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Abstract 

Background:  Increasing attention is being given to assessing treatment effect heterogeneity among individuals 
belonging to qualitatively different latent subgroups. Inference routinely proceeds by first partitioning the individuals 
into subgroups, then estimating the subgroup-specific average treatment effects. However, because the subgroups 
are only latently associated with the observed variables, the actual individual subgroup memberships are rarely 
known with certainty in practice and thus have to be imputed. Ignoring the uncertainty in the imputed memberships 
precludes misclassification errors, potentially leading to biased results and incorrect conclusions.

Methods:  We propose a strategy for assessing the sensitivity of inference to classification uncertainty when using 
such classify-analyze approaches for subgroup effect analyses. We exploit each individual’s typically nonzero predic‑
tive or posterior subgroup membership probabilities to gauge the stability of the resultant subgroup-specific average 
causal effects estimates over different, carefully selected subsets of the individuals. Because the membership probabil‑
ities are subject to sampling variability, we propose Monte Carlo confidence intervals that explicitly acknowledge the 
imprecision in the estimated subgroup memberships via perturbations using a parametric bootstrap. The proposal is 
widely applicable and avoids stringent causal or structural assumptions that existing bias-adjustment or bias-correc‑
tion methods rely on.

Results:  Using two different publicly available real-world datasets, we illustrate how the proposed strategy sup‑
plements existing latent subgroup effect analyses to shed light on the potential impact of classification uncertainty 
on inference. First, individuals are partitioned into latent subgroups based on their medical and health history. Then 
within each fixed latent subgroup, the average treatment effect is assessed using an augmented inverse propensity 
score weighted estimator. Finally, utilizing the proposed sensitivity analysis reveals different subgroup-specific effects 
that are mostly insensitive to potential misclassification.

Conclusions:  Our proposed sensitivity analysis is straightforward to implement, provides both graphical and numeri‑
cal summaries, and readily permits assessing the sensitivity of any machine learning-based causal effect estimator to 
classification uncertainty. We recommend making such sensitivity analyses more routine in latent subgroup effect 
analyses.
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Introduction
Researchers in the behavioral, health and social sci-
ences are increasingly interested in investigating how the 
causal effect of a treatment on an outcome differs among 
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individuals in qualitatively different latent subgroups; see 
e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. For example, the effect of a 
medical intervention, such as right heart catheterization, 
on the six-month mortality of critically ill patients [11] 
may differ across patients with different latent risk pro-
files that depend on their medical and health status. But 
it is often impractical or impossible to measure all pos-
sible (baseline or pretreatment) covariates that are jointly 
associated with the latent subgrouping that character-
izes treatment effect heterogeneity. Moreover, estimating 
fine-grained treatment effects moderated by all possible 
combinations of the observed covariates may be practi-
cally impossible due to the curse of dimensionality; and, 
even if possible, will likely lack adequate statistical power 
to detect distinct subgroup-specific effects.

An alternative approach is to first partition the individ-
uals by exploiting the observed covariates’ associations 
with the latent subgrouping, then estimate the average 
treatment effect (ATE) within each imputed subgroup. 
For example, latent subgroups have been defined based 
on classes or components derived from observed covari-
ates (and treatment) using either latent class models [12, 
13, 14, 15, 16, 17, 18, 19], or Gaussian mixture models 
[20, 21], or mixture (zero-inflated) negative binomial 
regression models for (zero-inflated) count data [22], 
or mixture logistic regression models for treatment 
given covariates [23, 24, 25], or longitudinal growth pat-
terns for classifying patients [26, 27, 28, 29]. Hence each 
individual’s (predictive or posterior) probabilities of 
belonging to each distinct latent subgroup are typically 
estimated using finite mixture models, such as (classical) 
latent class models [30, 31, 32, 33, 34, 35], model-based 
clustering [36], or finite mixture regressions [37]; see [38] 
for applications of such models in medical research.

