
Thompson et al. 
BMC Medical Research Methodology          (2022) 22:222  
https://doi.org/10.1186/s12874-022-01699-2

RESEARCH

Cluster randomised trials with a binary 
outcome and a small number of clusters: 
comparison of individual and cluster level 
analysis method
Jennifer A. Thompson1*, Clemence Leyrat2, Katherine L. Fielding1 and Richard J. Hayes1 

Abstract 

Background:  Cluster randomised trials (CRTs) are often designed with a small number of clusters, but it is not 
clear which analysis methods are optimal when the outcome is binary. This simulation study aimed to determine (i) 
whether cluster-level analysis (CL), generalised linear mixed models (GLMM), and generalised estimating equations 
with sandwich variance (GEE) approaches maintain acceptable type-one error including the impact of non-normality 
of cluster effects and low prevalence, and if so (ii) which methods have the greatest power. We simulated CRTs with 
8–30 clusters, altering the cluster-size, outcome prevalence, intracluster correlation coefficient, and cluster effect 
distribution. We analysed each dataset with weighted and unweighted CL; GLMM with adaptive quadrature and 
restricted pseudolikelihood; GEE with Kauermann-and-Carroll and Fay-and-Graubard sandwich variance using inde-
pendent and exchangeable working correlation matrices. P-values were from a t-distribution with degrees of freedom 
(DoF) as clusters minus cluster-level parameters; GLMM pseudolikelihood also used Satterthwaite and Kenward-Roger 
DoF.

Results:  Unweighted CL, GLMM pseudolikelihood, and Fay-and-Graubard GEE with independent or exchangeable 
working correlation matrix controlled type-one error in > 97% scenarios with clusters minus parameters DoF. Cluster-
effect distribution and prevalence of outcome did not usually affect analysis method performance. GEE had the least 
power. With 20–30 clusters, GLMM had greater power than CL with varying cluster-size but similar power otherwise; 
with fewer clusters, GLMM had lower power with common cluster-size, similar power with medium variation, and 
greater power with large variation in cluster-size.

Conclusion:  We recommend that CRTs with ≤ 30 clusters and a binary outcome use an unweighted CL or restricted 
pseudolikelihood GLMM both with DoF clusters minus cluster-level parameters.

Keywords:  Cluster-level analysis, Cluster level analysis, Generalised linear mixed model, Generalised estimating 
equations, Comparison of methods, Cluster randomised trial, Small number of clusters
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Background
Cluster randomised trials (CRTs) are often designed 
with a small number of clusters [1], but it is not clear 
which analysis methods are optimal when the outcome is 
binary.

In a CRT, groups of individuals known as clusters, 
such as health clinics or villages, are randomly assigned 
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to receive either a control or intervention condition. 
Observations from the same clusters are likely to be more 
similar to one another than observations from different 
clusters, and it is well known that this correlation needs 
to be taken into account to prevent confidence intervals 
that are too narrow and p-values that are too small [2].

There are three broad types of analysis that can be 
used for CRTs: cluster-level analyses, generalised linear 
mixed effect models (GLMM), and generalised estimat-
ing equations with sandwich standard errors (GEE). In a 
cluster-level analysis, the observations from each cluster 
are summarised, and these cluster-level summaries are 
analysed using simple methods for independent data, 
most commonly with a weighted or unweighted t-test. 
In a GLMM, the correlation of observations in the same 
cluster is directly modelled by including a random effect 
for cluster. GEE assume a working correlation structure 
for observations in the same cluster, and standard errors 
are calculated allowing for the observed correlations in 
the data.

There is a wealth of literature on each type of analysis 
method with a small number of clusters. Cluster-level 
analysis is known to maintain control of type-one error 
with a small number of clusters and non-normally dis-
tributed outcomes [3, 4]. GLMM or GEE require small 
sample corrections with a small number of clusters to 
maintain an acceptable type-one error rate [5–8]. GLMM 
requires use of restricted maximum likelihood and com-
parison of test statistics to a t-distribution rather than the 
normal distribution [5]. GEE require use of a bias cor-
rected standard error as well as use of a t-distribution. 
There have been many bias corrected standard errors 
developed and each performs well in different scenarios. 
Some are known to be conservative in scenarios common 
to CRTs [9], while others have closer to nominal type one 
error [7, 8, 10]. Continuous outcomes and binary out-
comes with a high prevalence are well studied [6, 10, 11], 
and to date, all assessments have assumed model assump-
tions are met. Cluster-level analysis is known to maintain 
control of type-one error with non-normally distributed 
outcomes [3, 4]. GLMM are robust to some degree of 
non-normality [12], but this has not been explored for a 
small number of clusters or for GEE. With a large num-
ber of clusters, individual-level analysis with GLMM or 
GEE has greater power than a cluster-level analysis with 
varying cluster size [2]. Power is known to be reduced by 
use of the GEE small sample corrections with continu-
ous outcomes [11], but this has not been studied for a 
binary outcome. We provide more detail of this previous 
literature for each type of analysis in the “Background to 
methods” section below.

