
vidual’s follow-up time is split into a set of pre-specified,
common time intervals, and their survival status is
recorded for each of the intervals during which they are at
risk (i.e., have not yet experienced the event of interest).
The general idea of prediction using this discrete-time
framework is to build models that predict the proba-
bility of surviving each of these discrete-time intervals,
which when treated as a binary outcome of experienc-
ing an event within the interval can be framed as a series
of binary classification problems. This discrete-time for-
mulation of survival data is general such that any binary
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classification method can be applied, allowing for a wide
range of models to be considered.
Traditional approaches fit a logistic regression model to

this data [4, 27, 28]. However, these models require speci-
fication of covariate relationships with outcomes, and thus
knowledge of covariate interactions and behavior. Instead,
we demonstrate the use of ML classification methods,
such as random forest or neural networks, to predict the
conditional survival probabilities for each of the intervals.
Using these predictions, we can then compute our quan-
tity of interest, which is an individual’s probability of sur-
viving beyond a certain time. We present the process for
building and testing a discrete-time survival model using
this approach and demonstrate it using two publicly avail-
able data sets. With these data, we compare the predictive
performance of various classification approaches applied
in the discrete-time framework and common survival
prediction models, such as Cox regression and random
survival forests.
The use of a discrete-time survival framework for pre-

diction is not recent. ML classification algorithms applied
to a discrete-time framework has been demonstrated
using tree-based methods [29, 30] and neural networks
[31–34]. However, the use of discrete-time survival for
prediction is uncommon in clinical applications, with
models built using continuous-time methods such as Cox
proportional hazards (PH) or random survival forests
being more popular. With the increasing interest in explo-
ration of ML algorithms for predicting survival outcomes,
a discrete time-to-event method using machine learning
provides a potentially powerful and easily implementable
alternative approach. This manuscript contributes to the
existing literature by presenting a guide for the devel-
opment and assessment of discrete-time survival models
built using ML classification algorithms for survival pre-
diction, and providing code for its implementation in R
software. We demonstrate that there are settings in which
thesemodels can achieve superior predictive performance
compared to continuous-time models, and thus should be
considered as candidates in the development of survival
prediction models.

Primary aim
This paper provides a demonstration for using discrete-
time modeling for obtaining survival predictions in the
context of time-to-event outcomes. We describe the
methodology and application of binary classification
models to predict conditional survival probabilities. We
present the process for building and testing discrete-time
prediction models. We additionally make available R code
for implementing this process and for comparing the pre-
dictive performance to common continuous-time survival
models. The primary goal is to provide applied statisti-
cians with resources for training and evaluating discrete-

time prediction models to encourage their use in medical
research for personalized decision-making.

Structure of this paper
This manuscript is presented as a tutorial for building
survival prediction models using discrete-time model-
ing. We assume the reader already has basic knowledge
of survival analysis and predictive modeling. First, an
introduction is given to prediction with machine learn-
ing algorithms and prediction models built to accommo-
date right-censored time-to-event data. Within this class
of models, we present parametric survival models, the
commonly used Cox proportional hazards model, and
machine learning survival algorithms, such as the random
survival forest. Second, we describe discrete-time survival
modeling using binary classification models and how it
can be used for prediction. Third, details are provided on
two commonly used performance metrics for assessing
survival prediction models, Area under the receiver oper-
ating characteristic (ROC) curve (AUC) and Brier score
(BS). Fourth, we present a guide for building and validat-
ing discrete-time prediction models. Using publicly avail-
able data sets, we demonstrate our approach using code
written for the R programming language [35]. Finally, we
end with a discussion of the advantages of this approach
and the opportunities it provides for future research.

Machine learning and continuous-Time prediction
models
Machine learning algorithms
Machine learning algorithms capture the relationships
between covariates by solving mathematical procedures
using numerical computation. The primary goal of build-
ing a ML algorithm is prediction. These algorithms use
iterative optimization techniques to flexibly model non-
linear and complex relationships between covariates to
minimize prediction error. This can make it difficult to
then extract and interpret covariate effects and interac-
tions from them. This is in contrast to the traditional
statistical methods that are developed for inference and
interpretability, but can be used for prediction as well.
We consider the class of supervised ML algorithms,

where we are interested in building a model using a set
of covariates. We apply this trained model to a new sub-
ject to obtain predictions. Thus, instead of interpretation,
our goal is to build a model with superior predictive per-
formance. We explore the application of machine learning
algorithms in two ways. First, we consider survival ML
algorithms that have been adapted to accommodate right-
censored data, such as random survival forests. Second,
we consider classification algorithms that predict a binary
outcome that can be applied in a discrete-time framework.
The purpose of exploring machine learning alternatives to
traditional statistical methods in predicting survival is to
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present an approach that is designed to achieve superior
predictive performance and can therefore be reliably used
in clinical decision-making. In Table 1, we briefly describe
some commonly usedML algorithms, but readers that are
interested in a detailed introduction to machine learning
are referred to [36–40].

Continuous-Time survival models
In the survival setting, the observed data is given byDn =
{T̃i, δi,Xi; i = 1, ..., n} where T̃i = min(Ti,Ci) is the
observed event time for the ith subject (i = 1, ..., n), with
Ti denoting the true event time, Ci the censoring time,
δi = I(Ti ≤ Ci) the event indicator, and Xi ≡ (Xi1, ...,XiJ )′
the observed baseline covariate vector. We consider the
common situation of a right-censored survival outcome,
where if an individual’s observed survival time is censored
we know only that they experienced the event beyond
that time.We also assume independent or noninformative
censoring conditional on covariates, such that Ti and Ci
are independent random variables given Xi.
A key quantity associated with time-to-event outcomes

is the survival function, S(t) = Pr(T > t), which is
a function of time, t, and is the probability of surviv-
ing beyond that time. This function describes a patient’s
survival curve during follow-up. For a patient k with pre-
dictors Xk , the quantity of interest is then denoted by
πk(t) = Pr(T > t|Xk). Another important characteris-
tic of survival models is the hazard function, denoted h(t),
which represents the instantaneous risk of experiencing

Table 1 Machine learning methods

Method Description

Random
forest

Are an ensemble of tree-based learners that are built
using bootstrap samples of the training data and
average the predictions from the individuals trees. In
constructing the trees, a random subset of features is
selected for evaluating the split criterion at each node.
This leads to de-correlated individual trees that can
improve predictive performance.

Boosting Are an ensemble of base learners that are constructed
sequentially and are progressively reweighted to increase
emphasis on observations with wrong predictions and
high errors. Thus, the subsequent learners are more likely
to correctly classify these misclassified observations.

Support
vector
machines

Uses a kernel function to map input features into
high-dimensional feature spaces where classification
(survival) can be described by a hyperplane.

Penalized
regression

Provides a mathematical solution to applying regression
methods to correlated features by using an �2 penalty
term (ridge). Additionally, can encourage sparsity by
using an �1 penalty (LASSO) to avoid overfitting and
perform variable selection. A weighted combination of
�1 and �2 penalties can be used to do both (elastic net).

