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Abstract 

Background:  The Randomised Evaluation of COVID-19 Therapy (RECOVERY) trial is aimed at addressing the urgent 
need to find effective treatments for patients hospitalised with suspected or confirmed COVID-19. The trial has had 
many successes, including discovering that dexamethasone is effective at reducing COVID-19 mortality, the first 
treatment to reach this milestone in a randomised controlled trial. Despite this, it continues to use standard or ‘fixed’ 
randomisation to allocate patients to treatments. We assessed the impact of implementing response adaptive ran-
domisation within RECOVERY using an array of performance measures, to learn if it could be beneficial going forward. 
This design feature has recently been implemented within the REMAP-CAP platform trial.

Methods:  Trial data was simulated to closely match the data for patients allocated to standard care, dexamethasone, 
hydroxychloroquine, or lopinavir-ritonavir in the RECOVERY trial from March-June 2020, representing four out of five 
arms tested throughout this period. Trials were simulated in both a two-arm trial setting using standard care and 
dexamethasone, and a four-arm trial setting utilising all above treatments. Two forms of fixed randomisation and two 
forms of response-adaptive randomisation were tested. In the two-arm setting, response-adaptive randomisation was 
implemented across both trial arms, whereas in the four-arm setting it was implemented in the three non-standard 
care arms only. In the two-arm trial, randomisation strategies were performed at the whole trial level as well as within 
three pre-specified patient subgroups defined by patients’ respiratory support level.

Results:  All response-adaptive randomisation strategies led to more patients being given dexamethasone and a 
lower mortality rate in the trial. Subgroup specific response-adaptive randomisation reduced mortality rates even fur-
ther. In the two-arm trial, response-adaptive randomisation reduced statistical power compared to FR, with subgroup 
level adaptive randomisation exhibiting the largest power reduction. In the four-arm trial, response-adaptive ran-
domisation increased statistical power in the dexamethasone arm but reduced statistical power in the lopinavir arm. 
Response-adaptive randomisation did not induce any meaningful bias in treatment effect estimates nor did it cause 
any inflation in the type 1 error rate.

Conclusions:  Using response-adaptive randomisation within RECOVERY could have increased the number of 
patients receiving the optimal COVID-19 treatment during the trial, while reducing the number of patients needed 
to attain the same study power as the original study. This would likely have reduced patient deaths during the trial 
and lead to dexamethasone being declared effective sooner. Deciding how to balance the needs of patients within 
a trial and future patients who have yet to fall ill is an important ethical question for the trials community to address. 
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Background
Coronavirus disease 2019 (COVID-19) is a condition 
caused by the severe acute respiratory syndrome corona-
virus 2 [1]. On March 11, 2020, the global incidence and 
virulence of COVID-19 met the criteria for the World 
Health Organisation to declare it a pandemic [2]. At the 
time of writing (April 2022), the disease has caused 500 
million cases and 6 million deaths worldwide [3]. Fur-
thermore, some patients who contracted COVID-19 
report experiencing long covid, a condition consisting of 
many symptoms such as profound fatigue that can per-
sist long after the initial infection has passed [4]. It has 
been estimated there are around 2 million people in the 
UK who have suffered from long covid [5]. The effects of 
the pandemic have been far reaching and extend beyond 
just those infected. For example, many patients with sus-
pected cancer are not receiving appropriate early man-
agement, which experts believe will lead to increased 
mortality as their condition remains untreated [6]. Like-
wise, the pandemic has been noted to increase and exac-
erbate mental health problems such as stress and anxiety 
[7]. In terms of the wider societal impact, the pandemic 
has also led to a sharp increase in extreme poverty, 1.5 
billion students to miss out on education, and increasing 
food insecurity [8].

When COVID-19 first emerged, very little was 
known about its pathophysiology and, as a result, cli-
nicians were unsure which treatments would reduce 
COVID-19’s associated morbidity and mortality. To 
address this, large scale randomised clinical trials 
were quickly designed, authorised, and initiated in 
patients with severe COVID-19 symptoms in a bid to 
find effective treatments. One of the most high-profile 
examples is the Randomised Evaluation of COVid-19 
ThERapY (RECOVERY) trial [9]. It commenced on 

March 19, 2020, 8 days after the pandemic announce-
ment, with the aim of discovering new treatments that 
are effective in reducing 28-day mortality in patients 
hospitalised with confirmed or suspected COVID-19 
[9]. To date, 15 treatments have been trialled, most 
consisting of repurposed drugs [9]. Results have been 
published for nine trial treatments. Most of these nine 
treatments, including the antimalarial drug hydroxy-
chloroquine [10] and the antiviral combination of 
lopinavir-ritonavir (lopinavir) [11], were not found to 
have a significant effect in reducing COVID-19 mor-
tality. However, three treatments have been declared 
successful: dexamethasone [12], tocilizumab [13] 
and REGENERON [14]. When analysing the dexa-
methasone data, researchers found a statistically 
significant effect, with fewer patients dying on dexa-
methasone (22.9%) compared to standard care (25.7%) 
[12]. A stratified analysis was also performed in three 
pre-specified patient subgroups who received distinct 
levels of respiratory support at the time of randomi-
sation: (i) no oxygen, (ii) oxygen only, and (iii) oxygen 
through invasive mechanical ventilation. The sub-
group analysis uncovered important treatment effect 
heterogeneity: Patients in both subgroups (ii) and (iii) 
received benefit from taking dexamethasone com-
pared to standard care alone, with the group requiring 
the most respiratory support (iii) receiving the largest 
benefit. However, patients in group (i) who required 
the lowest level of respiratory support appeared to 
fare better with standard care (although this was not 
statistically significant) [12]. These results are shown 
in Table 1. The National Institute for Health and Care 
Excellence issued guidelines based on this research, 
stating dexamethasone should be given to hospitalised 
patients with COVID-19 if they require oxygen [15].