Binary outcomes are the most common type of out-
come for CRTs [1], but raise problems for the CRT 

analysis methods. Cluster-level methods become more 
challenging when some clusters have no events of inter-
est, and GLMM require numerical methods of integra-
tion of the random effects [2]. Commonly used effect 
measures such as the odds ratio are also non-collapsible, 
so that GEE estimates have a different interpretation to 
cluster-level analysis and GLMM.

In this paper, we address some remaining gaps in the 
literature for binary outcomes: Is it possible to control 
type-one error for each method with a low prevalence 
outcome? If type-one error can be controlled, which type 
of method has greatest power? How sensitive is each type 
of analysis to non-normality of cluster effects? We begin 
by describing the analysis methods in more detail and 
reviewing previous literature on use of these methods 
with a small number of clusters for the estimation of an 
odds ratio. We then report an extensive simulation study 
that addresses our three research questions. We demon-
strate the impact of analysis choice on an illustrative CRT 
and provide recommendations to trialists.

Methods
Background to analysis methods
In this section, we will review the analysis methods that 
have been shown to maintain nominal type-one error 
for CRTs with a binary outcome and a small number of 
clusters. We only consider analyses that do no adjust for 
covariates.

The estimates from these methods have different inter-
pretations. The cluster-level analysis and GLMM provide 
cluster-specific intervention effect estimates; these are 
estimates of the average effect comparing one partici-
pant given the intervention to one participant given the 
control drawn from the same cluster. GEE provide pop-
ulation-average (also known as marginal) intervention 
effect estimates; these are estimates of the average effect 
comparing one participant given the intervention to one 
participant given the control drawn from the population.

We consider a CRT with n clusters randomised to 
either an intervention or control condition with out-
comes yijk = 0, 1 in arm i in cluster j for individual 
k = 1, . . . ,mij where mij is the number of observations in 
arm i in cluster j.

Cluster‑level analysis
In a cluster-level analysis, individual observations are 
summarised for each cluster. With a binary outcome, a 
proportion is commonly used, but for comparability with 
GLMM and GEE, here we will consider the log odds of 
the outcome in each cluster, so that we estimate an odds 
ratio intervention effect. In clusters with no events of 
interest, the log odds are not defined. To avoid this, we 
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added 0.5 events and 0.5 non-events to each cluster [2], 
so that the cluster log odds are defined as:

These cluster log-odds are independent of one another, 
so simple analysis procedures can then be used to derive 
a confidence interval and p-value. A t-test with degrees of 
freedom as n – 2 has been shown to maintain type-one 
error with as few as 6 clusters [13].

The t-test is known to be robust to relatively large 
deviations from the assumption of normality of cluster 
summaries [14]; supporting Fig.  1A and  C show exam-
ples of non-normally distributed outcomes that do not 
affect t-test performance. However, the method becomes 
inefficient if clusters vary in size [15]. To improve the 
efficiency, several weights for the clusters and use of 
a weighted t-test have been suggested, but the perfor-
mance of these weights remains unclear. While weighting 
clusters could maximise the use of information, this has 
to be considered against the uncertainty in the estimation 
of the weights themselves [2].

Here, we compare the performance of the following 
cluster weights:

Unweighted analysis  All clusters are given the same 
weight.

Inverse‑variance weights  Inverse variance weights 
account for the information provided by each cluster by 
weighting each cluster inversely to the variance of the 
cluster summary. From a Taylor series expansion, the 
variance of the cluster log-odds is approximated by

where p̂ij is the observed proportion of observations 
with the outcome in arm i in cluster j , σ 2

b  is the variance 
of the true cluster log-odds, pij is the true proportion of 
observations with the outcome in arm i in cluster j.

We can substitute the intracluster correlation coef-
ficient (ICC) into this formula. The ICC is the between 
cluster variability divided by the total variability. We 
use the definition for the ICC on the log odds scale of 
ρi = σ 2

b / σ 2
b + 1/pi[1− pi]  [16] where pi is the preva-

lence of the outcome in each arm.The variance of the 
cluster log-odds leads to different inverse-variance 
weights depending on assumptions about the prevalence 
of the outcome within clusters. Under a null hypothesis 
of the same mean prevalence in both arms, then the ICC 

sij =
∑mij

k=1yijk + 0.5

mij −
∑mij

k=1yijk + 0.5

Var

(
log

[
p̂ij

1− p̂ij

])
≈ σ 2

b + E

[
1

pij
(
1− pij

)
mij

]

is the same for both arms so that ρ0 = ρ1 = ρ , and we get 
inverse-variance weights suggested by Kerry and Bland 
[15] (see supplementary text for derivation)

Identical weights can also be derived using a differ-
ent definition for the ICC that assumes that there is an 
underlying latent variable that determines whether each 
individual experiences the outcome. This latent variable 
is assumed to follow the logistic distribution [16].

Weighting by cluster size and within-cluster variance 
have also been used elsewhere but are not considered 
here. Weighting by cluster size ignores the non-linear 
impact of cluster size on the information provided by a 
cluster and has been shown to give biased effect estimates 
[11, 17]. Weighting by within-cluster variance ignores the 
between cluster element of the cluster log-odds variance 
and has been shown to give inflated type-one error unless 
the outcome is very common [17].