Limitations of existing methods
Regardless of how the latent subgroups are defined, 
under a “classify-analyze” approach (also known as 
“modal” or “hard” assignment), each individual’s imputed 
subgroup membership is determined simply as the sub-
group for which their probability of membership is great-
est. The resulting partitions are subsequently fixed when 
analyzing the subgroup-specific average causal effects. 
Therefore, each imputed subgroup can potentially be 
contaminated with individuals from a different subgroup, 
resulting in biased estimates and misleading substantive 
conclusions. Such classification errors arise even under 
an “expected-value” approach (also known as “propor-
tional” or “soft” assignment) where each individual is 
assigned to every possible latent subgroup using frac-
tional weights proportional to their membership prob-
abilities [39, 40]. Because misclassification results from 
prediction and not sampling errors, the biases persist 

even in large samples or at the population level.1 None-
theless, misclassification biases can be corrected under 
specific modeling and structural assumptions. For exam-
ple, when using a latent class model, [13], following [41] 
and [42], derives unbiased estimators of the class-specific 
average treatment effect.

But such methods rule out any covariates associated 
with the (potential) outcomes from being indicators of 
the latent classes; see note 16 in Assumption 2 of [13]. 
One must therefore impose a structural assumption that 
latent class indicators be conditionally independent of 
all other observed variables given the latent class, such 
as in the causal diagrams of Fig.  1a and b. Such condi-
tional independence between latent class indicators and 
“external” observed variables, that are not indicators of 
the latent class, is a standard assumption of basic latent 
class analysis [43] but is often violated in practice [44]. 
In practice, any of the indicators may simultaneously be 
causes of treatment or outcome, as represented by the 
red arrows in Fig.  1c and d, thus invalidating the bias-
adjusted methods that are predicated on the absence 
of such effects. Recent modifications to accommodate 
effects between latent class indicators and external vari-
ables are limited to “one or two” ([45], p.361) external 
variables, which can be unrealistic when there are sev-
eral covariates that directly affect the indicators, which 
in turn directly affect both treatment and outcome, such 
as in Fig.  1d. Under such complex settings, “one-step” 
estimation of the (joint) likelihood assuming a paramet-
ric model for all the variables is recommended [45]. But 
such parametric approaches rule out utilizing machine 
learning-based treatment effect estimators that are 
increasingly prevalent for causal inference [46, 47, 48]. 
Furthermore, existing bias-correction methods offer no 
insight into how the effect estimator’s sensitivity to clas-
sification uncertainty can systematically affect the sub-
group effects.

Proposed sensitivity analysis to classification uncertainty
Given the above shortcomings, in this paper, we propose 
a novel sensitivity analysis strategy that proceeds along 
different lines than existing methods that merely seek to 
correct for misclassification biases. In the first part, we 
exploit the (predictive or posterior) subgroup member-
ship probabilities that reflect the quality and strength 
of evidence of the individual memberships to construct 
different (nested) subsets for each subgroup carefully. In 

1  We acknowledge that in principle when each individual’s predicted or pos-
terior probability of belonging to a specific subgroup is 100%, misclassification 
can essentially be ruled out under the maximum a posteriori probability allo-
cation rule. In such an ideal but practically uncommon scenario, the proposed 
method in this paper would then be unnecessary.
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the second part, the subgroup-specific average treatment 
effect estimates are then calculated for each different 
subset. The impact of classification uncertainty on the 
(in)stability of the effect estimates can then be inspected 
visually using graphical displays and assessed empirically 
using numerical summaries. Moreover, to acknowledge 
the inherent sampling uncertainty in the membership 
probabilities, we adopt a parametric bootstrap following 
[49] for inference about the subgroup effects.

