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Abstract 

Background:  A classic methodology used in evaluating the impact of health policy interventions is interrupted 
time-series (ITS) analysis, applying a quasi-experimental design that uses both pre- and post-policy data without 
randomization. In this paper, we took a simulation-based approach to estimating intervention effects under different 
assumptions.

Methods:  Each of the simulated mortality rates contained a linear time trend, seasonality, autoregressive, and 
moving-average terms. The simulations of the policy effects involved three scenarios: 1) immediate-level change 
only, 2) immediate-level and slope change, and 3) lagged-level and slope change. The estimated effects and biases of 
these effects were examined via three matched generalized additive mixed models, each of which used two different 
approaches: 1) effects based on estimated coefficients (estimated approach), and 2) effects based on predictions from 
models (predicted approach). The robustness of these two approaches was further investigated assuming misspecifi-
cation of the models.

Results:  When one simulated dataset was analyzed with the matched model, the two analytical approaches pro-
duced similar estimates. However, when the models were misspecified, the number of deaths prevented, estimated 
using the predicted vs. estimated approaches, were very different, with the predicted approach yielding estimates 
closer to the real effect. The discrepancy was larger when the policy was applied early in the time-series.

Conclusion:  Even when the sample size appears to be large enough, one should still be cautious when conducting 
ITS analyses, since the power also depends on when in the series the intervention occurs. In addition, the intervention 
lagged effect needs to be fully considered at the study design stage (i.e., when developing the models).
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Background
Given that the impact of regulatory and public policy 
interventions cannot usually be evaluated through tra-
ditional randomized controlled trial designs, well-
selected, −designed, and -analyzed natural experiments 
are the method of choice when examining the effects 
of such enactments on a variety of outcomes [1–3]. A 
classic methodology for such evaluations is interrupted 
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time-series (ITS) analysis, which is considered one of the 
quasi-experimental designs that uses both pre- and post-
policy data without randomization and control series [4]. 
ITS is particularly well suited for interventions on the 
population level over a clearly defined time period [4, 5], 
and it has been used for the evaluation of various pub-
lic health interventions with outcomes such as morbidity 
and mortality (e.g. [6]).

ITS needs to consider the order of data points and 
potential correlation of those points in time. For instance, 
many studies have reported seasonal variation in morbid-
ity and mortality rates from various causes in different 
parts of the world. Taking mortality as an example, it has 
been observed that in many high-income countries of the 
Northern hemisphere all-cause mortality rates are the 
highest during the winter months and lowest in the sum-
mer months [7]. Thus, it is necessary to apply a statistical 
method that considers the effects of seasonality, trends, 
and other confounders when evaluating the intervention 
of interest.

Subsequent to estimating whether a policy interven-
tion has had an effect over and above secular trends 
and chance [3], a quantification of the effect size in 
tangible units, such as the number of prevented cases/
deaths, often is of great interest to various stakehold-
ers as well as the wider public. As this information is 
key for future decisions aiming to maximize public 
health promotion and mitigate harms, the underly-
ing estimation methods need to be as robust as pos-
sible. When using models to estimate the effects of a 
policy, it is also important to consider the extent to 
which the model accurately represents reality. Models 
can be used as an indicator of policy effects; however, 
there is always a risk that the modelled effect does not 
accurately describe the true effect on the outcome of 
interest. Thus, to accurately quantify a practical effect, 
it may be important to investigate the possibility of 
model misspecification.

So far, we have been somewhat abstract when talk-
ing about interventions and their effects. Therefore, let 
us consider, as an example, alcohol control interven-
tions, such as increasing excise taxation to make alcohol 
less affordable or banning marketing (for a classifica-
tion of such policies, see [8]) and their impact on mor-
tality rates. Policy interventions can have an immediate 
effect, a lagged effect, or both, on mortality, depending 
on the type of policy and the cause of death of interest. 
An example of an outcome for which such policies would 
have an immediate effect would be deaths due to traffic 
injury [9]. However, taxation may have both an immedi-
ate and a lagged effect on liver cirrhosis mortality, as well 
as deaths from other chronic diseases (see [10] for an 
overview). As for banning alcohol marketing, most of the 

effects are expected to involve a lag-time–e.g., via young 
people receiving less exposure to alcohol advertisements, 
and thus the effect may take years to be fully realized. 
Therefore, for any public health intervention, assump-
tions about lag periods need to be made.