Generalised linear mixed effect models
GLMMs with a binomial distribution and logit link 
directly model the between cluster variation so that:

where y is a vector of outcomes of length nmij , X is a 
nmij x 2 matrix of fixed effect covariates consisting of a 
vector of ones and the trial arm assignment, β is a vec-
tor of fixed-effect parameters consisting of the intercept 
( β0 ) and log odds ratio comparing control and interven-
tion conditions ( β1 ), and u is a vector of random effects 
for clusters with elements uij ∼ N (0, σ 2

b ).
Maximum likelihood is used to estimate the parameters 

β , and σ 2
b  . For CRTs with a continuous outcome, a simi-

lar GLMM is used, but with a normal distribution with 
identity link. Maximum likelihood estimation leads to 
biased estimation of σ 2

b  with a small number of clusters, 
and use of restricted maximum likelihood estimation, 
which applies a transformation to the data to remove 
fixed effects before estimating random effect variances, 
reduces this bias [18].

For the binary outcome model above, the marginal 
likelihood does not have a closed form expression, so 
numerical integration methods are required. Adaptive 
quadrature is a commonly used technique, but there is 
no equivalent restriction technique to the one used to 
reduce bias with continuous outcomes. Pseudo-likeli-
hood [19] and penalised quasi-likelihood [20] perform 
less well than adaptive quadrature with a large number of 
clusters [20], but methods of restriction are available. Elff 

wij =
mij

1+
(
mij − 1

)
ρ

E[y|X ,u] =
exp(Xβ + u)

1+ exp(Xβ + u)
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et  al. found that this made penalised quasi-likelihood a 
more suitable technique for data with fewer clusters with 
a common outcome and probit link [5].

In addition to selection of integration method, confi-
dence intervals and p-values should be constructed with 
a t-distribution when the number of clusters is small to 
account for uncertainty in estimation of the standard 
error. There are three commonly used options for the 
degrees of freedom:

•	 Clusters minus cluster-level parameters. In an unad-
justed analysis, this is DFC−P = n− 2

•	 Satterthwaite [21]. For a test of the intervention effect 
parameter, degrees of freedom are

Where Var[Var(β1)] is approximated using the multi-
variate delta method.

•	 Kenward and Roger [22] developed a small sample 
correction that involves inflation of the standard error 
as well as a degree of freedom correction (DFKR). For 
a test of the intervention effect parameter, the degrees 
of freedom part of this correction are the same as 
DFS, but the standard error may be different.

With continuous outcomes, Satterthwaite degrees of 
freedom give closest to nominal type-one error, and clus-
ters minus cluster-level parameters and Kenward-Rogers 
degrees of freedom are more conservative [11]. With 
binary outcomes, clusters minus cluster-level parameters 
has previously given closest to nominal coverage [6] with 
a common outcome.

With a large number of clusters, GLMM provide simi-
lar results with normally and non-normally distributed 
cluster effects (here these are cluster log-odds) except for 
extreme cases of non-normality or very large between 
cluster variability [12, 23]. Supporting Fig.  1B and C 
shows examples of cluster effect distributions that have 
not affect GLMM performance. However, this has not 
been studied for settings with a small number of clusters.

Generalised Estimating Equations
GEE model the marginal individual level data treating 
the correlation parameters as nuisance parameters. We 
assume a correlation structure for the data, which gives 
a covariance matrix  VWij for the vector of outcomes in 
each cluster yij . We use the logit link so that

DFS =
2Var(β1)

2

Var[Var(β1)]

µ = E[y|X] =
exp(Xβ)

1+ exp(Xβ)

The (uncorrected) sandwich covariance matrix of β̂ is

where VM is the model based variance of β , 
Dij = ∂µij/∂β

′ , and Ĉov
(

yij
)

=

(

yij − �̂ij

)(

yij − �̂ij

)T.
With fewer than 40–50 clusters [24], the sandwich 

covariance estimator used in conjunction with GEE are 
known to estimate standard errors that are too small on 
average, hence they are negatively biased, and several bias 
corrections have been suggested to reduce this bias [7–9, 
25, 26]. Corrections developed by Kauermann and Car-
roll [8] and Fay and Graubard [7] have had particularly 
promising performance across a range of scenarios where 
CRTs are used [10, 27]. Others were often conservative 
[9] or highly variable [26].

Kauermann and Carroll suggested the estimator: [8]

where AKCij =
[
I ij −DijVMDT

ij V
−1
Wij

]−1/2
.

Fay and Graubard suggested the estimator: [7]

where AFGij = diag
[(

1 −min
[

0.75,DijV
−1

Wij
DT

ij
VM

])]

As well as standard error corrections, it is necessary to 
construct confidence intervals and p-values from a t-dis-
tribution as has been seen for cluster-level analysis and 
GLMM. There is less literature for GEE, but DFC-P has 
performed well [10].

Unlike the cluster level analysis and GLMM, GEE 
do not make any assumptions about the distribution of 
the cluster log-odds. They were developed as a robust 
method of analysis for non-normal outcomes, so we 
expect this method to be robust to non-normality of clus-
ter log-odds.