Response-adaptive randomisation deserves to be considered as a design feature in future trials of COVID-19 and other 
diseases.

Keywords:  COVID-19, RECOVERY, Response-adaptive randomization, REMAP-CAP, Coronavirus, Adaptive trial, 
Platform trial, Simulation

Table 1  Mortality data for the RECOVERY trial stratified by patient group

Patient 
subgroup

Number 
allocated 
standard 
care

Number 
allocated 
dexamethasone

Number 
allocated 
hydroxy-
chloroquine

Number 
allocated 
lopinavir

Mortality 
on standard 
care

Mortality on 
dexamethasone

Mortality 
on hydroxy-
chloroquine

Mortality 
on 
lopinavir

No oxygen 1034 501 362 425 14.0% 17.8% 16.0% 16.7%

Oxygen-only 2604 1279 938 1131 26.2% 23.3% 27.0% 24.7%

Invasive 
ventilation

683 324 261 60 41.4% 29.3% 42.1% 40.0%
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RECOVERY is an excellent example of a modern 
adaptive platform trial [16]. Unlike a traditional trial 
where all design aspects (including the treatments to 
be compared and the sample size) must be decided 
before the trial commences, adaptive platform trials 
have the freedom to continue indefinitely. Whilst the 
trial is ongoing, new experimental treatments can be 
added and tested, old experimental treatments show-
ing little benefit can be dropped and effective experi-
mental treatments can be ‘graduated’ to become the 
de-facto standard of care. Many adaptive trial designs 
exist, but their common aim is to be more flexible and 
resource efficient. Supporters of adaptive designs assert 
that they are more ethical [17], although this is not uni-
versally accepted [18]. One of the most controversial 
features that can be incorporated into an adaptive trial 
is response-adaptive randomisation (RAR). RECOV-
ERY did not incorporate this, preferring instead to use 
standard ‘fixed’ randomisation (FR) probabilities when 
allocating patients to experimental or standard care 
arms during the trial. Under a RAR scheme, allocation 
typically starts in a FR state, randomising patients to 
all trial arms with equal probability. RAR subsequently 
facilitates the adaptation of the allocation ratio, as 
interim analyses begin to show that there is a genuine 
difference between outcomes in the different arms, to 
favour treatments that have a higher estimated prob-
ability of a favourable outcome. A recent example of 
a COVID-19 study that uses RAR is the Randomised, 
Embedded, Multi-factorial, Adaptive Platform Trial for 
Community-Acquired Pneumonia (REMAP-CAP) [19]. 
This is a trial that aims to evaluate multiple interven-
tions simultaneously for community acquired pneumo-
nia but has a sub-platform, REMAP-COVID, created to 
assess COVID-19 treatments [20].

The aim of this paper is to investigate, by simula-
tion, the possible benefit of applying RAR instead of 
FR to assign patients to different treatment arms in the 
RECOVERY trial. We hypothesised that applying RAR 
would reduce the number of deaths amongst trial par-
ticipants by allocating more patients to their optimal 
treatment. To implement RAR, we use the REMAP-
CAP algorithm as well as our own bespoke tuning 
algorithm. In different simulations we apply each RAR 
method across the whole patient cohort, and then sep-
arately within patient subgroups (i)-(iii). We have also 
compared simulations covering trials with either two 
or four treatment arms. We apply FR using allocation 
ratios of 1:1 and 2:1 (with respect to standard care: 
dexamethasone), with the latter having been used in 
RECOVERY. To quantify benefit, we focus on the fol-
lowing five metrics:

•	 The proportion of patients allocated to each treatment;
•	 The expected number of deaths throughout trial;
•	 The statistical power to detect a treatment effect in 

all patients and in patient subgroups;
•	 The bias and mean squared error of the treatment 

effect estimate;
•	 The familywise type 1 error of wrongfully declaring 

one or more treatments as having a significant benefit

Methods
Simulation set up
Two simulations were set up using R statistical lan-
guage [21] with parameters selected to closely resem-
ble the observed results of the RECOVERY trial. The 
first of these simulations was based on two arms of 
the RECOVERY trial: namely the dexamethasone arm 
and the control arm. The original trial collected pri-
mary outcome data from a total of 6425 patients across 
the dexamethasone (N  = 2104) and standard of care 
(N  = 4321) arms in 81 days between March 19 and 
June 8, 2020. At this point the dexamethasone arm was 
halted and results of its efficacy were published [12]. 
The second simulation includes the addition of two 
further experimental treatments tested in RECOVERY, 
namely hydroxychloroquine (N  = 1561) and lopinavir 
(N = 1616), to create a 4-arm trial simulation. Although 
neither of the latter treatment arms were found to have 
a significant benefit in reducing COVID-19 mortality, 
they were included in the simulations to demonstrate 
the very different behaviour of RAR procedures in the 
multi-arm (as opposed to two arm) setting.