Therefore, the proposal offers several attractive features 
by directly assessing and quantifying the impact of clas-
sification uncertainty on subgroup effect analyses. First, 

no restrictions on the causal or structural model, such 
as the absence of indicator-treatment and indicator-
outcome relations, are imposed when defining the latent 
subgroups. Hence, all observed covariates may be used 
simultaneously as indicators of the latent subgroups and 
as conditioning variables for confounding adjustment. 
Second, any treatment effect estimator can be utilized 
without modeling assumptions, such as being com-
pelled to include a statistical interaction term between 
the treatment and the latent subgroup under parametric 
outcome regression models. Hence, the treatment and 
outcome can be continuous or non-continuous, with 

Fig. 1  Causal diagrams depicting different causal (or structural) relationships between the indicators of the latent class C∗ , and the “external” 
observed variables such as treatment (Z) and outcome (Y). In the left column (subfigures a and c), no covariates are predictors of the latent class, so 
(X1, . . . , Xp) are indicators. In the right column (subfigures b and d), a subset of the covariates (X1, . . . , Xq) are (explanatory) predictors of the latent 
class and its indicators (Xq+1, . . . , Xp) . In the top row (subfigures a and b), the indicators are conditionally independent of all external variables given 
the latent class, as represented by the absence of arrows linking the indicators with any other observed variables. In the bottom row (subfigures c 
and d), the indicators are permitted to affect, or be affected by, external observed variables, as represented by the red arrows. Rectangular nodes 
denote observed variables, while round nodes denote latent variables
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non-continuous variables accommodated using non-
linear models. We will demonstrate the procedure using 
a doubly-robust augmented inverse propensity weighted 
(DR-AIPW) estimator [50, 51, 52] that is endowed with 
attractive statistical properties and combines (paramet-
ric regression) models for the outcome given treatment 
and covariates and for the treatment given covariates. 
Third, any finite mixture model - including but not lim-
ited to latent class analysis - can be utilized to define (and 
measure) the latent subgroups that characterize treat-
ment effect heterogeneity. Hence, indicators of the latent 
classes may be continuous, categorical, or a combination 
of both. Finally, existing bias correction methods can be 
readily incorporated simply by using the bias-corrected 
estimate as a benchmark for comparing the relative (in)
sensitivity of the trajectory of the effect estimator. There-
fore, the proposed sensitivity analysis strategy can offer 
researchers a more rigorous assessment of the stability of 
substantive subgroup effect analyses in the presence of 
classification uncertainty.

The remainder of this article is as follows. In Section 2 
notation is introduced, and the subgroup-specific causal 
effect of interest and its estimator is defined. Complica-
tions arising from misclassifying individuals to the latent 
subgroups are described. In Section 3, the proposed sen-
sitivity analysis to classification uncertainty is presented. 
In Section 4 the proposed methods are illustrated using 
two different publicly available datasets. A discussion 
of existing methods, and future directions of research, 
is provided in Section  5. All methods are implemented 
using the open-source statistical computing environ-
ment R [53]. Steps to implement the parametric boot-
strap under each of two common finite mixture modeling 
approaches are presented in the Online Supplemental 
Materials. Scripts replicating the illustrations and the 
simulation studies are freely available online2.

Potential outcomes framework 
for subgroup‑specific average treatment effects
We first define the causal effects of interest using the 
potential outcomes framework and describe the DR-
AIPW effect estimator. Let Yi(z) denote the potential 
outcome for individual i had they, possibly counter to 
fact, received treatment Z = z . Let C∗

i  denote the actual 
subgroup membership for individual i, where asterisks 
denote true (latent or unknown) values in this article. Let 
C denote the set of possible values for C∗

i  ; e.g., C = {1, 2} 
when there are only two subgroups. The individuals can 
therefore be partitioned into |C| subgroups based on 
their values of C∗

i  . Denote the vector of true subgroup 

memberships for all individuals by C∗
= (C∗

1 , . . . ,C
∗
n) . 