Comparison between these methods
There is particularly sparse literature comparing the dif-
ferent types of methods. Since it may now be possible to 
maintain type-one error with a small number of clusters 
for all approaches, comparisons of power are relevant. 
While with a large number of clusters, it is known that 
the individual-level methods we’ve described are more 
powerful than the cluster-level method when clusters 
vary in size [28], there are few comparisons of power with 
small sample corrections applied to the individual-level 
methods. For continuous outcomes and normally dis-
tributed cluster-level summaries, GLMMs with a small 
sample correction had a higher power than unweighted 
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cluster-level analyses and GEEs, and a similar power as 
inverse variance weighted cluster-level analyses [11]. Oth-
ers have found that GLMM had higher power than GEE 
after small sample corrections had been applied [29].

Simulation study methods
We conducted a simulation study to compare the perfor-
mance of the analysis methods described above. The sim-
ulations were performed in SAS software, version 9.4 of 
the SAS system for windows[30]. The scenarios included 
in the simulations are given in table  1 and more details 
are in the supporting information text. All combinations 
of each scenario were simulated with 1000 repetitions so 
that there is a 95% probability that true type-one error of 
5% is estimated to be between 3.6% and 6.4%.

Data generating mechanism
We simulated binary, clustered data using the data gener-
ating model:

where Yij is the number of events in arm i in cluster j , 
β0 is the true log-odds of the outcome in the control con-
dition, β1 is the log odds ratio intervention effect, and uij 
is a random effect for cluster with mean zero and vari-
ance σ 2

b .
The prevalence of the outcome in the control condition 

was either 10% or 30%. We simulated scenarios with and 
without an intervention effect ( β1 ). For the scenarios with 

Yij ∼ Binomial

(
exp

[
β0 + β1i + uij

]

1+ exp
[
β0 + β1i + uij

] ,mij

)

an intervention effect, we used the Stata 15 [31] power 
command to select cluster-specific odds ratios that would 
be expected to have 80% power for each scenario. This 
command uses the design effect 1+ (m− 1)ρ to account 
for clustering and the design effect of van Breukelen, 
Candel, and Berger to account for unequal cluster size 
[32].

The ICC was set to 0.001, 0.01, 0.5, or 0.1 on the log 
odds scale, defined as σ 2

b /(σ
2
b + π2/3) , to span a range of 

common values in health research [33–35]. For the dis-
tribution uij , we considered a normal distribution, a uni-
form distribution to explore the impact of kurtosis, and 
a gamma distribution with shape parameter � = 2 . These 
distributions were selected as they are the limit for which 
GLMMs estimate unbiased cluster-level coefficients with 
a large number of clusters [12, 23].

Trial designs
We simulated trials with a total of 8, 12, 20, or 30 clus-
ters and a 1:1 randomisation ratio. Cluster size was either 
common to all clusters or simulated to vary between 
clusters. Variable cluster sizes were drawn from a nega-
tive binomial distribution to give a minimum cluster size 
of 3 and coefficient of variation in cluster size of 0.5 (the 
median CV of UK primary care trust size [36]), or 0.8 (a 
large variability) [11, 37]. The mean cluster size was either 
10, 50, or 1000 to represent small, medium and very large 
clusters [1].

Estimand and Analysis Methods
The estimands of interest for the analysis of the simu-
lated trials was the odds ratio intervention effect and 

Table 1  Summary of simulation study scenarios

Parameter Number of 
scenarios

Values

Total number of clusters 4 8, 12, 20, 30

Mean Cluster size (m) 3 10, 50, 1000

Coefficient of variation (CV) of 
cluster size

3 CV = s
m

= 0, 0.5, 0.8 Where s is the standard deviation in cluster sizes andm is the mean cluster 
size, Cluster size
mij is sampled from a negative binomial distribution as follows:
δ ∼ Negbin

(
nooffails = (m−2)2

s2−(m−2)
, poffail = m−2

s2

)

mij = 2+ δ  

Control cluster prevalence 2 10%, 30%

Intervention effect 2 No effect, or odds ratio between 1.12 and 11.49 selected for each scenario to achieve 80% power

ICC 4 0.001, 0.01, 0.05, 0.1

Cluster effect distribution 3 Normal:
uij ∼ N(0, σ 2

b )

Gamma
uij =

σb(aij−2)√
2

where
aij ∼ Gamma(2, 1)
Uniform

uij ∼ Uniform
(

−

√

3�2

b
,

√

3�2

b

)

Distributions are defined to give the specified between cluster variability set by the ICC
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the statistical test for no intervention effect. We use a 
cluster specific estimand for the cluster-level analysis 
and GLMM and a population-averaged estimand for 
the GEE.

We analysed the data with all methods previously 
described: unweighted cluster analysis (CL-UNW), and 
inverse variance weights with equal variance within 
clusters (CL-W); GLMM using adaptive Gauss-Her-
mite quadrature (AQ) or restricted pseudo-likelihood 
(REPL) and degrees of freedom as clusters minus 
cluster-level parameters (DFCP), Satterthwaite (DFS), 
or Kenward-Rogers (DFKR) where DFS and DFKR were 
only available for REPL; and GEE with a sandwich vari-
ance with the Kauermann and Carroll correction (KC) 
or Fay and Graubard correction (FG) with boundary 
parameter 0.75 using DFCP and an independent (I) 
or exchangeable (E) working correlation matrix. The 
exchangeable working correlation matrix GEE were 
only run on scenarios with mean cluster size of 10 or 
50 due to unfeasibly long run time with a cluster size 
of 1000.