To provide a means to implement RAR, patient out-
come data was simulated for 100 days (or blocks) each 
consisting of 80 patients to give a total of 8000 patients in 
the 2-arm trial, or of 120 patients to give a total of 12,000 
patients in the 4-arm trial. This sample size and trial dura-
tion intentionally exceeds that of RECOVERY, because it 
enables our study to evaluate the statistical properties of 
the design at both smaller and larger sample sizes than 
the actual trial. The sample size of the trial with both 
two-arm and four-arm simulations approximates to that 
of the original trial at 80 days, and most metrics are col-
lected from this point. To match the RECOVERY study 
population, 24, 60 and 16% of each block were drawn 
from patient subgroups (i)-(iii), respectively. Patient out-
comes (Y) representing the primary outcome of mortality 
at 28 days were generated from a Bernoulli distribution. 
For patient i randomized in block j in patient subgroup k, 
on treatment l:

Yi,j,k ,l ∼ bern Pk ,l ,
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where i  = 1, …, 80 (or 120 for the 4-arm simulation), 
j = 1, …,100, k = i, ii, iii, l = 0 (standard of care), 1 (stand-
ard of care + dexamethasone), 2 (standard of care + 
hydroxychloroquine),or 3 (standard of care + lopinavir),. 
The values of Pk, l (the 28 day mortality rate) match the 
rates observed in RECOVERY (see Table 1).

Two arm trial: randomisation allocation strategies
Six allocation strategies (two FR and four RAR) were 
investigated as part of this simulation. Each strategy 
yielded an allocation rate, which was used in a bino-
mial data generating function in order to create varia-
tion within the simulation and avoid rounding errors. 
FR was investigated using both a 1:1 and a 2:1 stand-
ard care: dexamethasone ratio. Given the underlying 
outcome rates assumed in each trial arm are similar 
(Table 1), 1:1 allocation, or a 50% probability of receiv-
ing either, drug is near-optimal in terms of statistical 
power according to Neyman’s rule [22] (the exact value 
being a 51%/49% split). For further details see Addi-
tional file 1Technical Appendix A. The latter 2:1 strat-
egy was used in RECOVERY. RAR was investigated 
using two randomisation algorithms, our own bespoke 
tuning algorithm (T) and the algorithm used in 
REMAP-CAP (RMC). We use Tf and RMCf, to denote 
the RAR allocation procedures applied to trial patients 
across the full patient cohort. We use Ts and RMCs, 
to denote RAR allocation procedures applied within 
each patient subgroup. Specifically, the probability of 
patients in block j and subgroup k being allocated to 
the dexamethasone group given treatment and out-
come data on all preceding patients in blocks 1, …,j-28 
is denoted by αj,k, where:

Here, θ(l) represents the posterior probability that 
treatment l is optimal based on patients who have been 
in the trial for at least 28 days, either for the full cohort 
or for subgroup k (further details supplied in Additional 
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file 1 Technical Appendix B); s is the proportion of trial 
stages completed at point of adaption; and nj, k, lrepre-
sents number of patients in stage k in the cohort/sub-
group that have been allocated treatment l .

In addition, allocation probabilities in RAR Schemes 
T and RMC were constrained by a maximum and mini-
mum value according to the following rule:

Both the T and RMC RAR procedures used a “burn-
in” period (a period where adaptive randomisation was 
not applied) for the first 34 days of trial recruitment (to 
allow participants recruited within the first week to 
reach the primary endpoint of 28 days at the point of 
first adaption), meaning the first 2720 patients or 42.5% 
of the trial were allocated in a fixed 1:1 ratio. Only after 
this point, new patients were allocated using RAR, with 
the αj,k ratio being updated every 7 days. Each simula-
tion was performed 1000 times.

Four arm trial: randomisation allocation strategies
Four allocation strategies (two FR and two RAR) were 
investigated as part of this simulation.

•	 FR was investigated using both a 1:1:1:1 and a 
2:1:1:1 standard care: dexamethasone:hydroxych
loroquine:lopinavir ratio. The 2:1:1:1 ratio was the 
one used in the RECOVERY trial, making it the 
simulated strategy that is the most congruent to the 
original trial.