As with common stepwise latent class methods, we 
will assume that the number of subgroups |C| is known. 
When there are no a priori assumptions about the num-
ber of latent classes, the general recommendation for 
common latent class methods is a stepwise approach 
[54, 55]. Multiple (measurement) models for the latent 
class and its indicators only, each with a different num-
ber of latent classes, are first fitted to the observed data. 
The number of classes is then selected using comparative 
model parsimony criteria, such as the Akaike informa-
tion criterion (AIC) [56], Bayesian information criterion 
(BIC) [57] or model entropy; as well as other substantive 
criteria; see e.g., [58] for practical advice. We also apply 
selected criteria later in the illustrations. The selected 
number of classes is then fixed when introducing other 
(external) observed variables, such as covariates that 
may affect the latent class (i.e., “explanatory variables”), 
and treatment and outcome that may be affected by the 
latent class (i.e., “distal outcomes”). In this paper, we 
focus on only the uncertainty due to possible misclassi-
fication and not the uncertainty due to model selection 
and identification. We, therefore, adopt the same prev-
alent practice, including the assumption that the latent 
subgroups are causally antecedent to treatment and out-
come, as is common when using established stepwise 
latent class methods [43].

Define the subgroup-specific (average causal) effect 
among individuals belonging to the same subgroup c ∈ C 
as τc = E{Y (1)− Y (0)|C∗

= c} , where the expectation is 
over the subpopulation of individuals actually belonging 
to subgroup c. When treatment is randomly assigned, the 
subgroup-specific effects can be unbiasedly estimated by 
the difference between the average observed outcomes 
in the two treatment groups, among individuals in each 
subgroup. But when treatment is non-randomly assigned, 
baseline common causes of the treatment and the out-
come, henceforth termed confounders, induce spurious 
correlations between treatment and outcome. Pre-treat-
ment, or baseline, covariates that include any potential 
confounders must thus be adjusted for to eliminate biases 
due to observed confounding [59]. In this paper, we will 
assume that adjusting for the observed covariates is suffi-
cient to eliminate all associations between treatment and 
outcome due to confounders. In other words, there is no 
unmeasured confounding between the observed treat-
ment Z and potential outcomes {Y (1),Y (0)} within strata 
defined by unique levels of the observed covariates. Such 
an assumption is routinely made to identify causal effects 
of interest, and we discuss in Section  5 complications 
from relaxing this assumption. Under the above assump-
tion of no unmeasured confounding, an unbiased estima-
tor of the subgroup-specific effect τc can be obtained by 2  https://​github.​com/​wwloh/​heter​ogene​ous-​effec​ts-​under-​miscl​assif​icati​on

https://github.com/wwloh/heterogeneous-effects-under-misclassification
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conditioning on the observed covariates within each true 
latent subgroup. We describe such an estimator in the 
next section.

DR‑AIPW estimator
In this section, we describe the doubly-robust augmented 
inverse propensity weighted (DR-AIPW) estimator of the 
subgroup-specific effect τc . Let Zi and X i = (X1i, . . . ,Xpi) 
denote the observed treatment and vector of p base-
line covariates, respectively, for individual i. For a binary 
treatment, the propensity score [60] for an individual i 
in subgroup c is defined as the conditional probability of 
receiving treatment given the observed covariates; i.e., 
Pr(Zi = 1|X i,C

∗

i = c) . For notational simplicity, we hence-
forth denote the individual (subgroup-specific) propensity 
score by p(X i,C

∗

i = c) = Pr(Zi = 1|X i,C
∗

i = c) . Let I(A) 
denote the indicator function that takes value 1 when event 
A occurs, or 0 otherwise. Define the inverse propensity 
(score) weight [61, 62] for individual i (in subgroup c) by:

Let m(Zi,X i,C
∗

i = c) = E(Yi|Zi,X i,C
∗

i = c) denote the 
assumed outcome regression model given treatment and 
covariates within the (true) subgroup C∗

i = c . Let 
m∗

c =

n

i=1

I(C∗

i = c) denote the number of individuals in 

the (true) subgroup C∗

i = c . Following [51], the DR-
AIPW estimator of τc is:

When both propensity score (PS) and outcome models 
are correctly specified, the variance of the estimator is 
consistently estimated by:

(1)

Wc
i
(C∗) = I(C∗

i
= c)

{

Zi

p(X i,C
∗
i
= c)

+
1 − Zi

1 − p(X i,C
∗
i
= c)

}

.