Our data generating mechanism specified a cluster-
specific intervention effect odds ratio. Since GEE esti-
mate population-averaged (marginal) odds ratios, we 
estimated the true marginal effects to compare to GEE 
estimates using the approximate formula [38]:

First we select the cluster-level, GLMM, and GEE 
method that has most consistently controls type-one 
error in the simulation study; then we compare the per-
formance of these three methods.

Performance measures
For each scenario and analysis method, we calculated 
the standardised bias of the intervention effect estimate, 
which is the bias as a percentage of the standard devia-
tion of the intervention effect estimates across the 1000 
repetition; relative bias in standard errors; type-one 
error; and power [39]. We also calculated coverage but 
results are not shown due to the similarity of results to 
type-one error results. We refer to type-one error less 
than 3.6% as conservative and type-one error above 6.4% 
as inflated. Convergence rates were summarised and 
analyses that did not converge were excluded.

Results
For each type of analysis, we will summarise impor-
tant results, more detail is given in the supporting 
information.

βMarginal ≈ βConditional



�
16

√
3

15π

�2
σ 2
b + 1




−1/2

Intervention effect estimate bias, standard error bias, 
and type‑one error
Cluster‑level methods
Less than 1% of CL-UNW or CL-W failed to provide 
intervention effects or p-values in all scenarios. Non-
convergence only occurred if all clusters-level summaries 
were identical within each arm, giving a within-arm vari-
ance of zero.

CL-UNW and CL-W had mean intervention effect 
estimate standardised bias of 52% and 38% closer to the 
null respectively across scenarios with mean cluster size 
10 and low outcome prevalence (Fig.  1). Both methods 
demonstrated no bias in any other scenario (mean stand-
ardised bias -2% for CL-UNW and -1% for CL-W).

Standard errors of CL-UNW were within 10% of the 
standard deviation of simulated estimates in all scenarios, 
and type-one error was close to nominal in all scenar-
ios (Fig.  1). Confidence interval coverage was often low 
with mean cluster size 10 and low outcome prevalence 
(102/144(71%) scenarios had coverage < 93.6%) due to the 
biased intervention effect estimate.

CL-W standard errors were between 46% smaller and 
6% larger than the standard deviation of estimates with 
mean cluster size 10 and low prevalence. Standard errors 
were closer to the standard deviation of simulated esti-
mates in other scenarios (between 9% smaller and 14% 
larger). Type-one error for CL-W was inflated with mean 
cluster size 10 and low outcome prevalence (97/144(67%) 
scenarios with type-one error > 6.4%) and when cluster 
size varied (type-one error > 6.4% in 25/240(10%) sce-
narios with cluster size CV = 0.5, and 49/240(20%) with 
cluster size CV = 0.8).

Supporting Figs. 2, 3, 4, 5 and 6 show cluster-level anal-
ysis performance by each simulation study parameter.

GLMM
In both REPL and AQ, up to 10% of models failed to con-
verge with 8 clusters with mean cluster size of 10 and low 
outcome prevalence. REPL resulted in up to 8% non-con-
vergence with mean cluster size 1000 and ICC = 0.001; 
this was more pronounced with 30 clusters but persisted 
with 20 clusters. Non-convergence was less than 5% in all 
other scenarios.

Both REPL and AQ gave estimates of the interven-
tion effect with minimal bias in all scenarios (mean 2.9% 
standardised bias for AQ and 0.6% for REPL across all 
scenarios, Fig. 2).

AQ resulted in standard errors that were too small with 
mean cluster size 1000 with 20 or fewer clusters (mean 
8% smaller than the standard deviation of simulations 
with 12 clusters and 12% with 8 clusters). Bias in stand-
ard errors increased with larger ICC (ICC = 0.1 standard 
error bias = -6%, ICC = 0.001, standard error bias = -3%). 
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This led to mean type-one error of 7% with ICC = 0.1, 
mean cluster size of 1000 and 8 or 12 clusters.

REPL gave more consistent standard errors. However, 
with mean cluster size 10, standard errors were a mean 
4% larger than the standard deviation of simulations with 
12 cluster and 10% larger with 8 clusters. The Kenward-
Roger standard error correction had minimal impact. 
Combining REPL with DFCP controlled type-one error, 
but was conservative in the scenarios where the stand-
ard errors were inflated (mean cluster size 10 had mean 
type-one error = 3.8% with 30 clusters, 1.9% with 12 clus-
ters, and 0.8% with 8 clusters). DFKR and DFSA were more 
conservative.

Supporting Figs. 7, 8, 9 and 10 show GLMM methods 
performance by each simulation study parameter.
GEE
With an independent working correlation matrix, in 
most scenarios, less than 3% failed to converge. Up to 
9% failed to converge with mean cluster size 10 and out-
come prevalence 10%. With an exchangeable working 

correlation matrix, non-convergence was common with 
varying cluster size. With cluster size CV = 0.8 and mean 
cluster size 10, a mean of 20% failed to converge; with 
mean cluster size 50, this increased to a mean of 34% fail-
ing to converge.