Artificial
neural
networks

Are comprised of node layers starting with input layer
representing the data features, that feeds into one or
more hidden layers, and ends with an output layer that
presents the final prediction.

the event at time t, given that the individual has not expe-
rienced the event up to that time. The hazard function is
defined as h(t) = f (t)/S(t), where f (t) is the density func-
tion for the observed event time. Additionally, we define
the cumulative baseline hazard H(t) = ∫ t

0 h(s)ds and can
write the survival function as S(t) = exp{−H(t)}. Survival
prediction models commonly predict a survival function
from which we can directly obtain πk(t), or a prognostic
index (e.g., the linear predictor) that can be transformed
to obtain the survival distribution.
In this section, we begin by describing some com-

mon regression and ML approaches for building survival
prediction models using parametric, semi-parametric, or
non-parametric methods.

Parametric survival models
Parametric survival models assume that the survival times
follow a particular distribution that can be specified
as a function with finite-dimensional parameters. One
approach is to specify a particular distributional family for
the survival time and then allow the parameters of that
distribution to depend on covariates. Thus, the functional
form for the model is completely specified while parame-
ter values are unknown. For example, if we assume that the
survival times were exponentially distributed, i.e., f (t) =
λ exp{−λt} and h(t) = λ, we can let the rate parameter
depend on covariates using λ = exp{βX}. Other paramet-
ric families that are commonly considered for modeling
survival times are Weibull, exponential, log-logistic, log-
normal, and the generalized gamma [3].
Many parametric survival models (e.g., Weibull, expo-

nential) are also accelerated failure time (AFT) models.
That is, covariates have a multiplicative (i.e., proportional)
effect on the survival time [3], and we assume that the
relationship between the log of the survival time and the
covariates is linear, i.e., log(T) = βX + σW , where σ

is a scale parameter and W is an error term. Thus, the
main difference between this class of models and linear
regression methods applied directly to the event times
is the inclusion of censored observations in the estima-
tion procedure. The type of AFT model is determined by
the distribution assumed for W (e.g., an extreme value
distribution leads to a Weibull model for T).
Alternatively, we can model survival data using a pro-

portional hazards model. In contrast to AFT models, in
PH models the covariate effects are multiplicative with
respect to the hazard, rather than the survival. Thus,
h(t) = h0(t) exp{βX}, where h0(t) is the baseline hazard
(i.e., the hazard when the covariates are at their refer-
ence level). The specific proportional hazards model is
defined by the parametric form selected for the baseline
hazard. If we assume the baseline hazard is exponential,
i.e., h0(t) = λ, then the hazard is h(t) = λ exp{βX}, which
is actually still an exponential model since the hazard is
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constant. Similarly theWeibull baseline hazard results in a
Weibull model. However, that is not the case for all distri-
butions (e.g., a log-logistic baseline hazard does not result
in a log-logistic PH model).
Estimation for parametric survival models can be con-

ducted using maximum likelihood estimation, which is
implemented using the survreg function in the R soft-
ware package ‘survival’ [22]. An advantage of these models
is that in addition to predicting a patient’s survival prob-
ability, we can also predict their survival time, which is
not directly possible with the other survival models we
will cover. As well, these models can be more efficient
when the survival times follow a particular distribution.
However, the disadvantage is that if the distribution is not
correctly specified then results can be biased [3], which
can affect predictive performance.

Cox proportional hazardsmodel
We can instead consider the popular Cox PH model,
which is a semi-parametric model where the distribution
of the outcome is unknown. These models are not fully
parametric since, while we specify regression parameters
for the covariate effects, the baseline hazard (or baseline
survival) is not specified. Thus, the Cox model is a gen-
eralization of the parametric proportional hazards model.
The advantage of the Cox model is that it does not rely on
distributional assumptions for the survival times.
In Cox PH models, the hazard function is modeled as

h(t) = h0(t) exp{βX}, where β is a vector of regression
coefficients and h0(t) is a nonparametric baseline haz-
ard. The predicted survival probability of interest is then
obtained from this model as πCox

k (t) = exp{−H0(t)eβXk },
where H0(t) = ∫ t

0 h0(s)ds is the cumulative baseline
hazard function. The β coefficients are estimated using
maximum likelihood estimation of a partial log likeli-
hood in which the baseline hazard h0(t) is left unspecified
and treated as a nuisance function. The primary purpose
of Cox regression is to identify association between risk
factors and outcomes, and thus a second step must be
taken to estimate the baseline hazard function required
for prediction. The cumulative baseline hazard function
H0(t) is estimated using a non-parametric method, most
commonly the Breslow estimator.
To estimate both the regression coefficients and the

cumulative baseline hazard, we use the observed survival
times T to identify risk sets, which are comprised of sub-
jects still at risk of the event, at unique event times in
the data set. Thus, the estimation depends on the order-
ing of survival times rather than their specific values. If
there are ties in the event times (e.g., if failure times are
only reported to the nearest day), then the survival times
cannot be uniquely sorted and an approximation of the
partial likelihood function is required for estimation [3]. If
there are many ties, then it may make more sense to treat

the failure time distribution as discrete and use a discrete-
time framework. For more details about the estimation of
Cox PH models, see [3, 4]. Estimates of β and H0(t) are
then plugged into πCox

k (t) to predict the individual’s prob-
ability of surviving beyond time t. Estimation for a Cox
PH model is implemented by the coxph function in the
R package ‘survival’, and predictions from these models
can be obtained using the predictCox function in the R
package ‘riskRegression’ [41].

Machine learning survival algorithms
Several ML algorithms have been developed to handle
censored time-to-event data. With these methods we can
build survival prediction models for high-dimensional,
complex data that can have greater accuracy than tra-
ditional regression methods. Existing ML algorithms for
survival include penalized Cox regression, boosted Cox
regression, survival trees and random survival forests,
support vector regression, and neural networks. These
methods are extensions or adaptations to the ML algo-
rithms presented in Table 1 and are described in further
detail in [2].
ML methods that are based on penalized or boosted

Cox regression suffer from the same issues as the Cox
PH model, in that they need a second step in software
implementation to estimate the baseline hazard function
for predicting survival probabilities and still rely on the
proportional hazards assumption. Support vector regres-
sion has been extended for survival analyses using two
approaches: (i) ranking, which predicts the risk ranks
between subjects, and (ii) regression, which predicts a
subject’s survival time, both of which are considered in
[13]. Neither of these support vector machine (SVM)
approaches produces predictions that are related to the
survival or cumulative hazard function, and thus cannot
be used to obtain a predicted survival probability. Neu-
ral networks for survival have expanded on the Cox PH
model [14, 42, 43], but again only output a prognostic
index and not the survival probability, thus requiring addi-
tional estimation of the baseline hazard using the Breslow
estimator. In this tutorial, to present a comparison to aML
method extended to accommodate censoring we focus on
the commonly used approach for survival prediction, the
random survival forest.