In ITS analyses, there are two main types of effects 
that describe the impact of a policy: first, there is the 
level change, which corresponds to the difference in the 
time point of interest and the predicted pre-interven-
tion trend; and second, there is a slope change, which 
is a change in the time trend at one point in time [5]. 
To provide insight into how statistical methods per-
formed under different effects, we took a simulation-
based approach to estimate the potential effects of 
a simulated policy intervention on the original scale 
(e.g., death rate) and their uncertainty for ITS studies 
when the intervention impacts as 1) an immediate-level 
change only, 2) an immediate-level and slope change, 
or 3) a lagged-level and slope change. The intervention 
effect estimates and their accuracy were examined using 
two different methodological approaches, referred to 
as the ‘estimated’ and ‘predicted’ approach herein (for 
a description, see below). The robustness of these two 
approaches was further investigated assuming misspeci-
fication of the ITS models.

Methods
To develop a basis for the simulations, we examined 
the ranges and variability of effect sizes from a previous 
time-series analyses of monthly age-standardized and 
sex-specific all-cause mortality rates (deaths per 100,000 
adult population), for Lithuania from January 2000 to 
December 2019 [11, 12]. Model parameters adopted in 
the simulations were estimated using the monthly male 
mortality rate as a dependent variable. The seasonal-
ity of simulated data was assumed following a pattern 
represented by a cubic spline function, extracted from 
a fitted generalized additive mixed model (GAMM) 
using the monthly mortality rate among men. As indi-
cated above, the simulated data included three different 
scenarios:

•	 Scenario 1: There was an immediate decrease, or 
level change, in the mortality rate after the policy 
intervention;

•	 Scenario 2: In addition to the immediate level change, 
the slope, i.e., the time trend of mortality rates, also 
changed after the intervention; and

•	 Scenario 3: We assumed that the full impact of the 
policy would take 2 years to be observed. In this sce-
nario, the level change happened slowly across the 2 
years post-intervention, as defined later, in addition 
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to a slope change being observed after the two-year 
lag period.

Simulated data
We defined effect size as the sum of expected level 
change plus the unit trend change, such as monthly 
change. Three effect sizes were used: 5, 10, and 15 deaths 
per 100,000, representing small, medium, and large 
reductions on monthly mortality rates before and after 
the intervention. In addition to differences in the effect 
size, the interventions were assumed to be different in 
their years of implementation during the study period. 
Specifically, interventions were applied in the beginning, 
middle, and later time of the study period, namely the 
5th, 9th, and 13th year, respectively of the 18- year study 
period where the timings were chosen to reflect different 
study designs.

The conditional distribution of each observed yt, 
for  t = 1, …, n given the previous information of past 
observations  y1…, yt − 1, and covariate vectors x1, …, xt, 
xt = {xt1, …, xtm} were assumed to follow the same Gauss-
ian distribution. The simulated outcome yt was a random 
draw from a Gaussian distribution with mean value equal 
to the model expected value and variance. Each of the 
expected outcomes was determined by linear trend of 
time, seasonality, autoregressive (AR), and moving-aver-
age (MA) terms.

Where 
∑k

i=1
s(ti) is smoothing cubic spline function for 

the monthly seasonal component with k = 12 being the 
number of knots, p
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are moving average terms of order q. Arbitrarily, p = q = 1 
were chosen, suggested by the previous practices with the 
monthly mortality data of Lithuania [11, 12].