The intervention effect was estimated with little bias 
where no effect was present and negligible bias (com-
pared to estimated marginal effects) when the inter-
vention did have an effect in truth (mean 5% and 3% 
standardised bias for independent and exchangeable 
working correlation matrices respectively, Fig.  3). Vari-
ability of effect estimates was similar between the inde-
pendent and exchangeable working correlation matrices.

With an independent working correlation matrix, both 
KC and FG standard errors demonstrated little bias with 
20 or more clusters. With 12 or fewer clusters, FG stand-
ard errors were on average 6% too large and KC stand-
ard errors were on average 2% too small (Fig.  3). With 
FG standard errors, type-one error was conservative in 
25% of scenarios and inflated in 3% of scenarios. Inflated 

Fig. 1  Performance measures of cluster-level analysis methods by number of clusters (rows), cluster size and outcome prevalence (colour). 
Measures shown (columns): Standardised intervention effect estimate bias, standard error bias, type-one error. Each dot represents a scenario 
summarised over the 1000 repetitions. All 864 scenarios are shown for each measure
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type-one error occurred when clusters were large and 
there was large variability in cluster size.

With an exchangeable working correlation matrix, FG 
standard errors became more variable and had a mean 
10% overestimation of standard errors with 12 or fewer 
clusters. KC standard errors had little bias with 12 or 
more clusters and were a mean 3% overestimated with 
8 clusters. With FG standard errors, type-one error was 
conservative in 33% of scenarios and inflated in 1% of 
scenarios.

In order to select a working correlation matrix to take 
forward to compare with GLMM and CL methods, we also 
looked at power. With FG standard errors and DFCP, power 
was similar with an independent or exchangeable working 
correlation matrix (mean 1% greater power with an inde-
pendent working correlation matrix). Power was similar 
with 20–30 clusters (exchangeable mean 0.4% higher) but 
favoured an independent working correlation matrix with 
fewer cluster (exchangeable mean 0.8% and 3.8% lower 
with 12 and 8 cluster respectively). Power favoured an 

independent working correlation matrix with ICC = 0.001 
(mean 3.1% higher power than exchangeable) but favoured 
an exchangeable working correlation matrix with ICC = 0.1 
(mean 1.6% higher power with exchangeable).

Due to the similar power and better convergence, we 
carried an independent working correlation matrix for-
ward to the comparison with the cluster-level method 
and GLMM.

Supporting Figs. 11, 12, 13 and 14 show GEE method 
performance by each simulation study parameter.

Comparison of cluster‑level method, GLMM, and GEE
Next we compare the best performing method from each 
analysis type: CL-UNW, REPL.DFCP, and GEE with FG 
standard errors and an independent working correlation 
matrix (FG.I.DFCP).

All three method controlled type-one error in the 
majority of scenarios (Fig. 4). CL-UNW controlled type-
one error most consistently; only 1% of scenarios had 
inflated and 5% conservative type-one error. REPL-BW 

Fig. 2  Performance measures of GLMM methods by number of clusters (rows), and mean cluster size (colour). Measures shown (columns): 
Standardised intervention effect estimate bias, standard error bias, type-one error
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has the most conservative type-one error: 42% of scenar-
ios had conservative type-one error and 1% has inflated 
type-one error. FG.I.DFCP had the most variable type-one 
error: 6% of scenarios had inflated type-one error and 
17% conservative.

Power
Excluding scenarios with low prevalence and cluster size 
of 10 (due to biased effect estimates from CL-UNW), 
REPL.DFCP has on average 2% higher power than CL-
UNW, and FG.I.DFCP had on average 3% lower power 
than CL-UNW (Fig. 5).

The power difference between CL-UNW and 
FG.I.DFCP was most strongly influenced by the ICC with 
higher ICC leading to CL-UNW having higher power: 
with ICC = 0.1 CL-UNW had a mean 10% higher power 
than FG.I.DFCP, but with ICC = 0.001, FG.I.DFCP had a 
mean 8% greater power than CL-UNW. With fewer clus-
ters, power favoured CL-UNW.

The power difference between REPL.DFCP and CL-
UNW was most strongly influenced by variation in 
cluster size. With common cluster size, CL-UNW 
had a mean 2% higher power than REPL.DFCP; with 
CV = 0.5, REPL-BW had a mean 2% higher power than 
CL-UNW; and with CV = 0.8, REPL.DFCP had a mean 
10% higher power than CL-UNW. With fewer clusters, 
power became more similar between the methods. With 
higher ICC, power become more similar between the 
methods.

Across all scenarios (including scenarios with low prev-
alence and cluster size of 10), REPL.DFCP had a mean 5% 
higher power than FG.I.DFCP. This was most strongly 
influenced by ICC: with ICC = 0.1, REPL.DFCP had a 
mean 10% higher power, but with ICC = 0.001, REPL.
DFCP and FG.I.DFCP had similar power. Number of clus-
ters had minimal impact on the difference in power.

Supporting Figs.  15, 16 and 17 show power compari-
sons by each simulation study parameter.

Fig. 3  Performance measures of GEE methods by number of clusters (rows), and mean cluster size (colour). Measures shown (columns): 
Standardised intervention effect estimate bias, standard error bias, type-one error
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Robustness to non‑normality
There was no difference in our findings based on whether 
the clusters log-odds were distributed normally, or with 
skew or kurtosis (supporting Figs. 3, 8, 12, and 16).