Random survival forests
Random survival forests are an ensemble method based
on the bagging of survival trees [8]. A survival tree is
a decision tree that is built by recursively splitting tree
nodes based on a particular feature. Each split is made
using a dissimilarity measure that computes the survival
difference between the two new nodes and selects the best
split as being the one that maximizes this survival differ-
ence. This dissimilarity measure is often selected to be the
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test statistic of the log rank test [8]. With random survival
forests, we take b = 1, . . . ,B bootstrap samples from the
original data set. For each bootstrap sample b, we grow
a survival tree, where for each node we consider a set of
randomly selected p candidate predictors rather than the
full set of predictors, and split the node on the predic-
tor that maximizes the dissimilarity measure. We grow
the survival tree until each terminal node has no fewer
than d0 unique deaths. In each terminal node, we com-
pute the conditional cumulative hazard function using the
Nelson-Aalen estimator, a non-parametric estimator of
the survival function, using the subjects that are in the
bootstrap sample b whose predictors place them in that
terminal node.
To obtain a prediction for an individual k with pre-

dictors Xk , for the survival tree created using bootstrap
sample b = 1, . . . ,B we obtain the conditional cumula-
tive hazard function of the terminal node that individual k
belongs to based on their predictors, denoted H(b)(t|Xk).
We then compute their ensemble cumulative hazard func-
tion as Hk(t) = 1/B

∑B
b=1H(b)(t|Xk). The predicted

survival probability of interest is then given by πRSF
k (t) =

exp{−Hk(t)}. A random survival forest can be fit in R soft-
ware using the ‘randomForestSRC’ package [24], which
contains a predict function to compute predicted prob-
abilities. This function allows the user to specify the rule
used to determine the node split, and by default uses log-
rank splitting [44]. It also requires the specification of
hyperparameters, such as terminal node size (d0) and the
number of variables to randomly select for each split (p),
which can be optimally identified using hyperparameter
tuning.

Methods
Discrete-time survival models
The methods we have discussed so far are only applicable
to continuous survival times. In the discrete-time frame-
work, we assume that the available data is the same but
we define the hazard function and the link between the
hazard and survival functions differently. We divide the
continuous survival time into a sequence of J contiguous
time intervals (t0, t1] , (t1, t2] , . . . , (tJ−1, tJ ], where t0 = 0.
Within this framework the hazard, or instantaneous risk
of the event, in a particular interval is the probability of
an individual experiencing the event during that inter-
val given that they have survived up to the start of that
interval. So, in discrete time, the hazard is a conditional
probability rather than a rate, and as such its value lies
between zero and one. Thus, for an individual with base-
line covariates Xi, the hazard in interval Aj = (tj−1, tj] can
be expressed as the conditional probability

λij(Xi) = Pr(Ti ∈ Aj|Ti > tj−1,Xi)

= Pr(tj−1 < Ti ≤ tj|Ti > tj−1,Xi)

and the discrete probability function is given by

fij = Pr(Ti ∈ Aj|Xi) = S(tj−1|Xi) − S(tj|Xi)

The probability of surviving beyond a particular time t
can be obtained as the product of the conditional sur-
vival probabilities for all the time intervals up to and
including (tj−1, tj], such that tj ≤ t. This is analogous
to specifying the survival function in continuous time as
the integrated hazard over all previous times. Thus, the
survival probability in discrete time is given by

Si(t|Xi) = Pr(Ti > t|Xi) =
∏

j:tj≤t
(1 − λij(Xi)) (1)

Note that the relationship λij(Xi) = fij/Si(tj−1|Xi) still
holds under these definitions. To construct the likelihood,
subject i contributes the product of the conditional sur-
vival probabilities for the time intervals in which they are
observed but do not experience the event. Individuals that
are observed to have a failure (i.e., δi = 1) additionally
contribute the conditional failure probability in the inter-
val Aji = (tji−1, tji ] in which they experience the event of
interest. We use ji to denote the last interval during which
we have information about subject i, such that Ti ∈ Aji .
Subject i does not contribute any information to the like-
lihood for intervals beyond Aji . Here, we only consider
right-censoring, so the likelihood is given by

L =
n∏

i=1

[
Pr(Ti = tji)

]δi [Pr(Ti > tji)
]1−δi

=
n∏

i=1

⎡

⎣λiji(Xi)

ji−1∏

j=1
(1 − λij(Xi))

⎤

⎦

δi ⎡

⎣
ji∏

j=1
(1 − λij(Xi))

⎤

⎦

1−δi

where tji indicates that subject i has a survival time in
interval (tji−1, tji ]. We can introduce an event history indi-
cator dij = I(Ti ∈ Aji) = I(tj−1 < Ti ≤ tj), which for cen-
sored subjects is given by (di1, . . . , diji) = (0, . . . , 0) and
for subjects that experience the event is (di1, . . . , diji) =
(0, . . . , 0, 1). The likelihood can then be written as

L =
n∏

i=1

ji∏

j=1
λij(Xi)

dij(1 − λij(Xi))
1−dij (2)

which is equivalent to the likelihood of a binomial model
with independent observations dij, subject-specific proba-
bilities λij(Xi) for subject i experiencing the event in inter-
val (tj−1, tj], and time-fixed covariates Xi. Note that we do
not make the assumption that the event indicators within
a subject are independent and have a binomial distribu-
tion. Instead, we observe that the likelihood function for
the discrete-time survival model under non-informative
censoring can be represented using a binomial likelihood
that assumes independent event indicators [27].
To construct this likelihood from our data, we need to

convert it into a person-period data set, as depicted in
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Fig. 1. Subjects contribute a row for each time interval at
which they are still at risk at the start, i.e., all j such that
T > tj−1. Each record contains the subject’s failure indi-
cator for experiencing the event during that interval (i.e.,
their event history indicator dij), a copy of their baseline
covariate vector Xi, and a factor variable identifying the
interval Aj to which the record corresponds.
Due to the binomial structure of the likelihood func-

tion in Eq. (2) the discrete survival time formulation is
general and any algorithm that can optimize a binomial
log-likelihood can be used to obtain parameter estimates.
Thus, within this approach we can apply any method
for computing the probability of a binary event and can
choose from various binary classification methods, from
traditional regression methods to more complex machine
learning approaches. Estimation can be conducted by
applying these methods to the described person-period
data set. The resulting estimates can then be used in
Eq. (1) to compute the predicted survival probability for a
particular follow-up time.
The advantage of a discrete-time survival approach is

that it does not require a proportional hazards assump-
tion for the survival time distribution. As well, it provides
a more intuitive interpretation since the hazard function
represents the probability of experiencing the event in an
interval given the person is alive at the start of the interval.
Discrete-time models are also able to handle tied failure
times without adjustments [26], as is required in Cox PH

modeling due to its assumption of a continuous hazard in
which ties are not possible [3].

Parametric classification models
Cox (1972) proposed that since in discrete time the haz-
ards, λij, are probabilities, they can be parameterized to
have a logistic dependence with the predictors and time
intervals [4, 27]. That is, we assume the predictors are
linearly associated with the logistic transformation of the
hazard (logit-hazard) instead of with the hazard probabili-
ties themselves. Specifically, the conditional odds of expe-
riencing failure in each time interval (tj−1, tj] (given that it
has not yet occurred) is assumed to be linear function of
the predictor and interval effects. This model is referred
to as the continuation ratio model, and is specified as

log
(

λij

1 − λij
|Xi

)

= αj + βXi (3)

where αj is the logit of the baseline hazard for interval
(tj−1, tj], and β describes the effect of the other covariates
on the baseline hazard on the logit scale, as in a logistic
regression. That is, for a binary predictor Xip, a positive
(negative) coefficient estimate for βp indicates an upward
(downard) shift in the logit-hazard for those with Xip = 1
from the logit-hazard for those with Xip = 0. Thus, by tak-
ing the exponential on both sides of Eq. (3), we see that
the odds is proportional for those with Xip = 1 vs. 0.
This property restricts the discrete hazards of both groups