Figure 1 illustrates the three scenarios that were simu-
lated. A detailed description about the value or distribu-
tions of variables can be found in the Additional file 1. 
For the first two scenarios, policy interventions were 
coded as abrupt permanent effects—i.e., assigning a 
value of 0 for all months preceding policy implementa-
tion and a value of 1 for all months following. For the 
third scenario where the policy implemented at time (T) 
needs 24 months to reach its full effect, the policy vari-
able was represented by a step function (2):

The ITS analyses were conducted on the simulated 
time series using generalized additive mixed models 
(GAMMs [4, 13];). Each simulated data set of three sce-
narios were analyzed using one of three GAMMs. The 
first GAMM (Model 1) assumes only an immediate level 
change, that is, the slope did not change after the inter-
vention. β1 indicates the overall time trend and β2 is the 
post-intervention level change. The ‘trend’ variable refers 
to the linear time sequence and ‘level’ variable refers to 
the policy intervention.

The second GAMM used was as follows:

In this case, β1 represents the pre-intervention trend, 
β2 is the level change following the intervention and β3 
shows the slope change following the intervention.

(2)X_Policy =







0 t < T
T−t
24

T < t < T + 24

1 t > T + 24

(3)Model 1 : y = β0 + β1trend + β2 levelt + et

(4)Model 2 ∶ y = �0 + �1trend + �2 levelt + �3
[

trend × levelt
]

+ et

Fig. 1  Illustration of the time trends of three scenarios
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The third GAMM used is as follows:

level′t here was coded according to formula (2), consid-
ering the amount of time that the interventions would 
need to fully take effect (in our example, 24 months). The 
simulated datasets were analyzed with the respectively 
matched model, i.e., dataset describing Scenario 1 was 
analyzed with Model 1, Scenario 2 with Model 2, etc.

Estimated policy impact
For each simulated cohort, the policy intervention effects 
were investigated with the matched GAMM model using 
two different methodological approaches, the: 1) ‘esti-
mated’ and 2) ‘predicted’ method, as described below:

1.	 In the estimated approach, the intervention effect 
equals the beta weight from the ITS model (i.e., the 
classic ITS approach). As we are working with death 
rates in this example, the number of deaths averted 
by the intervention of interest in the 12 months fol-
lowing the intervention is derived by multiplying 
the beta-weight for the effect on the age-standard-
ized mortality rate by the average population size 
for the 12 months following the intervention; and

2.	 In the predicted approach, there was a three-step 
process:

Step 1: The data before the intervention is used to 
determine the optimal GAM for the series.
Step 2: The GAM is used to forecast mortality rates 
for the 12 months following the intervention. For each 
month, the forecasted mortality rate and the 95% pre-
diction intervals (PIs) were calculated assuming that 
the forecast errors were normally distributed.
Step 3: The difference in mortality rates between 
observed and forecasted values after the interven-
tion were multiplied by the corresponding popula-
tion, resulting in an estimate of the absolute number 
of deaths being averted for each month. This estimate 
was considered to be the estimated number of averted 
deaths for the 12 months following the intervention, 
and the standard deviation was calculated by taking the 
square root of the combined variances of the predicted 
values, assuming independence between monthly data 
points. The 95% PI was further calculated assuming 
that the forecast errors were normally distributed.

In addition, sensitivity analyses to test the impact 
of model misspecification were conducted in which 

(5)
Model 3 ∶ y = �0 + �1trend + �2 level

�

t
+ �3

[

trend × level�
t

]

+ et

simulated data under Scenario 3 (a lagged effect) were 
analyzed with two simpler models: first, the data was 
analyzed using Model 1, which contains a time variable 
and policy, coded as a dummy variable: 0 before and 1 
after the intervention; second, Model 2 was used and a 
slope change was added. For each of the three scenarios 
and each of the sensitivity analyses, a total of 1000 data-
sets were simulated and analyzed. For each of simula-
tions, the estimated deaths prevented from the dataset 
were recorded. Under the Central Limit Theorem, the 
distribution of those estimates was approximately nor-
mal, and the 95% confidence interval (CI) was extracted 
over the sample of 1000 estimates. The coverage proba-
bility, defined as the proportion of iterations in which the 
true effect size was within the 95% CI surrounding the 
estimates, was then calculated.