•	 Tf and RMCf RAR strategies in the experimental 

arms, but with 40% fixed randomisation probabil-
ity for the standard care group. The probability of 
patients in block j and subgroup k being allocated 
each one of the treatment groups l (2 = dexa-

αj,k =







0.9 if αj,k > 0.9
αj,k if 0.1 ≤ αj,k ≤ 0.9

0.1 if αj,k < 0.1
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methasone, 3 = hydroxychloroquine, 4 = lopinavir) 
given treatment and outcome data on all preced-
ing patients in blocks 1, …,j-28 is denoted by αj,k,l, 
where:

In the four-arm simulation, allocation probabilities 
in RAR were constrained by a maximum and minimum 
value according to the following rule:

Trial metrics
To match the sample size in the two and four arms of 
recovery at the point where recruitment to dexamethasone 
ended, single point metrics were performed at the point 
where 80% of the simulation was completed. The x-axes 
of all plots were calibrated with the sample size of recov-
ery with 100% being N = 6400 patients (or N = 9600 for the 
four-arm simulation) to match the end of recruitment, and 
125% being the entire length of the simulation. To assess 
the performance of the methods, the following summary 
measures were calculated across the 1000 simulated trials:

•	 The expected or average number of patients allocated 
to Dexamethasone E[Nd]

•	 The expected or average number of deaths E[NY] at 
the point where 6400 patients were allocated to a 
treatment, a number chosen due to its proximity to 
the 6425 patients recruited in RECOVERY.

•	 T1E: The expected probability of incorrectly rejecting 
the null hypothesis of no treatment effect, when all 
treatments have the same mortality rate, also known 
as the type I error rate. E[t1err], across the trial. In 
two arm settings where one null hypothesis was 
tested, the significance threshold of the test was fixed 
at 5%. In multi-arm strategies, where more than one 
hypothesis was tested, p-value ratios were adjusted 
using the Bonferroni correction for the specific num-
ber of hypotheses tested (i.e. the p-level threshold 
used was 0.05 divided by 3) in order to preserve the 
family wise error rate.
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•	 Power: The expected probability of correctly rejecting 
the null hypothesis of no treatment effect at the end of 
a block. This was calculated using a logistic regression 
model. For the subgroup-level randomisation, power 

was only calculated for subgroups ii and iii, as in sub-
group i dexamethasone performed worse than stand-
ard care. For the multi-arm trial simulation, this was 

calculated for dexamethasone and lopinavir. Although 
lopinavir didn’t have a significant effect when its 
RECOVERY results were published, both lopinavir and 
dexamethasone have point estimates of mortality lower 
than standard care group (unlike hydroxychloroquine). 
Therefore, to compare power across the trial for more 
than one treatment, it was assumed that this mortality 
difference was genuine and would be statistically con-
firmed with a larger sample size than in RECOVERY.

The relative bias and mean squared error in the treatment 
effect estimate. The first metric, 

biask = E

[

(P̂k ,0−P̂k ,1)−(Pk ,0−Pk ,1)

(Pk ,0−Pk ,1)

] , 

where Pk, l is the actual mortality rate and P̂k ,l is the esti-
mated mortality rate in subgroup k (1 = (i), 2 = (ii), 3 = (iii)) 
on treatment l (1 for dexamethasone, 0 for standard of care) 
from the trial. This bias is only calculated for RAR proce-
dures, as only RAR induces bias in treatment effect esti-
mates, as explained in technical Additional file 1 appendix 
C. Mean squared error is calculated by 
MSE = 1

N

∑N
n=1

((

P̂k ,0 − P̂k ,1

)

−
(

Pk ,0 − Pk ,1
)

)2
.

Summary
To summarise, the two-arm simulation study investigated 
six treatment allocation methods:

•	 1:1 FR across all patients (FeR)
•	 1:2 FR across all patients (FuR)
•	 T algorithm across all patients (Tf)
•	 RMC algorithm across all patients (RMCf)
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•	 T algorithm within subgroups (i)-(iii) separately (Ts)
•	 RMC algorithm within subgroups (i)-(iii) separately 

(RMCs)

In addition, the four-arm simulation study investigated 
the following four treatment allocation methods:

•	 1:1:1:1 allocation across all patients (FeR)
•	 2:1:1:1 allocation with the control group having the 

most allocation (FuR)
•	 40% of patients allocated to the control group, with the 

rest allocated to a treatment arm according to the T 
algorithm

•	 40% of patients allocated to the control group, with 
the rest allocated to a treatment arm according to the 
RMC algorithm

Results
The operating characteristics for the two-arm and four-
arm simulations are summarised below in Table  2 and 
Table 3 respectively.

Allocation to each arm
In the two-arm simulation, both cohort RAR methods 
led to more patients receiving dexamethasone com-
pared to either FR approach. Tf led to slightly more 
patients receiving dexamethasone than RMCf. When 
considering subgroup-specific RAR, each subgroup 
has its own trend. In subgroup (i), both adaptive meth-
ods allocate slightly less patients to standard care com-
pared to FuR, with Ts allocating standard care to the 
most patients. In subgroups (ii) and (iii), the RAR algo-
rithms allocate mainly to dexamethasone, with RMCs 
allocating the most patients to dexamethasone. How-
ever, the treatment allocation disparity is much larger 
in the subgroup (iii). These differences are demon-
strated in Fig. 1.

The RAR algorithms also differ in how they “ramp 
up” allocation to the optimal treatment as the trial 
progresses. Tf increases randomisation to the optimal 
treatment at a steadier rate from the end of the burn-
in period, whereas RMCf increases randomisation 
faster in the early trial stages but also plateaus earlier. 
This is consistent with the pattern in subgroup-level 
RAR methods, Ts and RMCs, for subgroups (i) and 
(ii). However, in subgroup (iii), the RMCs algorithm 
ramps up allocation to dexamethasone faster across 
the whole RAR phase of the trial. This is demonstrated 
in Figs. 2 and 3.