Recommendations
Table  2  summarises our results to provide recommen-
dations of the most robust and powerful analysis by 
scenario.

Illustrative example
Treatment for tuberculosis involves 6  months of alter-
nate daily drugs. Recovery is hampered by non-adherence 
to treatment and the standard of care (SoC) is directly 
observed therapy where a health worker or family member 
directly observes the patient taking their medication. This 
is costly and has limited impact on adherence [40].

In one trial, two interventions, a text message reminder 
and electronic monitoring box for medication, were 

compared to SoC [41]. Here, we focus on the compari-
son of the monitoring box to SoC: a comparison with 9 
clusters in each arm. Randomisation was stratified by 
province and whether clusters were urban: this is ignored 
for simplicity in this example. In the monitor box arm, 
patient’s medication was stored in a box that recorded 
openings of the box that clinicians could review to assess 
the need for adherence counselling, and a light and sound 
reminded patients to take medication. We will focus on 
a secondary outcome from the trial: whether patients 
missed more than 10% of doses over treatment. There 
was a mean 116 patients per cluster with coefficient of 
variation 0.1. The ICC on the log-odds scale was esti-
mated as 0.09 (estimated from the REPL GLMM).

Figure 6 shows the estimated intervention effects, con-
fidence intervals, and p-values from each of the meth-
ods considered in this paper. The outcome was common 
in both arms: 59% and 41% in the control and interven-
tion arms missed more than 10% of doses respectively. 

Fig. 4  Comparison of bias and type-one error of unweighted cluster-level analysis, GLMM with REPL and DFCP, and GEE with FG standard errors 
and DFCP by number of clusters (rows), and mean cluster size (colour). Measures shown (columns): Standardised intervention effect estimate bias, 
standard error bias, type-one error
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All analyses find strong evidence that the monitor box 
improved adherence compared to SoC, but the strength of 
evidence varied in line with the simulation study results.

Since clusters are medium sized, Table 2 recommends 
use of CL-UNW or REPL.DFCP. These provide almost 
identical results (CL-UNW: OR = 0.45 95% CI [0.25, 

Fig. 5  Power comparison of unweighted cluster-level analysis (CL.UNW), GLMM with REPL and DFCP (REPL), and GEE with FG standard errors and 
DFCP (FG.I) (columns) by number of clusters (rows), ICC (y axis), and variability of cluster size (colour)

Table 2  Summary of simulation study results and recommendations on their use

a  Unbiased effects with controlled or conservative type-one error
b  The method/s with greatest or similar to greatest power in a scenario

Cluster-Level Method GLMM GEE

Method Use equal weighting of clusters and 
clusters minus cluster-level parameters 
degrees of freedom

Use restricted pseudo-likelihood and 
clusters minus cluster-level parameters 
degrees of freedom

Use Fay and Graubard standard errors, 
clusters minus cluster-level parameters 
degrees of freedom, and an independent 
working correlation matrix

Valid results a Cluster size > 10
Or
Common outcome (prevalence > 10%)

All scenarios Cluster size ≤ 50
Or
CV cluster size ≤ 0.5

Competitive power b Common cluster size
Or
High ICC (ICC > 0.05)

Varying cluster size
Or
20 + clusters

Low ICC ≤ 0.01
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0.83] p = 0.013, REPL.DFCP: OR = 0.46 95% CI [0.25, 
0.83] p = 0.013).

Since this example has small variability in cluster size, 
CL-W would be likely to have nominal type-one error, 
hence the similar result to CL-UNW. The inflated type-
one error of AQ.DFCP has resulted in a smaller p-value 
(p = 0.009) and narrower confidence interval (0.26, 0.80), 
but the degrees of freedom has had little impact on REPL 
as the clusters are not small in this trial. GEE methods 
may have inflated type-one error due to the cluster size, 
but were also found to have lower power than other 
methods. This has led to more variable results (p = 0.009 
to 0.016).

Discussion
We have identified methods to control the type-one 
error with as few as 8 clusters with cluster-level analy-
sis, GLMM, and GEE in high and low prevalence set-
tings. Cluster-level analysis should give equal weight 
to all clusters. GLMM should use REPL to integrate 
the likelihood, and GEE should use the small sample 
standard error correction from Fay and Graubard. All 
methods require a t-distribution with clusters minus 
cluster-level parameters as the degrees of freedom to 
calculate confidence intervals and p-values. We found 
that unweighted cluster-level analysis had greatest 

power with common cluster size and competitive 
power when the ICC was high. GLMMs using REPL 
had greatest power with varying cluster size or 20 or 
more clusters despite conservative type-one error. GEE 
with FG standard errors tended to have equal or lower 
power than the other methods. All methods performed 
well with non-normally distributed cluster effects.

Our comparison of cluster-level analysis methods iden-
tified problems with inverse-variance weighting of clus-
ters. The weighted least squares method assumes that 
the weights are known, when in truth they are estimates. 
This leads to the bias in standard errors we observed with 
CL-W [42]. Use of a robust standard error may be able to 
account for weight estimation, but this is likely to lead to 
similar results to the GEE methods shown in this paper, 
which had lower power. Cluster-level analysis is simple to 
code manually in any software, and a user written Stata 
command clan is also available [43].