Results
Scenario 1: immediate level change
When one simulated dataset was analyzed with the 
matched model, the two analytical approaches used 
produced similar estimates. In Scenario 1, for exam-
ple, when the policy was applied in the 5th year of 
the study period with an immediate level effect only, 
deaths prevented were estimated to be 56, 122 and 179 
when the effect size was − 5, − 10, and − 15, respec-
tively, using the estimated approach, which roughly 
corresponds to the (monthly) effect size multiplied by 
12 months, while the predicted approach resulted in 55, 
118, and 176 deaths prevented, respectively (Table  1), 
with the results differing by less than 5%. However, 
the estimates with the predicted three-step method 
have much wider Cis—for the previous example, the 
95% CIs were (1, 112), (71, 173) and (126, 233) using 
the estimated approach, compared to (− 43, 153), (24, 
213) and (77, 275) using the predicted approach. This 
is as expected since the predicted method only utilized 
the data points before the intervention, decreasing the 
data size increased the width of CIs. When the policy 
was applied in the middle of the study period (i.e., the 
9th year), mean estimates of death prevented were esti-
mated to be 61, 121, and 181 when the effect size was 
− 5, − 10, and − 15, respectively, using the estimated 
approach, which is almost exactly the same as the 
predicted approach. However, again and as expected 
given the higher amount of underlying data, the 95% 
CIs were much wider for the predicted approach com-
pared to the estimated approach. When the policy was 
applied in the later time of the study period—that is, 
the 13th year—the estimated number of deaths pre-
vented was also the same with both approaches, except 
that the 95% CIs were, once again, slightly wider for the 



Page 5 of 9Jiang et al. BMC Medical Research Methodology          (2022) 22:235 	

predicted approach. Specifically, they were (1117), (62, 
176), and (120, 238) when the effect size was − 5, − 10, 
and − 15, respectively, with the estimated approach, 
and (− 15, 133), (44, 192), and (102, 256), respectively, 
with the predicted approach.

Scenario 2: immediate level and slope change
For the second scenario with both an immediate-level 
change and a slope change, when the policy was applied 
in the 5th year of the study period, deaths prevented 

were estimated to be 52, 112, and 171 when the effect 
size was − 5, − 10, and − 15, respectively, using the esti-
mated approach, compared to 50, 111, and 171 using 
the predicted approach. Similar to the first scenario, the 
95% CIs were wider using the predicted approach. For 
example, they were (22, 82), (80,145), and (142, 202) 
when the effect size was − 5, − 10, and − 15, respec-
tively, using the estimated approach when the policy 
was applied in the 9th year, compared to (− 26, 131), 
(30, 191), and (94, 251), respectively, using the predicted 
approach.

Table 1  Number of deaths prevented and their 95% confidence intervals (CI) for the three scenarios and their various assumptions

CI Confidence interval
a In the 12 months following the intervention

Year of 
implementation

Approach Number of deaths 
preventeda

95% CI Number of deaths 
preventeda

95% CI Number of deaths 
preventeda

95% CI

Scenario 1 Effect size

−5 − 10 − 15

True value 60 120 180

5 Estimated 56 (1, 112) 122 (71, 173) 179 (126, 233)

Predicted 55 (−43, 153) 118 (24, 213) 176 (77, 275)

True value 60 120 180

9 Estimated 61 (0, 122) 121 (54, 188) 181 (118, 245)

Predicted 61 (−18, 140) 120 (41, 200) 181 (101, 261)

True value 50 120 180

13 Estimated 59 (1, 117) 119 (62, 176) 179 (120, 238)

Predicted 59 (−15, 133) 118 (44, 192) 179 (102, 256)