In the four-arm simulations, allocation to the control 
group was protected and fixed at 40%. In terms of the 
experimental treatment arms, RAR led to dexamethasone 

receiving the highest allocation of patients, followed by 
lopinavir, with hydroxychloroquine receiving the few-
est. The Tf randomisation algorithm leads slightly more 
patients to receive dexamethasone and fewer to receive 
hydroxychloroquine than the RMCf algorithm. These 
results are shown in Fig. 4.

As soon as the burn-in period is finished, participant 
allocation quickly shifts to assigning more patients to 
dexamethasone while decreasing how many patients are 
assigned to hydroxychloroquine and lopinavir. Allocation 
to hydroxychloroquine decreases at a steeper rate than 
allocation to lopinavir. The divergence in allocation prob-
abilities between dexamethasone and the other treatment 
arms occurs more sharply with Tf randomisation than 
with RMCf. The dexamethasone allocation exceeds the 
40% of patients allocated to standard care at 100% trial 
completion using the Tf algorithm. This is demonstrated 
on Fig. 5.

Mortality rates
In the 2-arm simulations, FR led to the highest number 
of expected deaths (with FuR being worse than FeR). This 
was followed by cohort-level RAR, with the lowest mor-
tality rates observed when using subgroup-specific RAR. 
There was little difference between the randomisation 
algorithms, with RMCf and RMCs attaining a margin-
ally lower mortality rate than Tf and Ts respectively. The 
expected mortality figures are given in Table 4, expressed 
as deaths prevented relative to FuR.

In the four-arm simulations, the mortality rate 
decreases compared to the FuR strategy are smaller. Tf 
and RMCf lead to very similar reductions in mortality, 
which is likewise consistent with the FeR strategy. These 
results are demonstrated in the Table 5.

Statistical power
In two-trial simulations, FeR led to the highest study 
power on a cohort level, as predicted by Neyman’s rule. 
FuR, Tf and RMCf all performed similarly, with FuR 
having slightly more power by the end of the simula-
tion and at the point where the simulation has almost 
the same sample size as RECOVERY. Comparing the 
cohort RAR algorithms, RMCf performs slightly better 
than Tf in most points of the trial. These results are 
shown in Fig. 6.

For subgroup specific RAR procedures, the differ-
ence in power is minimal between randomisation 
approaches; both RMCs and Ts produce similar power at 
all stages. However, there is notable differences between 
the two subgroups. Subgroup (iii), for whom the treat-
ment effect is largest, has the highest power and reaches 
90% power during the study. In contrast, subgroup (ii) 
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doesn’t reach 80% power by the end of the study. This is 
demonstrated in Fig. 7.

In the multi-arm trial simulation, a completely differ-
ent trend is observed. The RAR allocation methods lead 
to more power in the dexamethasone and lopinavir arms 
compared to FuR. FeR, compared to RAR allocation, 
leads to the more power in the lopinavir arms but less 
power in the dexamethasone arms. Tf allocation leads to 
slightly more power in both treatment arms compared 
RMCf. These results are demonstrated in Fig. 8.

Bias and mean squared error in treatment effect estimation
It is known that RAR procedures have the potential to 
induce small sample bias in corresponding treatment 
effect estimates, because they induce a non-zero cor-
relation between the effect estimate and its sample size 
[23]. In the two-arm trial setting, the bias associated with 
using cohort RAR procedures is shown for all stages of 
the trial in Fig.  9 and in sub-group specific and cohort 
RAR at the point where the trial reaches the sample 
size observed in RECOVERY in Fig.  10. Both RMCf is 

Table 3  the operating characteristics reported from the 4-arm simulation

Operating characteristic where sample size matches RECOVERY FuR FeR Tf RMCf

Proportion allocated to control (%) 40.0 25.0 40.0 40.0

Proportion allocated to dexamethasone (%) 20.0 25.0 27.0 26.6

Proportion allocated to hydroxychloroquine (%) 20.0 25.0 14.9 15.0

Proportion allocated to lopinavir (%) 20.0 25.0 18.1 18.4

Mortality (deaths/9600 and percentage) 2394 (24.9%) 2388 (24.9%) 2373 (24.7%) 2374 (24.7%)

Statistical power dexamethasone (%) 54.6 49.8 59.9 58

Statistical power lopinavir (%) 9.6 9.2 6.5 7.9

Family-wise error rate (%) 3.8 4.7 4.9 5.1

Bias (×10−2) Dexamethasone 0 0 −4.1 −5.4

Hydroxychloroquine 10.0 6.2

Lopinavir − 33.2 −39.1

Mean Squared error (×10−4) Dexamethasone 1.60 1.98 1.50 1.57

Hydroxychloroquine 1.70 1.94 2.28 2.11

Lopinavir 1.84 1.89 1.81 1.91

Fig. 1  Allocation proportions within the full cohort and within each patient subgroup for all FR and RAR procedures. Horizontal blue line shows 
n = 6400, the sample size of RECOVERY
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associated with higher bias than Tf. Sub-group specific 
RAR results show bias is lowest in subgroup (iii) for both 
algorithms, with subgroup (i) having the highest bias for 
the Ts algorithm and subgroup (ii) having the highest bias 
for the RMCs algorithm.