(2)

τ̂c(C
∗)

=
1

m∗
c

n∑

i=1

I(C∗

i = c)
[
(2Zi − 1)Wc

i (C
∗)Yi − {Zi − p(X i,C

∗

i = c)}

×

{
1

p(X i,C
∗

i = c)
m(Zi = 1,X i,C

∗

i = c)+
1

1− p(X i,C
∗

i = c)
m(Zi = 0,X i,C

∗

i = c)

}]
.

(3)

V̂c(C
∗) =

1

m∗
c (m

∗
c − 1)

n∑

i=1

I(C∗

i = c)IFi(C
∗

i = c)2;

(4)

IFi(C
∗

i
= c) = I(C∗

i
= c)

[

(2Zi − 1)Wc
i
(C∗)Yi − {Zi − p(X i ,C

∗

i
= c)}

×

{

1

p(X i ,C
∗
i
= c)

m(Zi = 1,X i ,C
∗

i
= c)

(5)+
1

1 − p(X i,C
∗
i
= c)

m(Zi = 0,X i,C
∗

i
= c)

}]

− �̂c(C
∗).

A Wald 100(1− α)% confidence interval (CI) can be con-
structed by adding and subtracting the point estimate 
τ̂c(C

∗) by the product of the α/2 quantile of a standard 
normal distribution and 

√

V̂c(C
∗).

The DR-AIPW estimator is attractive because it is 
asymptotically unbiased when both the propensity score 
model and outcome model are correctly specified and 
consistent if only one model is correctly specified [50, 
63]. Moreover, it permits reducing the reliance on routine 
parametric regression models that demand (correctly) 
specifying the exact relationships between the covariates 
and treatment, or outcome, or both. Propensity scores 
that simultaneously adjust for all observed confounders 
and do not depend on any other covariates - observed or 
otherwise - can be used to ensure that the observed con-
founders are similarly distributed (i.e., “balanced”) in the 
treated and untreated groups [64]. Hence, we will adopt 
the DR-AIPW estimator in developing the proposed sen-
sitivity analysis for the above reasons.

In this paper, we exploit covariate balancing propensity 
scores (CBPS) [65] to estimate the subgroup-specific pro-
pensity score model for treatment given covariates. CBPS 
estimators of the model coefficients maximize covariate 
balance toward eliminating confounding bias, whereas 
conventional maximum likelihood estimators optimize 
predictive accuracy [66], potentially leading to unstable 
weights.3  In the applied examples used to illustrate the 
proposed method later, we will adopt a logistic regression 
model with main effects for the covariates as the propen-

sity score model. Furthermore, for the subgroup-specific 
outcome model, we will consider a saturated logistic 
regression model with all possible interactions between 
the treatment and the covariates. To avoid overfitting in 
the outcome model, we then utilize elastic net regulari-
zation or penalization [69] to estimate the coefficients. 
The elastic net penalty is a mixture of the ridge regres-
sion [70] penalty and least absolute shrinkage and selec-
tion operator (LASSO) [71] penalty. The ridge regression 
penalty partially deletes all variables by shrinking the 

3  In practice, the weights can be trimmed by progressively truncating extreme 
values in the tails to interior percentiles of the initial estimated propensity 
score distribution [67]. Evaluating specific methods for trimming propensity 
scores [68] is beyond the scope of this paper.
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coefficient estimates toward, but not entirely to, zero. In 
contrast, the LASSO penalty selects variables by setting 
a coefficient estimate precisely to zero, thus completely 
deleting that variable. The elastic net inherits the benefits 
of both penalties and is especially useful when there are 
many correlated variables [72]. In the current context, the 
covariates can be indicators of the latent subgroup, and 
therefore highly correlated due to their shared depend-
ence (on the latent subgroup).