Scenario 2 Effect size

−5 −10 −15

True value 52 112 172

5 Estimated 52 (7, 96) 112 (67, 156) 171 (127, 215)

Predicted 50 (−50, 150) 111 (10, 212) 171 (71, 271)

True value 52 112 172

9 Estimated 52 (22, 82) 112 (80, 145) 172 (142, 202)

Predicted 53 (−26, 131) 111 (30, 191) 172 (94, 251)

True value 52 112 172

13 Estimated 52 (21, 82) 113 (81, 144) 171 (141, 202)

Predicted 51 (−23, 124) 111 (35, 187) 179 (94, 247)

Scenario 3 Effect size

−5 −10 −15

True value 1 17 33

5 Estimated 0 (− 28, 28) 17 (−11, 45) 33 (4, 62)

Predicted −1 (− 93, 91) 16 (−75, 108) 32 (− 59, 124)

True value 1 17 33

9 Estimated 1 (−19, 20) 17 (−3, 37) 33 (13, 52)

Predicted 0 (−74, 75) 15 (− 57, 88) 34 (−41, 108)

True value 1 17 33

13 Estimated 0 (−20, 21) 17 (−2, 35) 33 (14, 52)

Predicted 0 (− 68, 67) 15 (−53, 83) 32 (−38, 102)
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Scenario 3: lagged level and slope change
Similar patterns can be observed in the third scenario, 
where a lagged policy effect was simulated. When the 
policy was applied in the 5th year of the study period, 
deaths prevented were estimated to be 0, 17, and 33 
when the effect size was − 5, − 10, and − 15, respectively, 
using the estimated approach, compared to 0, 16 and 32, 
respectively, using the predicted approach. The predicted 
approach, again, had much wider 95% CIs. The lagged 
policy effect caused a much lower number of deaths 
averted by the intervention of interest in the 12 months 
following the intervention, compared to the previous two 
scenarios. The phenomenon was correctly captured with 
the matched models.

Model misspecification
When the analytical models were misspecified, where the 
dataset simulated from Scenario 3 was analyzed using 
Model 1 and Model 2, the estimated number of deaths 
prevented were very different depending on whether the 
predicted or estimated approach was used. In almost all 
circumstance, the estimated approach overestimated the 

true effect. The discrepancy was the most notable when 
the policy was applied early in the study period. For 
instance, for Scenario 3 (lagged level and slope change) 
in which the policy was applied in the 5th year assuming 
a small effect size (reduction of 5 deaths per 100,000), we 
ran Model I and obtained 45 (95% CI: − 12, 101) deaths 
prevented using the estimated approach in contrast to 
− 1 (95% CI: − 93, 91) using the predicted approach 
(Table  2). The discrepancy between the two approaches 
becomes smaller when the policy is applied later in the 
study period. For example, when the policy was applied in 
the 13th year of the study, the estimated approach found 
− 7 (95% CI: − 63, 50) deaths were prevented and the pre-
dicted approach found 0 (95% CI: − 68, 67) deaths were 
prevented—the true number of deaths prevented was 
one. Since the ITS of the predicted approach only used 
data points from before the intervention, a later interven-
tion means similar data points were used by the mode-
ling steps in both approaches; therefore, the discrepancy 
between the approaches is likely reduced. When the 
same simulated data were analyzed using Model 2, with 
level and slope changes but without consideration of 

Table 2  Sensitivity analyses: Number of deaths prevented after one year of policy implementation and their 95% confidence interval 
(CI) under Scenario 3 (lagged level and slope change) being analyzed with a misspecified model

CI Confidence interval
a In the 12 months following the intervention

Year of implementation Approach Number 
of deaths 
preventeda

95% CI Number 
of deaths 
preventeda

95% CI Number 
of deaths 
preventeda

95% CI

Scenario 3, using Model 1 Effect size

−5 −10 − 15

True values 1 17 33

5 Estimated 45 (−12, 101) 85 (21, 148) 107 (9, 205)

Predicted −1 (−93, 91) 16 (−77, 108) 32 (− 60, 124)