In terms of mean squared error (MSE), FeR leads to the 
lowest error in the full cohort setting. RMCf leads to higher 
error than Tf, with FuR leading to a similar MSE to RMCf. 
This is demonstrated in Table 4. In the subgroup-level ran-
domisation trials, the adaptive randomisation algorithms 
have a very similar level of MSE in each sub-group, with 
RMCs leading to higher MSE in subgroup (i) and (iii) and Ts 
leading to slightly higher MSE in subgroup (ii). The MSE in 

the subgroups negatively correlates with their sample size, 
with subgroup (ii) having the lowestMSE, followed by sub-
group (i) and subgroup (iii). This is demonstrated in Table 2.

In four-arm trial setting, treatment effect bias is highest 
for lopinavir and lowest for dexamethasone. There is very 
little difference in bias between the Tf and RMCf ran-
domisation algorithms, except in the hydroxychloroquine 
group where Tf leads to a small increase in bias. This is 
shown in Fig.  11. In terms of mean squared error, FuR 
leads to the highest MSE in all three experimental treat-
ments and FeR leads to the lowest. Tf leads to a higher 
MSE for lopinavir, but otherwise there’s little difference 
between them. This is demonstrated in Table 3.

Fig. 2  The proportion of patients receiving dexamethasone across the trial for FR and cohort-level RAR frameworks. Vertical line at 42.5% trial 
progress represents the end of the burn-in period, with bars dotted bars representing +/− 1 standard deviation for each allocation

Fig. 3  the allocation of patients to dexamethasone and no treatment in Ts and RMCs. Vertical line at 42.5% trial progress represents the end of the 
burn-in period, with lines +/− 1 standard deviation bars
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Fig. 4  the amount of patient allocated to each trial arm under different allocation strategies

Fig. 5  the allocation to each trial arm using each randomisation algorithm. Vertical dotted line represents the point in which adaptive 
randomisation begins

Table 4  Expected mortality rates in whole trial for each randomisation method, given at point that the dexamethasone arm’s results 
were published

Randomisation strategy Average no. of deaths at n = 6400 +/− standard error 
(percentage)

Deaths prevented 
compared to FuR at 
n = 6400

FuR 1583 +/− 1.1 (24.7%) –

FeR 1556 +/− 1.0 (24.3%) 27

Tf 1528 +/− 1.2 (23.9%) 55

RMCf 1527 +/− 1.2 (23.9%) 56

Ts 1516 +/− 1.2 (23.7%) 67

RMCs 1514 +/− 1.2 (23.7%) 69
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Table 5  Expected mortality rates in the whole trial for each randomisation, given at the point that the results for the dexamethasone 
arm were published

Randomisation strategy Average number of deaths at n = 9600 +/− standard error 
(percentage)

Deaths prevented 
compared to FuR at 
n = 9600

FuR 2394 +/− 1.6 (24.9%) –

FeR 2388 +/− 1.6 (24.9%) 6

Tf 2373 +/− 1.6 (24.7%) 21

RMCf 2374 +/− 1.7 (24.7%) 20

Fig. 6  Comparing fixed randomisation and cohort-level adaptive randomisation approaches in terms of study power across the length of the trial. 
Bars around each point represent +/− 1 standard error in power, and horizontal lines are plotted at a power of 80 and 90%

Fig. 7  Expected power for subgroups (ii) and (iii) at each trial stage using subgroup-specific adaptive randomisation. Error bars represent represent 
+/− 1 standard error, with horizontal lines at 80 and 90% power
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Family wise error rate
When applying both the whole-trial and subgroup-level 
randomisation algorithms in the two-arm simulation, the 
type 1 error rate exhibits small fluctuations around 5%, 
which is the same as the p-value set, as shown in Fig. 12 
and Fig.  13 The same occurs when inspecting the Bon-
ferroni corrected family-wise error rates in the 4-arm 
simulation, as shown in Fig. 14. This demonstrates type-1 
errors were not inflated by RAR approaches.

Discussion
Understanding the results
It is important to consider why the different approaches 
led to different mortality rates. Full cohort RAR 

approaches led to more patients receiving dexametha-
sone, which was shown to be superior to standard care in 
most patients, and therefore led to fewer deaths overall in 
the trial simulation. Subgroup RAR approaches improved 
mortality even further because they allowed more 
patients in subgroup (i) to receive standard care and 
allowed dexamethasone allocation in subgroup (iii) to be 
ramped up even faster. In the multi-arm simulation, RAR 
allocation does not reduce mortality by as much. This 
is because the proportion of patients able to receive the 
optimal treatment (dexamethasone) is greatly reduced. 
Forty percent of the allocation is protected to the stand-
ard care arm, and the lopinavir and hydroxychloro-
quine arms will always receive a minimum of 5% of the 

Fig. 8  statistical power in determining a significant benefit effect for dexamethasone and lopinavir with different randomisation algorithms. Error 
bars represent +/− 1 standard error of power, with horizontal lines at 80 and 90% power

Fig. 9  Bias in calculating treatment effect across the trial using the cohort RAR approaches. Error bars represent +/− 1 standard error
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allocation each. This means the dexamethasone arm can 
only receive a maximum of 50% of the patients allocated 
per day, as opposed to 90% in the two arm simulation.