Implications of misclassification
Frequently in practice, the latent subgroup memberships 
C

∗ are unknown and have to be imputed. Let Ci denote an 
imputed subgroup for individual i, where dependence on 
a statistical model for obtaining Ci is implied and omitted 
for notational convenience. Denote the resulting vector 
of imputed subgroup memberships by C = (C1, . . . ,Cn) . 
The subgroup-specific estimator given a vector of 
imputed subgroup memberships C is obtained by plug-
ging in C for C∗ in (2). Given the imputed subgroup 
memberships C , let p̂(X i,Ci = c) and m̂(Zi,X i,Ci = c) 
denote the estimated individual propensity scores and 
predicted outcomes, respectively, among those in the 
partition with Ci = c , and let τ̂c(C) denote the resulting 
effect estimator. But when individuals are misclassified, 
i.e., C  = C

∗ , so that the imputed subgroups are contami-
nated by individuals from different latent subgroups, and 
the (true) propensity score and outcome models differ 
across different subgroups, then the estimated propen-
sity score model p̂(X i,Ci = c) and the estimated out-
come model m̂(Zi,X i,Ci = c) are inconsistent for the 
true models p(X i,C

∗

i = c) and m(Zi,X i,C
∗

i = c) , respec-
tively. The subgroup-specific (average causal) effects are 
thus unidentified under misclassification [13], even when 
there is no unmeasured confounding of the treatment 
and the outcome.

Sensitivity analysis to classification uncertainty
When the imputed subgroup memberships are obtained 
using finite mixture models, each individual has (typi-
cally nonzero) estimated predictive or posterior prob-
abilities of belonging to each distinct subgroup. Denote 
the estimated probabilities of an individual i belong-
ing to each possible subgroup by �̂ic ≥ 0, c ∈ C , where ∑

c �̂ic = 1 . Similar to Ci , the dependence on a statisti-
cal model for estimating �̂ic is implied and omitted for 
notational convenience. Under modal assignment, an 
individual’s imputed (latent) subgroup is determined 
by the most likely subgroup they belong to (with the 
largest probability); i.e., Ci = argmaxc∈C �̂ic . Holding 
the imputed subgroup memberships fixed when sub-
sequently estimating the subgroup-specific effects 
ignores information conveyed by the probabilistic 

memberships. For example, suppose that individual 
i has subgroup membership probability �̂i1 = 0.51 , 
whereas another individual j has probability �̂j1 = 0.98 . 
While both individuals have the same imputed sub-
group when estimating the subgroup-specific causal 
effect, between the two individuals, individual i is more 
likely to be misclassified. It is thus judicious to assess 
the change in the subgroup-specific effect estimates 
if individual i did not belong to subgroup 1, ahead of 
individual j. We build on this idea to develop a strat-
egy for assessing the sensitivity of inference about the 
subgroup-specific effects to classification uncertainty.

Trajectories of subgroup‑specific treatment effects
We propose assessing the impact of possible misclas-
sification on a subgroup-specific effect by methodically 
considering different partitions of individuals belonging 
to that subgroup. In particular, we exploit the probabil-
istic subgroup memberships by ordering the individuals 
according to their (estimated) values of �̂ic for a par-
ticular subgroup c. Let Ŝc(m) denote the partition of 
m individuals belonging to subgroup c; the “hat” sym-
bol denotes the dependence on (�̂ic, i = 1, . . . , n, c ∈ C) . 
Starting with the empty set Ŝc(0) = ∅ , repeat the fol-
lowing steps for j = 1, . . . , n in turn: 

1	 Let i∗ index the individual with the largest subgroup 
membership probability, among all individuals: (i) 
who are not currently in Ŝc(j − 1) , and (ii) whose 
imputed subgroup would be c; i.e., 

 If Ŝc(j − 1) already includes all individuals whose 
imputed subgroup would be c, so that none of the 
remaining candidate individuals would have been 
imputed to the subgroup c under modal assignment, 
then determine i∗ simply as (the index of ) the indi-
vidual with the largest subgroup membership prob-
ability; i.e., 

2	 Add individual i∗ to Ŝc(j − 1) to determine the next 
partition; i.e., Ŝc(j) = i∗

⋃
Ŝc(j − 1).