Fig. 1 Example of a person-period data set (on right) created from continuous-time survival data (on left). In the timeline plot, circles indicate
censoring and diamonds indicate events. The horizon of interest is w = 5 and there are J = 5 specified intervals defined as 1:A1=(t0, t1], 2:A2=(t1, t2],
3:A3=(t2, t3], 4:A4=(t3, t4], 5:A5=(t4, t5], whose endpoints are given by t0=0, t1=1, t2=2, t3=3, t4=4, t5=5. ID 1 experiences an event in interval 3 and
thus in the person-period data set they have rows corresponding to the first three intervals and for the 3rd interval, their event status is a 1. ID 2 is
censored in interval 4 and in the person-period data set they have row corresponding to the first 4 intervals and have an event status of 0 for all of
them. ID 3 experiences the event at a time beyond the prediction horizon of interest, thus we administratively censor them at the prediction
horizon and they have a row in the person-period for all intervals and have an event status of 0 for all of them
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from crossing. This rules out the scenario in which predic-
tors have protective short term effects on survival but are
inferior at later time points. Notice also that this effect is
not a function of time, and thus is assumed to be constant
for all periods.
In the likelihood given in Eq. (2), the continuation ratio

model assumes that the classification model for λij(Xi) is
a logistic regression. Estimation is conducted by obtaining
maximum likelihood estimates of αj and β using standard
logistic regression software applied to the person-period
data set. With estimates for αj and β , we can then com-
pute λkj(Xk) for a new subject k from the same population
for all time intervals j, and then compute the survival
prediction given in Eq. (1).
With the logistic model, when the magnitude of the

hazards is small we find that the odds of failure approx-
imate the probability of failure (i.e., λij/(1 − λij) ≈ λij)
and that hazards from the proportional odds model and
proportional hazards model approximate each other. The
continuation ratio model is shown to converge to the Cox
model as the length of the discrete-time intervals goes to
zero (i.e., the number of time intervals in a fixed period
increases) [45].
In the parameterization g(λij|Xi) = αj+βXi, we can also

consider models with alternative link functions for g that
are commonly used for binary outcomes. The Gompertz
or grouped proportional hazards model that uses a com-
plementary log-log link, log(− log(λij|Xi)), is a discrete-
time equivalent to a Cox PH model. Other parameteriza-
tions include the probit model (probit link), 	−1(λij|Xi),
the Gumbel model (log-log link), − log(− log(λij|Xi)), or
the Exponential model (log link), log(λij|Xi). For predic-
tion purposes, the choice of link can be based on the pre-
dictive performance of the different models. It has been
shown that the differences between the different models
are small if the length of the discrete-time intervals are
very short [45].
With both the continuous-time proportional hazards

models and the parametric discrete-time models we make
a proportionality assumption, which can be restrictive.
Additionally, these models assume that the effect of the
predictors on the transformed hazard is linear. An exten-
sion to allow for nonlinear effects is to use a semipara-
metric regression where the baseline hazard and covariate
effects are specified as smooth, possibly non-linear func-
tions of time, i.e., λij = f0(j) + ∑P

p=1 fp(Xip), and f0 and
fp can be chosen to be spline functions [46]. This can also
be further extended to allow for non-proportional haz-
ards and time-varying covariate effects by specifying fp as
a function of time, such as fp(Xip, t) = fp(Xip) · t. While
these extensions can increase the flexibility of paramet-
ric modeling approaches, they may still not adequately
capture the relationships that exist in the data. These rela-
tionships must be known and specified in the model-

building process. Thus, there may be interest in explor-
ing flexible, non-parametric approaches for describing the
dependence between the hazard and predictors in the
discrete-time survival setting.

Machine learning classification models
An alternative approach for specifying this dependence is
to use a non-parametric machine learning approach, such
as random forests and neural network, with the form

λij(Xi) = f (Xi,Aj)

where f is a particular machine learning algorithm or
model, Xi is the subject-specific covariates, and Aj is the
categorical variable indicating the time interval.
We fit a machine learning algorithm, f, to the person-

period data set for the binary outcome of failure with the
vector of predictors being the patient-specific covariates
and the categorical variable identifying the discrete-time
interval. For a new patient k with covariates Xk , we can
then obtain model-free estimates of the conditional prob-
abilities λ̂kj(Xk) for each interval j = 0, . . . , J . These
estimates can then be plugged into Eq. (1), to get the
survival prediction for patient k up to time t, i.e., πk(t).
The development of prediction models using a discrete-

time framework has been demonstrated with semi-
parametric methods [46], tree-based methods [29, 30],
and neural networks [31, 33, 47]. With a discrete-time
survival approach we are able to take advantage of the
available software and computational efficiency for binary
classification algorithms to predict the survival probabil-
ities of interest. Within this class of more flexible predic-
tion models, we can also consider penalized regression
approaches such as lasso, ridge, and elastic net [48]. These
approaches and their corresponding software implemen-
tations can accommodate additional binary classification
methods without requiring method-specific estimation or
optimization for obtaining the predicted survival proba-
bilities.

Hyperparameter tuning
With machine learning algorithms, there is usually need
to specify a hyperparameter. These are parameters that
cannot be estimated but instead are specified to control
the model training process. For example, in the random
forest there are hyperparameters corresponding to the
number of decision trees in the forest and the num-
ber of predictors considered at each split. Higher values
for each of these can increase the computational time
required for training the random forest. In the LASSO,
the hyperparameter is a regularization parameter that
is added to the ordinary least squares regression, such
that higher values penalize the algorithm for including
too many non-zero coefficients, thus performing variable
selection.
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The optimal hyperparameter values are not theoreti-
cally determined or based on prior knowledge, but instead
can be tuned using empirical results. That is, for a grid of
possible hyperparameter values or combinations of values
when there are multiple hyperparameters, we can assess
the performance of an algorithm under each set of val-
ues and select the values that lead to the best predictive
performance. To avoid overfitting, we can perform hyper-
parameter tuning using cross-validation. We then select
the hyperparameter values as those that optimize the
performance of the cross-validated performance metric.
These hyperparameter values are then used to train the
algorithm on the training data set to build the prediction
model.
With the use of binary classification models in the

discrete-time survival setting, in addition to the hyper-
parameters required by the binary classification method
employed, we also can tune the number of time inter-
vals used for discretizing. The performance accuracy of
discrete-timemodels has been shown to vary based on the
number of intervals used [49]. Thus, instead of specifying
the number of intervals, we can also consider this to be a
hyperparameter for which an appropriate grid of possible
values is explored to balance computational complexity
and maximizing predictive performance.
The choice for the performance metric used for tuning

should be the same as the metric used for overall perfor-
mance assessment. Otherwise, tuned models might not
have superior performance when compared to other mod-
els built using the same algorithm, and thus may not give a
fair comparison when identifying the best method across
multiple classes of prediction models and algorithms. We
describe performance metrics for survival models in a
later section.