Study power is important because it indicates how 
many patients are likely to be required to reach statisti-
cally significant results. Moreover, in the context of the 
pandemic, it would mean publishing positive results 
earlier which would lead to earlier use of the treatment 
in a real-world context. In the two-arm simulation, FeR 
achieved the most study power. This is to be expected as 
Neyman’s allocation formula indicated that the optimal 
allocation for study efficiency is almost 1:1 [22]. More 
generally, the power of all FR and cohort RAR strate-
gies (in the two-arm setting) was seen to be inversely 

proportional to how much their average allocation ratio 
skewed away from the optimal allocation. Although both 
FR approaches have more power than the cohort RAR 
approaches, it is important to mention that FuR, the 
approach used in the RECOVERY trial, is only marginally 
more powerful despite leading to the most in-trial deaths. 
In the four-arm trial simulation, the adaptive randomi-
sation approaches lead to increased power in the dexa-
methasone group and reduced power for the lopinavir 
groups. This is consistent with Neyman’s allocation rule, 
as increasing an experimental arm’s sample size brings it 
closer to the 1:1 ratio that maximises statistical power.

Even though our results for treatment effect bias may 
not show a consistent pattern, this is expected with 

Fig. 10  Bias of treatment effect estimates in the full cohort and each subgroup using the four RAR schemes (Tf, RMCf, Ts, RMCs) at the sample size 
observed in RECOVERY (6425). Error bars represent +/− 1 standard error

Fig. 11  the bias in estimating treatment effect for each of the three experimental treatments in the four-arm trial setting
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the treatment effect metric, as the magnitude of bias 
induced in each treatment arm doesn’t follow a predict-
able pattern [23].

Wider implications
Our results for the 2-arm simulation illustrate the 
trade-off in reducing patient deaths within the trial 
using RAR and getting statistically significant results 
earlier using FR. However, in the more representative 
four-arm simulation, not only is the overall mortality 
rate reduced, but the statistical power in determining 
the benefit of dexamethasone is increased. This trade-
off here is the decreased probability of allocation for 
the less effective lopinavir group, which would mean 
it would take longer to halt allocation to this arm as a 

result of lack of evidence of benefit.. Notwithstanding, 
given the main role of RECOVERY was to find effec-
tive COVID-19 treatments as quickly as possible, this 
seems like a trade-off that may have been worthwhile 
to explore. Discovering dexamethasone’s efficacy in 
managing COVID-19 and the subsequently using of 
the drug to treat patients has already been estimated 
to have saved a million lives globally [24]. Furthermore, 
RAR designs have been shown to improve trial recruit-
ment, precisely because patients understand they have 
a higher chance of receiving a well-performing treat-
ment [25].. This could have arguably increased the sam-
ple size available and thus increase power even further. 
Article 8 of the World Medical Association Declaration 
of Helsinki states that the goal of acquiring knowledge 

Fig. 12  type 1 error rate in the FR and whole-trial RAR approaches for the 2-arm simulation

Fig. 13  type 1 error rate in the FR znd subgroup-specific RAR approaches in the 2-arm simulation
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must not come before trial participants’ interests [26], 
but a case can be made that FR procedures do just that. 
In addition, our simulation shows that we can acquire 
some knowledge faster if we prioritise which knowledge 
is more imperative to save lives.

In this simulation, the differences between the tuning 
algorithm and the REMAP-CAP algorithm are very sub-
tle. As would be expected from their formulas, the tuning 
algorithm tends to be more exploitative of the superior 
treatment arms in the later stages of the trial, whereas 
large recruitment discrepancies between arms in the 
REMAP-CAP algorithm is self-limiting. In the interests 
of discovering dexamethasone faster and saving as many 
lives as possible, the tuning algorithm appears to have 
the edge. However, it would be less feasible to use in a 
trial such as RECOVERY as the tuning of it depends on 
a set timeframe for which to complete the trial. In con-
trast, the REMAP-CAP algorithm only depends on sam-
ple sizes within subgroups and therefore doesn’t have this 
deficiency.

There is no doubt that the implementation of RAR in 
a trial is more challenging than FR. This is especially 
true for subgroup specific RAR. While the subgroups 
used were declared before the start of the trial, it 
would be impossible to know that the treatment effect 
would be different across the three groups, or whether 
other pre-specified subgroups should have been split 
for RAR instead. Using RAR at the subgroup level 
means splitting the sample, leading to smaller sample 
sizes in each group. This led to a low statistical power 
for subgroup (i) but a higher power for subgroup (iii) 
due to the large treatment effect. This meant that the 
subgroup where the treatment effect is greatest would 
benefit most from RAR.