We found that the integration method used in the 
GLMM was important for obtaining unbiased standard 
errors: REPL outperformed AQ. This extends the findings 
of Elff et al [5] to logistic models and to low prevalence 
outcomes. We used the SAS glimmix procedure to imple-
ment this method. The R function glmmPQL implements 
a similar method [44]. To our knowledge, REPL is not 
available in the statistical software Stata. Our findings 

Fig. 6  Motivating example results analysed by all methods considered in the simulation study. Left panel shows odds ratios and confidence 
intervals, right panel shows p values. Rows are analysis methods
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of nominal type-one error with clusters minus cluster-
level parameters and conservative type-one error with 
Kenward-Rogers and Satterthwaite are supported by pre-
vious research [6], and we determine that these findings 
hold for a low prevalence outcome.

For GEE, our recommendation of FG standard errors 
with clusters minus cluster-level parameter degrees 
of freedom are in agreement with others [10, 45–47]. 
This previous literature has not reported rates of con-
vergence, which we found were low in some scenarios 
with an exchangeable working correlation matrix. The 
poor convergence was likely due to computational 
complexity from inversion of a matrix the same size 
as the cluster size and some iterations requiring inver-
sion of a not invertible matrix [48]. Our comparison of 
power by choice of working correlation matrix is novel. 
With a large number of clusters, correct choice of 
working correlation matrix is known to improve power 
[49]. We found that this difference diminished with a 
small number of clusters so that there was little ben-
efit from fitting the more complex exchangeable work-
ing correlation matrix. Similar results have been seen 
for stepped wedge cluster randomised trials [50] with a 
cluster size of 50 or less, so our finding of similarity is 
likely do to the smaller cluster sizes used for this com-
parison. This method is widely implemented in statis-
tical software: we used the glimmix procedure in SAS 
[30], in Stata a user written command xtgeebcv is avail-
able [51], and in R the saws package implements the FG 
correction [7].

Our comparison of power from the three types of anal-
ysis is novel. We found that despite conservative type-one 
error, GLMM generally had greater or competitive power 
compared to GEE or cluster-level analysis. Contrary to 
settings with a large number of clusters, we found that 
cluster-level analysis maintained competitive power 
when the ICC was large, even with varying cluster size. 
GEE had competitive power with a low ICC, but often 
lower power than GLMM. Low power was also identi-
fied by Leyrat et al. for continuous outcomes [11]. Where 
power and type-one error are similar between the meth-
ods, and convergence of GEE is reasonable, the choice 
could be guided by whether researchers are interested 
in estimating a cluster-specific or population-averaged 
intervention effect. Another consideration of this choice 
is non-normality of the cluster effects. We found no dif-
ference in the performance of methods with the distribu-
tions we considered. These were distributions where the 
limits of where mixed effect models perform well with a 
large number of clusters [12], so if a larger degree of non-
normality is suspected, we recommend use of GEE or 
cluster-level analysis.

Our findings were similar regardless of the distribu-
tion of cluster log-odds for all numbers of clusters that 
we considered. Since our choice of non-normality was 
the boundary of good GLMM performance with a large 
number of clusters, this suggests a similar performance of 
methods with a small number of clusters to their perfor-
mance with a large number of clusters [12, 23]. Therefore, 
a cluster-level analysis should be used with very skewed 
data, but either method remains suitable with some skew 
or data that shows kurtosis.

All our selected methods struggled with a mean 10 
observations per cluster and low outcome prevalence, 
but this scenario of few clusters, that are small, and 
with low prevalence is unlikely to occur in practice. 
Unweighted cluster-level analysis gave biased inter-
vention effect estimates in these scenarios due to the 
presence of clusters with no events. GLMM and GEE 
methods overestimated standard errors in these scenar-
ios. With larger clusters, low prevalence generally had 
little impact on results.

Our simulation study covered a broad range of scenar-
ios where CRTs are common. However, there are analy-
sis methods that we did not consider, which could have 
superior performance. This includes other small sample 
corrections available for GEE [10, 25, 27, 52]; some of 
these could have improve the type-one error control of 
GEE particularly for scenarios with large variability in 
cluster size [25], an over-dispersed binomial model [53, 
54], and non-parametric methods such as permutation 
tests. Our analysis methods have not adjusted for covari-
ates, and our simulations used simple randomisation. 
The methods we have considered may all be impacted 
by adjustment for cluster-level covariates. We have only 
considered estimation of the intervention effect, which is 
a cluster-level covariate. The performance of GEE meth-
ods may have been impacted by comparison to estimated 
marginal effects because our data generating mechanism 
used cluster-specific effects. We excluded any runs that 
did not converge. This was very common for GEE, and 
may have biased the estimated power if runs were more 
or less likely to converge if they identified an intervention 
effect: to our knowledge, this was not the case. Further, 
we only considered prevalence as low an 10%.

Conclusion
We recommend that CRTS with 30 or fewer clusters and 
a binary outcome use an unweighted cluster-level analy-
sis, or GLMM using REPL. Confidence intervals and 
p-values for both methods should be calculated based on 
a t-distribution with the number of degrees of freedom 
defined as the number of clusters minus cluster-level 
parameters.
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