Alternative approaches
In an alternative approach to estimation, some recom-
mend a different way of specifying the contribution of
the censored subjects. If the censored individual’s survival
time is in the second half of intervalAj−1 or the first half of
interval Aj, i.e., 12 (tj−2 + tj−1) ≤ Ti < 1

2 (tj−1 + tj), we can
consider their likelihood contribution as the product of
the conditional survival probabilities from j = 1, . . . , j − 1
[16, 32]. Thus, a subject only gets counted for surviving
an interval if they survive at least half that interval. This is
in contrast with our current specification of including any
intervals during which the censored subject has informa-
tion observed. In the event that there is a lot of censoring
present in the data or that there are fewer intervals speci-
fied with longer lengths, our current specification can bias
the estimated hazard downward and the predicted sur-
vival towards one, making this alternative method a useful
strategy to pursue. Another specification would be to con-
sider observations that are censored in intervalAj as being
censored at the end of interval Aj−1. This mimics typical
discrete-time data collection, where if an individual is lost
to follow-up between measurement times tj−1 and tj, we
would have last observed them at tj−1. We demonstrate
how the person-period data set would be created under
each of these specifications in Fig. 2.
There are also alternative approaches for prediction that

exist within the discrete-time framework. In Eq. (1), we
demonstrate the survival function can be written as a
sequence of predictions from binary classification mod-
els. So far, the binary classification approach we have
discussed models the conditional probabilities (or haz-
ards) directly and uses the resulting estimates to compute
the survival probability. Due to the dependence of the
outcomes of these classification models (i.e., a death in

Fig. 2 Demonstration of different specifications of censoring to create a person-period data set (on right) from continuous-time survival data of two
censored individuals (on left). The horizon of interest is w = 5 and there are J = 5 intervals defined as Aj = (tj−1, tj] for j ∈ {1, 2, 3, 4, 5}. Three
different specifications are given for whether an individual contributes to a particular interval (Event1: intervals during which the individual is
observed, Event2: intervals for which they survive at least half of the interval, Event3: intervals for which they survive the entire interval). ID 4 is
censored in the first half of interval 3, so in the person-period data set they do not contribute to interval 3 in the Event2 and Event3 specification. ID
5 is censored in second half of interval 4, so in the person-period data set for interval 4 they contribute under Event2 specification but not under
Event3 specification since they do not survive to the end of the interval
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a particular interval implies a death in all subsequent
intervals), we can instead think of modeling the survival
distribution directly as a series of dependent classifica-
tion models. This can be considered a multi-task learn-
ing problem, where the related classification models are
solved in parallel [50].
Yu et al. (2011) [51] proposed using multi-task logis-

tic regression that specifies a logistic regression model for
the conditional survival probability of each discrete-time
interval and directly models the survival function by com-
bining these local classification models. This approach
estimates model parameters across these logistic regres-
sion models jointly using an optimization algorithm that
uses two regularizers, a Euclidean norm regularization of
the parameters to prevent overfitting, and a second reg-
ularizer that ensures the parameters vary smoothly over
consecutive time intervals. Li et al. (2016) [52] also pro-
poses a multi-task learning approach with logistic regres-
sion that uses an �2,1-norm penalty to achieve a shared
representation across the dependent classification prob-
lems that encourages sparsity and limits overfitting, and
thus reduce the prediction error of each task. These meth-
ods have been shown to have superior performance com-
pared to the Cox PH model [49, 51]. Other approaches
have used a multi-task framework for discrete-time sur-
vival prediction by applying a deep learning approach to
the series of binary classification tasks [47], and have been
extended to accommodate competing risks [53].
Bender et al. (2020) [54] described using a Poisson

regression framework applied to continuous survival data
that specifies the hazard as a piecewise exponential PH
model and uses a Poisson log-likelihood for estimation.
One can then apply the range of machine learning algo-
rithms that can optimize a Poisson (instead of a binomial)
log-likelihood to perform estimation, which similarly to

the described classification approach allows for a variety
of existing algorithms to be applied to predicting survival.
When continuous time is observed and we are willing to
consider it in a discrete-time framework, this approach
may be preferable due to its robustness to the choice of
intervals. As well, we can use information about a subject’s
partial observation in an interval instead of assuming that
a censored subject survives the entirety of the last interval
in which they were observed.

Building discrete-time survival prediction models
A visualization of the model building and testing pro-
cedure for developing a survival prediction model is
demonstrated in Fig. 3, and is comprised of the following
components.

Data preparation
The data set should consist of individual-level records,
such that there is a single row for each individual with
a separate column for each baseline predictor. It must
also contain a column of the subject’s follow-up time and
a column indicating their event status at that time. If
there are any subjects that are missing these two vari-
ables, they must be excluded from the data set. If there
are any subjects that are missing other covariates, they can
be removed from the data set to perform a complete case
analysis. Alternatively imputation methods, such as using
random forests [55, 56], can be applied to a covariate data
set that excludes the follow-up time and event indicator
columns to fill in missing predictor values.

Model training
To train our model we define an appropriate training data
set based on our validation procedure. If we are using a
60/20/20 training/validation/test split we randomly select

Fig. 3 Visualization of the model building and testing process
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60% of our full data set as the training data, 20% as a val-
idation data set used to evaluate the model and select the
hyperparameters, and the remaining 20% as a hold-out
data set used for final model evaluation. If we are using a
cross-validation or bootstrapping approach, then we nest
the rest of the following components within a loop which
randomly splits the data into folds (cross-validation) or
resamples with replacement (bootstrapping), identifying
the appropriate training and test data set for each iteration
of the loop.
For the discrete-time survival models, we create the

person-period data set for training the models using the
training data. We discretize the continuous survival times
into intervals. The intervals correspond to time points
during follow-up at which the estimated hazard (condi-
tional risk probability) is allowed to change. These inter-
vals could be chosen based on the clinical context (i.e.,
times at which the conditional risk is expected to change).
For example, in a clinical setting where patients are at
high risk during a particular follow-up period and receive
treatment and additional monitoring, one could increase
the number of intervals during this period to reflect the
frequently changing conditional risk. The horizon can be
selected as the maximum of the prediction times of inter-
est, or a clinically relevant follow-up time. Administrative
censoring is then applied at this time horizon, such that
individuals who experience an event or are censored after
the horizon have a survival time that corresponds to the
time horizon and are assumed to be event-free at that
time. This limits the size of the resulting person-period
data set and decreases the computational complexity. The
resulting time range from baseline to the horizon is then
divided into the specified number of intervals. The time
intervals can be uniformly spaced on the range of event
times within the horizon, but they do not have be equal
in length and can be identified based on the quantiles of
the event times. In this manuscript, we consider a general
approach that requires specifying the number of inter-
vals and then identifying the specific intervals based on
the quantiles of the event times within a particular time
horizon.

Hyperparameter tuning
Some machine learning methods require the specifica-
tion of hyperparameters that must be tuned to optimize
performance. In Additional File Table A1, we describe
the hyperparameters for the methods considered in this
manuscript. For the discrete-time prediction models, we
additionally treat the number of intervals as a hyperpa-
rameter [49]. Tuning can be performed by identifying a
reasonable range for the hyperparameter values, selecting
a method by which to sample the values, and selecting
a metric to assess performance. The model is fit for all
of the sampled hyperparameter values and evaluated on

the validation data. The tuned hyperparameter values are
selected as those that optimize the performance met-
ric. Methods of sampling the values include grid search,
random search, and Bayesian optimization that uses the
results from the previous iteration to improve the sam-
pling of hyperparameter values for the current iteration
[57–59]. The performance metric can be evaluated using
an independent validation data set, cross-validation or
bootstrapping.