True values 1 17 33

9 Estimated 28 (− 36, 91) 61 (−8, 130) 91 (11, 171)

Predicted 1 (−73, 75) 16 (−59, 90) 34 (−41, 109)

True values 1 17 33

13 Estimated −7 (−63, 50) 33 (−24, 91) 74 (14, 134)

Predicted 0 (−68, 67) 15 (−55, 85) 32 (−38, 102)

Scenario 3, using Model 2 Effect size

−5 −10 −15

True values 1 17 33

5 Estimated 13 (−67, 94) 58 (−27, 142) 85 (−20, 191)

Predicted −1 (−93, 91) 16 (−75, 108) 32 (−60, 124)

True values 1 17 33

9 Estimated 13 (− 49, 75) 51 (−16, 117) 83 (1, 164)

Predicted 0 (−74, 75) 16 (−57, 89) 34 (−41, 109)

True values 1 17 33

13 Estimated 8 (−50, 66) 38 (−24, 99) 68 (3, 132)

Predicted 0 (−68, 67) 15 (−55, 84) 32 (−38, 102)
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the two-year lag time, the discrepancy between the two 
approaches was less pronounced. For example, when the 
policy was applied in the 5th year of the study with an 
effect size of − 5, the true number of deaths prevented 
remained 1, and the estimated approach resulted in 13 
(95% CI: − 67, 94) deaths prevented, while the predicted 
approach resulted in − 1 (95% CI: − 93, 91) deaths pre-
vented. Given that the Model 2 also has a slope change, 
the parameters more closely resembled the effects seen 
in Scenario 3 (lagged effect, and slope change). Thus, the 
Model 2 produced more accurate effects when misspeci-
fied to Scenario 3.

When the dataset simulated from Scenario 1 was ana-
lyzed using Model 2, the estimated number of deaths 
prevented were very similar depending on whether the 
predicted or the estimated approach was used. Whereas, 
when it was analyzed using Model 3, the predicted 
method provided estimates closer to the true value than 
the estimated method. In other circumstances, e.g., when 
Scenario 2 was analyzed using Model 1 and Model 3, the 
predicted approach also produced estimates closer to the 
true values and performed better consistently (results are 
presented in the Additional file 1). It appears that the pre-
dicted approach was more robust under misspecification.

When the modelled policy effects (immediate level 
change, immediate level and slope change, or lagged 
level and slope change) were appropriately matched to 
the type of models used to analyze the simulated data, 
the practical effect (i.e., the number of deaths prevented) 
of the policy intervention can be very accurately deter-
mined. In fact, the coverage probability ranged between 
85.6–90.7% (Table 3). Even when the models were mis-
specified, i.e., where the ITS model did not take the 
policy lagged effect into consideration, the coverage 
probabilities remained fairly stable. However, under the 

assumption that the policy had a lagged effect, the like-
lihood of the misspecified model estimates reflect the 
true effect size decreased significantly, especially when 
the policy was applied later in the study period. When 
Model 1 was applied to Scenario 3 and the policy was 
applied in the 13th year, the coverage probability was 
30.7, 11.2, and 4.0% when the effect size was − 5, − 10, 
and − 15, respectively. On the other hand, when Model 
2 without consideration of a lagged effect was applied to 
Scenario 3, the coverage probability was 61.5, 25.2, and 
6.8% when the effect size was − 5, − 10, and − 15, respec-
tively—i.e., slightly higher than Model 1. The coverage 
probabilities for the three scenarios with unmatched 
analysis depended largely on the year of implementation. 
For example, when Scenario 3 was analyzed using Model 
1, the coverage probability was 0.858 when the policy 
was applied in the 5th year, compared to 0.307 when the 
policy was applied in the 13th year.