Limitations
One important part of the model that remains unac-
counted for is patient drift. Patient drift occurs when the 
trial cohort’s characteristics, and therefore their likeli-
hood of responding to a treatment, changes through-
out the course of a trial [27]. When using FR, the effect 
of patient drift will be minimised as any changes will be 
independent of treatment arm allocation (e.g. if patients 
present later in the trial had fewer comorbidities, both 
the standard care and dexamethasone groups would 
have exhibited lower mortality rate). This is not the case 
when using RAR because arms that performs better will 
receive a larger proportion of the patients as the trial pro-
gresses. Consequently, when calculating response rates, it 
must be noted that the characteristics of patients could 
potentially be unbalanced across arms. Throughout the 
pandemic, data shows the type of people susceptible 
to catching COVID-19 has changed dramatically. This 
occurred in terms of age-groups, ethnicities, socio-eco-
nomic class, and geography [28]. Likewise, the virus itself 
is likely to have changed, as mutations occur, and as dif-
ferent claves and variants become more common [29]. 
Resources in treating the pandemic may also change, 
affecting how likely patients are to survive. For exam-
ple, the typical care that COVID-19 patients get varies 
as clinical knowledge in treating the disease improves. 
Additionally, if more ventilators are procured or there 
are fewer COVID-19 patients in a hospital, a larger pro-
portion of patients may be placed on ventilators. This 
has the dual effect of making the full cohort more likely 
to survive as more patients can receive adequate respira-
tory support, and of diluting the ventilator sub-group 
with healthier patients as ventilators do not have to be 
reserved for only the most critical patients. Therefore, 

Fig. 14  family-wise error rate for all randomisation approaches in the 4-arm simulation
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had RAR been applied, it is likely the death rate would be 
skewed by the confounding effect of difference in patient, 
illness, and management characteristics.

Additionally, like all adaptive trial designs, implementing 
RAR creates certain operational challenges. In RECOV-
ERY, these can be split into challenges which might have 
prolonged the design of the trial, and challenges which 
would affect the way it runs. The RECOVERY trial was 
famously set up and began recruiting patients very quickly, 
taking just 9 days from the first draft of the protocol to 
enrolment of the first participant [30]. In contrast, imple-
menting RAR might have added extra hurdles in terms 
of planning the trial and might have therefore delayed 
patients being recruited. For example, the varying ran-
domisation ratios require a central system for randomisa-
tion and mean that it is harder to predict the drug supply 
required for each arm. Crucially, this could have coun-
teracted RAR’s ability to attain study power earlier in the 
trial, meaning it may not have saved lives. Nonetheless, in 
terms of running the trial, many of the requirements that 
would allow it to perform response-adaptive randomisa-
tion have already been met. RECOVERY had a data moni-
toring committee which would be needed for RAR. Its 
heavy use of re-purposed drugs reduces the need for safety 
monitoring, and its primary endpoint being measured at 
28 days allows RAR to be implemented from an early point 
in the trial [31], as shown in our simulations. Arguably the 
biggest problem the addition of RAR might pose is the 
requirement for timely data collection. Given the NHS was 
lacking resources at certain points in the pandemic [32], 
it might have been challenging for clinical staff to find the 
time to log trial patients and their outcomes promptly. It 
would also have been difficult to arrange additional staff 
on site to help run the trial, given strict infection control 
protocols in hospitals.

Also notable is the simplicity of the simulation. 
RECOVERY has arms being dropped and added dynami-
cally. In contrast, we simulated it as fixed-arm trials with 
no treatments being dropped or added. Furthermore, 
for simplicity in the simulation, patient outcomes are 
generated in uniform batches. This contrasts with what 
happened in RECOVERY as, the number of hospitalised 
patients available to recruit varied significantly through-
out the trial period, and this would have affected how 
RAR worked. There was a sharp decrease in hospitalised 
patients towards the end of the recruitment period [33]. 
This would have likely meant that there would be more 
information attained at the start of the trial, and therefore 
the proportion of patients randomised to dexamethasone 
would have increased faster than it did in the simulation. 
Although our simulation study was simplistic, we believe 
the results paint a broadly accurate picture of how the 

operating characteristics of RECOVERY would differ 
using FR and RAR procedures.

Future directions
To understand RAR within an adaptive platform trial 
context, further simulation studies could be under-
taken to implement more dynamic features of a simula-
tion study. For example, simulations could emulate arms 
being dropped once there is sufficient confidence to 
classify whether they are better, the same or worse than 
standard care. Additionally, simulations could be made 
more complex to adjust for varying recruitment rates and 
evaluate the influence of patient drift. Finally, surveys of 
patients previously hospitalised with covid-19 could be 
conducted to ascertain attitudes to RAR.

Conclusion
Using RAR within RECOVERY could have resulted in 
more patients being given the optimal treatment, and 
therefore fewer deaths in the trial. These benefits of 
RAR were even more pronounced when used within 
pre-specified subgroups. In addition, fewer patients 
would have been required to attain the same study 
power under RAR, leading to a shorter trial period 
(assuming the same recruitment rate). Bias in treat-
ment effect estimation arises in RAR trials, but only to 
a negligible extent. The use of RAR deserves to be con-
sidered for use in future platform trials. The considera-
tion of the needs of patients within and beyond the trial 
should be acknowledged by trialists more clearly, and 
patient groups themselves consulted before deciding 
what balance to strike.
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