Model testing
We apply the trained models to the test data set to obtain
the predicted survival probabilities for the specified pre-
diction horizons of interest. For the discrete-time models,
we must create a person-period data set for the test data.
We compute performance metrics to compare these pre-
dictions to the observed outcomes in the data set. This
stage provides an assessment of the generalizability of the
trained model to a new data set, and can identify issues
such as overfitting. For a cross-validation or bootstrap-
ping approach, the performance metrics from the model
testing are averaged across multiple iterations. The results
from this stage are compared for the different models to
identify the optimal model or model architecture from
which to obtain predictions from a new individual from
the same population.

Evaluating predictive performance
To compare models and choose the best approach for
developing a prediction model we compute several met-
rics of predictive performance. Prognostic models are
often assessed on two domains: (i) discrimination, which
is their ability to distinguish between those with high
and low risk of experiencing the event, and (ii) calibra-
tion, which is the agreement between the estimated and
observed incidence of the event [60]. We assume that a
model was fit to a training data set and that prediction
accuracy is evaluated on an independent validation data
set drawn from the same population as the training data
set.

Validation
The purpose of using an independent data set for evalua-
tion is to avoid an overly optimistic assessment of perfor-
mance that can occur if the training and validation data
sets overlap. If an independent validation data set is not
available, then internal validation can be performed on the
available data using bootstrapping or cross-validation. In
bootstrapping, we can consider the 0.632+ approach [61].
For B bootstrap samples the training data set is taken to
be a random sample with replacement from the available
data. Performance is then evaluated on a validation data
set comprised of those that were not selected in the train-
ing data set. Performance metrics computed for each of
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the bootstrap samples are then averaged to obtain a boot-
strap estimate of the metric. In K-fold cross-validation
[37], we split the available data into K equal size data sets
and then use each data set as the validation data set on
which we assess performance of a model built on the com-
bined remaining K−1 data sets. The cross-validation esti-
mate of performance accuracy is then the average across
the performance in the K validation data sets. This proce-
dure can be repeated to reduce dependence on a particular
split of the data, and an averaged estimate across the
repeats can be used to obtain a repeated cross-validation
estimate of predictive accuracy.

Performance metrics
When assessing the prognostic accuracy of a prediction
model using baseline covariates, we compute the predic-
tion at baseline (i.e., time 0) for an event that occurs in
the future. Thus, subjects start event free at time 0 and
their outcome status can change over time. As a result,
the metrics considered for assessing predictive accuracy
for time-to-event outcomes are time-dependent and can
be computed for different prediction time horizons, w. In
the absence of censoring, we can use empirical estimates
to quantify these metrics. However, it is possible that a
subject is lost to follow-up before time w, in which case
we cannot know for sure whether they experienced the
event before w. Thus, estimation of these time-dependent
metrics must account for censoring. Here, we consider
two common approaches to measure the predictive accu-
racy of survival prediction models, area under the ROC
curve (AUC) and Brier score. We define time-dependent
measures of these metrics and describe their estimation.

Area under the ROC curve
A popular measure of the predictive accuracy of a predic-
tive model is the area under the ROC curve. AUC, also
referred to as the c-statistic or concordance index, is a
summary measure of the sensitivity and specificity over
a range of thresholds. This metric assesses the discrim-
inative ability of the model, i.e., to distinguish between
individuals with high and low risk of experiencing the
outcome in the future. This can be interpreted as the prob-
ability that a randomly selected subject with the event
(case) has a higher predicted probability than a randomly
selected subject without the event (control). It is scale-free
measure, with 0.5 indicating discriminative ability similar
to chance and 1 indicating perfect discrimination.
The definition of AUC has been extended to a time-

dependent setting using time-varying definitions of the
true positive rate and false positive rate to accommo-
date the change in outcome status for different prediction
windows. There are multiple definitions of the time-
dependent AUC that can be considered for assessing dis-
crimination [62].We use a cumulative sensitivity/dynamic

specificity (C/D) definition, which distinguishes between
subjects who fail prior to a particular prediction window
t (i.e., cases are defined by Ti ≤ t) and those that are
still event-free at that time (i.e., controls are defined by
Ti > t) [62, 63]. For two independent subjects i and j, the
time-dependent AUC is given by

AUC(t) = Pr(pi(t) > pj(t)|Ti ≤ t,Tj > t) (4)

where pi(t) = 1 − πi(t) is the subject-specific prob-
ability of experiencing the event by time t. This is the
recommended measure of discrimination when there is a
specific period of time for experiencing the event of inter-
est (e.g., within the first t = 5 years of baseline) [64]. Based
on its clinical relevance, the reporting of AUC using this
definition is encouraged in clinical applications [65, 66].

Brier score
We can also assess performance using the expected Brier
score, also known as prediction error [67–69]. This metric
provides an overall performance measure by simultane-
ously assessing the calibration and discrimination of the
prediction model. Lower values of the BS indicate better
predictive performance. The Brier score can be seen as a
mean square error of prediction and is given by

BS(t) = E[ (D(t) − p(t))2 ] (5)

where D(t) = I(T ≤ t) is the event status and p(t) is the
estimated subject-specific probability of experiencing the
event by time t. The Brier score has been shown to take its
minimum value when the true event probabilities are used
as predictions, but its maximum value is dependent on
the cumulative incidence of the event of interest by time t.
Instead, we can use a standardized version that scales the
Brier score by that from a null model, BS0(t), that assumes
that all subjects have the same predicted probability of the
event regardless of their subject-specific predictors (e.g.,
the Kaplan-Meier estimate). This results in an R-squared
type measure that represents the explained residual vari-
ation and is defined by R2 = 1 − BS(t)/BS0(t), where
higher values indicate better predictive performance. If we
are interested in assessing the predictive performance of
a model at multiple time points (e.g., for all times 0 ≤
t ≤ t∗), we can integrate the Brier score with respect to a
weight function, such asW (t) = t/t∗, and present an inte-
grated Brier score, IBS = ∫ t∗

0 BS(s)dW (s) [68]. In which
case, the IBS can be used in the definition of R2 instead.

Time-dependent estimators
Estimation of these time-dependent performance metrics
must account for the unobserved true outcome status
for some individuals during the study period due to cen-
soring. To account for the loss of information due to
censoring, we reweight the individual contributions using
the Kaplan-Meier estimator of the survival function of the



Suresh et al. BMCMedical ResearchMethodology          (2022) 22:207 Page 13 of 18

censoring time, G(u) = Pr(C > u). Those that experi-
ence the event by time t get weight 1/Ĝ(T̃i), those that
are censored by time t get weight 0, and those that have a
follow-up time beyond t get weight 1/Ĝ(t).
To estimate Eqs. (4) and (5), we then use inverse

probability of censoring weighting estimates of the time-
dependent AUC and BS [63, 68] that are given by

ˆAUC(t) =
∑n

i=1
∑n

j=1 I(pi(t) > pj(t))D̃i(t)
(
1 − D̃j(t)

)
Ŵi(t)Ŵj(t)

∑n
i=1

∑n
j=1 D̃i(t)

(
1 − D̃j(t)

)
Ŵi(t)Ŵj(t)

B̂S(t) = 1
nŜT̃ (t)

n∑

i=1
Ŵi(t)

(
D̃i(t) − λi(t)

)2

where D̃i(t) = I(t ≤ T̃i; δi = 1), ŜT̃ (t) = (1/n)
∑n

i=1
I(T̃i > t), and weights to account for censoring are given
by

Ŵi(t) = I(T̃i > t)
Ĝ(t)

+ I(t < T̃i)δi

Ĝ(T̃i)
.