Discussion
This simulation study began by fitting matched models 
to the simulated datasets and applying various circum-
stances—e.g., the point in time when the intervention 
happened within the series and different effect sizes of 
intervention, etc.—in order to gain a better understand-
ing of how to best estimate the number of outcomes 
prevented following an effective population-level inter-
vention. We found that when the model is correctly 
specified, both the estimated and predicted approaches 
produce similar estimates with a good likelihood of cap-
turing the intervention effects, though the estimated 
approach often produces a much narrower 95% CIs 
than the predicted approach. However, when the model 
is misspecified, the predicted approach was found to 
produce estimates that were much closer to the true 

Table 3  Coverage probabilities for the three scenarios with matched and unmatched analysis

Effect size Year of implementation Coverage of 95% CI - matched analysis Coverage of 95% CI - unmatched 
analysis

Scenario 1 with 
Model 1

Scenario 2 with 
Model 2

Scenario 3 with 
Model 3

Scenario 3 with 
Model 1

Scenario 3 
with Model 
2

−5 5 0.856 0.899 0.878 0.858 0.738

9 0.885 0.884 0.875 0.804 0.652

13 0.871 0.884 0.869 0.307 0.615

−10 5 0.892 0.896 0.879 0.715 0.623

9 0.832 0.875 0.880 0.510 0.423

13 0.882 0.873 0.889 0.112 0.252

−15 5 0.872 0.907 0.871 0.398 0.396

9 0.882 0.897 0.874 0.256 0.210

13 0.870 0.884 0.882 0.040 0.068
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number of deaths prevented. As such, when one can-
not determine which model is best for the data, the pre-
dicted approach should be used instead of the estimated 
approach.

Further, when the model is misspecified, the inter-
vention effect might not be detected, especially when 
the policy occurs later in the study period, and it takes 
time for its full effect to be observed. Even when the 
number of time points post-implementation appears 
large enough (for criteria see [4]), the coverage prob-
ability was markedly reduced. This suggests that studies 
with unbalanced designs (in terms of time points before 
and after the intervention) and fewer data points after 
the intervention tend to have less probability of iden-
tifying a true effect when compared to studies with an 
equal number of time points before and after the inter-
vention. In such cases, one should be cautious when 
conducting ITS analyses even when the sample size 
appears large enough according to common practice 
[4], since the power also depends on when the inter-
vention occurs within the series [14]. Additionally, the 
lag effect of an intervention on a particular outcome of 
interest needs to be considered carefully at the study 
design stage (i.e., when developing the models). How-
ever, lag specifications are currently not well addressed 
in the literature [10].

There are a few limitations to the current study. First, 
we assumed a linear progression of the lagged effects 
(i.e., a gradual increase with equal increments over 
time). However, depending on the outcome of inter-
est, it may take on a different form of progression and 
be subject to the law of diminishing marginal value 
(i.e., there comes a point when there is a lessening of 
impact). Secondly, the parameters used in the simula-
tion study are based on the estimates abstracted from 
an analysis of Lithuania mortality data [12], and from 
our experience working with this or similar datasets [15, 
16]. Therefore, the parameters used might not reflect all 
possibilities. For example, the seasonality might have 
different characteristics and the autoregressive compo-
nent of GAMM model might have different signals for 
different studies.

In conclusion, aside from such parameter considera-
tions, one needs to be cautious when estimating the num-
ber of deaths prevented when 1) the interventions occur 
later rather than in the middle of the time-series; 2) there 
is the possibility of a lag between the time a health policy 
is implemented and the shift in the outcome of interest; 
and 3) when there is a chance of model misspecification. 
Unfortunately, these conditions describe the majority of 
practical examples in applied ITS [17]. Improved model 
specification techniques via pooling knowledge from 
other studies on similar interventions, better knowledge 

on shape of temporal impact of interventions, and more 
simulation studies to better understand where most 
biases may be generated are key for improving this 
important application field for public policy.
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