The advantage of these estimators is that they are model-
free and make no assumption about the correctness of the
specification of the models used for computing the pre-
dicted probabilities. Computation of these metrics can be
conducted in R using the Score function in the ‘riskRe-
gression’ package.

Experiments
We present a comparison of the continuous-time mod-
els, Cox PH and RSF, and discrete-time survival prediction
models built using the following classification algorithms:
logistic regression, conditional inference random forest,
gradient boosting machine, elastic net, support vector
machine, and neural network.
We create the discrete-time intervals based on the quan-

tiles of the event times in the data set that are within the
maximum prediction horizon of interest. We additionally
standardize the predictors by centering and scaling them.
We perform hyperparameter tuning using a Bayesian opti-
mization search scheme within a provided grid of accept-
able values [59]. The hyperparameters were tuned over the
validation data set to minimize the time-dependent Brier
score, or the integrated Brier score when multiple time
points were specified. Depending on the method for vali-
dation, predictive performance is demonstrated in the test
data set, or averaged across cross-validation folds.

Performance comparison
To compare the performance of these methods in vari-
ous settings, we assess the predictive performance of the
discrete-time and continuous-time methods in multiple
publicly-available data sets. The data set characteristics
are described in Table 2, and vary in terms of sample
size, number of predictors, and censoring. We present

Table 2 Description of data sets used to assess external validity

Data
set

Sample
size

Predictors Prop.
Censoring

Median
survival time

flchain 6,524 13 70% 12.7 years

metabric 1,904 9 42% 197 months

nwtco 4,028 5 86% 6.4 years

colon 888 11 52% 6.4 years

pbc 276 17 80% 6.7 years

metabric (Molecular Taxonomy of Breast Cancer International Consortium) is
obtained from the Python DeepSurv package [42]. The remaining data sets are from
the R survival package [22]: flchain (Assay Of Serum Free Light Chain), nwtco
(National Wilm’s Tumor Study), colon (Chemotherapy for Stage B/C colon cancer),
pbc (Mayo Clinic Primary Biliary Cholangitis Data)

5-fold cross-validation performance metrics for predict-
ing survival probability at the median survival time
(Table 3, Additional File Table A2).
In terms of R2 based on the Brier score (Table 3),

overall we find that both discrete- and continuous-time
methods performed well across the different data sets,
with the exception of the discrete-time support vector
machine approach that performed much worse than the
other methods in all but one data set. A discrete-time
method had the best predictive performance in all but
one of the data sets. The best discrete-time methods
were those that use a neural network or conditional forest
classification approach. The discrete-time approach using
logistic regression performed similarly to the Cox pro-
portional hazards model for all data sets. We find similar
results for AUC (Additional File Table A2). The optimal
number of intervals for a particular discrete-time model
varied across data sets as well as for the different discrete-
time models within a particular data set (Additional File
Table A2).

Table 3 Cross-validated R-squared Brier score for continuous
and discrete-time survival prediction models in multiple data sets

Method metabric flchain nwtco colon pbc

Cox PH 0.140 0.351 0.112 0.111 0.334

RSF 0.133 0.344 0.140 0.128 0.389

Logistic regression 0.136 0.352 0.114 0.112 0.328

Elastic net 0.136 0.350 0.116 0.114 0.353

Support vector machine 0.070 0.101 0.018 0.046 0.349

GBM 0.128 0.364 0.149 0.121 0.378

Neural network 0.163 0.366 0.136 0.116 0.415

CForest 0.138 0.343 0.147 0.123 0.377

Higher values indicated better predictive performance. Bold values indicate method
with best predictive performance (highest R-squared) in a particular data set.
CForest: conditional inference random forest; GBM: gradient boosting machines; PH:
proportional hazards; RSF: random survival forest
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Demonstration of pipeline
We additionally demonstrate the modeling process and
resulting predictions in the R programming environ-
ment using the data sets pbc and colon from the ‘sur-
vival’ package, with code available at: https://github.com/
ksuresh17/autoSurv. The binary classification models are
fit using the ‘caret’ package, allowing for easy extension to
other classification methods as they become available. We
use these two examples to demonstrate alternate parame-
terizations of censoring during model training, and differ-
ent methods of evaluation (cross-validation, test/training
split) for single or multiple prediction times of interest.

PBC data
The pbc data set consists of 276 patients with primary
biliary cirrhosis who have complete information on 17
clinical and demographic predictors. The median follow-
up time in this data set is 6.7 years and the censoring rate
is 60%. Cross-validation is performed within the training
data set to tune the hyperparameters, and predictive per-
formance metrics are reported as the average across the
cross-validation folds. The models were tuned for pre-
dicting survival probability at seven years using the Brier
score. For the discrete-time models, the censored obser-
vations are treated as surviving an interval if they survive
at least half of the interval.
The cross-validated performance metrics are presented

in Table 4.We report the tuned number of intervals for the
discrete survival models and find that these vary across
the different models. In Additional File Fig. A1, we present
the interval endpoints in the full data based on the optimal
number of intervals for each discrete-time method. The
cross-validated AUCs are similar, ranging from 0.83-0.88,
indicating good discrimination for all models. In com-
paring the continuous-time models to the discrete-time

Table 4 Cross-validated time-dependent R-squared measure of
Brier score and AUC for the prediction models applied to the pbc
test data to predict survival at w = 7 years

Method Type No. Intervals R2 AUC

Neural network Continuous 15 0.409 0.859

RSF Continuous - 0.392 0.880

CForest Discrete 8 0.377 0.869

GBM Discrete 6 0.363 0.826

Support vector machine Discrete 5 0.354 0.854

Elastic net Discrete 25 0.345 0.845

Cox PH Discrete - 0.332 0.831

Logistic regression Discrete 11 0.329 0.831

Higher values of AUC and R2 scores indicate better performance. Results are sorted
by decreasing R2 (best to worst). Type indicates whether the method is applied to
continuous- or discrete-time data. AUC: area under the ROC curve; CForest:
conditional inference random forest; GBM: gradient boosting machines; PH:
proportional hazards; RSF: random survival forest

models, we find that several discrete-time survival models
outperform the continuous-time Cox PHmodel. The neu-
ral network applied in the discrete-time framework has
the best overall performance with the highest R2, and the
continuous-time random survival forest has the highest
AUC.
We examine the predicted survival probabilities for an

individual in Fig. 4 for the continuous-time models, Cox
PH and RSF, and for the discrete-time models that use a
logistic regression and neural network. We can see that
the survival estimates from the discrete-time models are
a step function with the number of steps being equiva-
lent to the number of tuned intervals. The steps in the
Cox PH model and RSF correspond to event times in
the data set. These individual-specific predictions can be
used in clinical practice to identify whether the patient is
at increased risk of death during follow-up and to aid in
making treatment or monitoring decisions at baseline.

Colon data
The colon data set has complete information for 11
baseline predictors for 888 patients with colon cancer
that participated in a trial studying adjuvent chemothera-
pies. The median follow-up time in this data set was 6.4
years and the censoring rate 52%. We use this data set
to demonstrate the comparison of model performance for
predicting survival across multiple prediction time points
(i.e., 1, 2, 3, 4, and 5 years). We use a 60/20/20 train-
ing/validation/test split sample. The models were tuned
using the integrated Brier score over the prediction times
of interest. The censored observations in the discrete-time
models were considered to survive an interval if they were
at risk at the start of the interval.
We present the time-dependent AUC and Brier score

in Fig. 5. Applied to this data set, we find that several
of the discrete time-to-event models perform better than
the continuous-time models, Cox PH and RSF. The ran-
dom forest in the discrete-time framework has better
performance than the random survival forest. The Cox PH
model has similar predictive performance to the logistic
regression across the time points. The SVM discrete-time
approach has poor performance based on both AUC and
Brier score at all times.

Discussion
Survival prediction models predict the risk of a future
event and can be used in biomedical research to make
treatment and monitoring decisions. These prediction
models built using time-to-event data must account for
censoring to avoid biased and inefficient predictions.
Machine learning methods for classification have been
adapted to accommodate censoring, but require the spec-
ification and optimization of a method-specific survival
function. Thus, implementation of these methods is often

https://github.com/ksuresh17/autoSurv
https://github.com/ksuresh17/autoSurv
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Fig. 4 Predicted survival probabilities for a randomly selected individual in the pbc data set with continuous-time models, Cox PH and RSF, and
discrete-time models using logistic regression and a neural network. NNet: neural network; PH: proportional hazards; RSF: random survival forest

found in different software packages. As well, some ML
survival methods return the predicted survival time which
can be inaccurate [68], or the risk score which requires
estimation of the baseline hazard to be used for obtain-
ing predicted survival probabilities. Here, we propose the
use of discrete-time survival models to provide an alter-
nate model architecture for predicting survival probabili-
ties compared to the traditional continuous-time survival
models.
An advantage of discrete-time prediction models over

the commonly used Cox PH model is that they are able
to handle ties in event times naturally. As well, any binary
classification method can be implemented within the
framework without requiring a model-derived specifica-
tion of the survival function. This provides additional
flexibility in being able to specify a method that does not
require a proportional hazards assumption. Specifically,

we consider nonparametric machine learning classifica-
tion methods to take advantage of their ability to cap-
ture complex relationships between the predictors and
the outcome, their lack of required prior specification of
predictor relationships and behaviour, and their current
availability in open-source software.
In an application to multiple publicly available data sets,

we demonstrate that the discrete time-to-event methods
have similar or sometimes superior performance to the
Cox PH and random survival forest applied to continuous-
time data. By treating as a tuning parameter the num-
ber of intervals used to create the person-period data
set on which we train the discrete-time models, we are
able to optimize performance for each applied classifi-
cation approach. We can then at the very least achieve
similar predictive performance between a logistic regres-
sion model and a Cox PH, which become approximately

Fig. 5 Test set time-dependent R-squared measure of Brier score (left) and AUC (right) for prediction models applied to the colon data set. Higher
values indicate better predictive performance. The R-squared IBS over the 5 time points for the different models are in decreasing order: GBM
(0.132), CForest (0.119), RSF (0.105), GBM (0.105), Elastic net (0.101), Cox (0.098), Logistic regression (0.096), Neural network (0.069), SVM (0.010). AUC:
area under the ROC curve; CForest: Conditional inference random forest; GBM: gradient boosting machines; NNet: neural network; PH: proportional
hazards; RSF: random survival forest
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equivalent as the width of the discrete-time intervals
decreases (i.e., the number of intervals increases). The
optimal number of intervals varied both within a data set
across the different discrete-time methods and for a par-
ticular method across the different data sets. The support
vector machine method applied within the discrete-time
framework had consistently poor performance in many
data sets with the exception of the smallest data set.
Support vector machines have been shown to have poor
performance in settings with imbalanced data [70], and by
using a person-period data set we are potentially creat-
ing greater imbalance as the number of intervals increases
and the number of events per interval decreases. The rela-
tive performance of the ML classification methods varied
based on the data application. Thus, care should be taken
to appropriately train and assess the considered classifica-
tion methods for each specific application (e.g., specifying
reasonable ranges for the hyperparameter search space).
The disadvantage of the discrete-time approach is that

compared to the Cox PH model we are unable to obtain
an interpretation of the relationship between the pre-
dictors and the survival probabilities. This is a common
phenomenon with machine learning methods applied
to continuous survival data as well. Thus, if there is
interest in both inference and prediction, model-agnostic
explainer methods can be considered [71, 72]. Addition-
ally, the discrete-time survival method increases compu-
tational burden. As the number of discrete-time intervals
increases so does the size of the person-period data set
that includes a row for each person for each interval at
which they are still at risk within the prediction hori-
zon of interest. Thus, in comparing the conditional forest
implemented in the discrete-time framework to the ran-
dom survival forest, the conditional forest is applied to the
larger person-period data set and takes more time to com-
pute the survival probabilities. In our applications to data,
we limited the maximum number of intervals considered
in the tuning process to 25 and were able to achieve com-
parable predictive performance to the continuous-time
methods. By tuning the number of intervals and select-
ing the endpoints based on quantiles of event times, the
resulting optimal intervals are driven by the particular
data set and prediction method and may have limited
clinical relevance.
While we have demonstrated that the discrete-time

models had similar or superior predictive performance
in our applications to Cox models and random survival
forests, these results may not be generalizable to other
data sets, settings, or continuous-time prediction meth-
ods. Here, we use these approaches to obtain predicted
survival probabilities for time points during an individ-
ual’s follow-up. However, other prediction approaches
may be more appropriate if the goal for clinical imple-
mentation is to predict a risk score (e.g., gradient boosted

Cox) or survival time (e.g., parametric survival models),
or examine variable importance (e.g., random survival
forest). Thus, when developing a prediction model for
time-to-event outcomes, in addition to assessing predic-
tive performance, models should be evaluated based on
their appropriateness to obtain the desired interpretation,
visualization, and clinical implementation.
There are alternative approaches for obtaining sur-

vival predictions applied to a discrete-time framework.
The multi-task learning approach creates a sequence of
classification models, such as logistic regression or neu-
ral networks [51, 52], however requires a classification
method-specific definition of the survival function for
optimization. Thus, it lacks the scalability to accom-
modate multiple and newly developed ML classification
methods that is possible with the approach considered
in this manuscript. There are also various extensions
of discrete-time survival models to accommodate other
characteristics of time-to-event data, such as competing
risks or time-dependent covariates [26, 73]. Extensions
to using ensemble approaches for prediction within the
discrete-time framework have also been explored [30, 74].
Thus, the flexibility and versatility of the discrete-time
survival models make it a useful option to consider when
developing a prediction model for survival outcomes.

Conclusions
In this manuscript, we describe the advantages of using
machine learning within a discrete-time framework for
predicting survival probabilities. We demonstrate the use
of these methods using publicly available data sets and
compare their predictive performance to the continuous-
time Cox PH model and random survival forest. The
ability of the discrete-time methods to achieve similar or
sometimes superior predictive performance when com-
puting predictions at a single time or multiple time points
of interest indicate that they should be considered when
developing survival predictionmodels. By presenting soft-
ware and a model development framework for discrete-
time prediction models, we aim to encourage their inclu-
sion in identifying a model architecture for optimally
predicting survival in various time-to-event applications.
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