3	 Calculate the subgroup-specific (average treatment) 
effect estimate among individuals indexed by Ŝc(j).

The largest partition is simply the observed sample 
Ŝc(n) = (1, . . . , n) . The sequence of nested partitions 
of individuals {Ŝc(j) : j = 1, . . . , n} , therefore, induces 

(6)

i∗ = argmax
i

�̂ic × I{i ∉ Ŝc(j − 1)} × I(c = argmax
c�∈C

�̂ic� ).

(7)i∗ = argmax
i

�̂ic × I{i ∉ Ŝc(j − 1)}.
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a sequence of subgroup-specific effect estimates based 
on an increasing number of individuals (one at a time) 
belonging to that subgroup c. When there exists a parti-
tion Ŝc(j

∗) for some value of j∗ ∈ {1, . . . , n} that includes 
only individuals actually belonging to subgroup c 
(thereby excluding all individuals who do not belong to 
subgroup c), then the subgroup-specific effect estimate 
using this partition – consisting only of correctly clas-
sified individuals – will be consistent for its population 
value. In the next section, we will demonstrate, using 
selected examples from the illustrations, graphical sum-
maries of the subgroup membership probabilities, and 
the constructed sequence of effect estimates that can be 
visually inspected to assess the relative stability or (in)
sensitivity of the subgroup-specific effect.

We have elected to add individuals who would have been 
imputed to subgroup c ahead of others who would have 
been imputed to a different subgroup. When there are 
more than two subgroups, an individual i with an imputed 
subgroup Ci = c may nonetheless have subgroup member-
ship probability �̂ic smaller than another individual j with 
a different imputed subgroup Cj  = c . Consider the follow-
ing simple example with three subgroups. The (posterior) 
subgroup membership probabilities for two individu-
als i and j are respectively: (�̂i1, �̂i2, �̂i3) = (0.4, 0.3, 0.3) 
and (�̂j1, �̂j2, �̂j3) = (0.45, 0.55, 0) . Because our focus 
is on the sensitivity of the effect estimate based on the 
imputed subgroup memberships (under model assign-
ment), we would add to subgroup 1 individual i (who has 
stronger evidence of belonging to subgroup 1 among all 
subgroups) ahead of individual j (who has weaker evi-
dence relative to subgroup 2). It follows that the effect 
estimate τ̂c(C) , where the imputed subgroup membership 
vector C is determined under model assignment using 
(�̂ic, i = 1, . . . , n, c ∈ C) , corresponds to the effect estimate 
based on Ŝc(mc) , where mc =

∑n
i=1 I(Ci = c) denotes the 

number of individuals imputed to subgroup c.
The subgroup-specific effect estimator can be calcu-

lated only when the individual weights within that sub-
group are well-defined. In particular, the theoretical 
or deterministic “positivity” assumption states that all 
true (but unknown) propensity scores must be strictly 
between zero and one for all values in the covariate space 
[67, 73]. But the positivity assumption can nonetheless 
be violated practically or randomly in a finite sample. For 
example, there may be only treated or untreated indi-
viduals, but not both, in the same subgroup, or only spe-
cific covariate values are observed in the data at hand so 
that there is “complete separation” in the fitted propen-
sity score model in a subgroup. Then propensity scores 
cannot be estimated in each subgroup, and the effect 
estimate cannot be calculated. Moreover, when there 
are only a few individuals in a subgroup, the estimated 

propensity scores can be very close to zero or one, and 
the resulting weights can take on very large values, lead-
ing to highly unstable weights and effect estimates that 
fluctuate dramatically as individuals are added to (or 
removed from) that subgroup. Such potentially unin-
formative fluctuations can be avoided simply by focusing 
on partitions Ŝc(j) indexed by particular values of j. For 
example, suppose interest is only in individuals whose 
membership probabilities lie between 0.99 and 0.01. Then 
let m∗

c =
∑n

i=1 I(�̂ic ≥ 0.99) be the number of individu-
als whose probabilities of belonging to subgroup c are at 
least as large as 0.99, and let m∗∗

c =
∑n

i=1 I(�̂ic ≥ 0.01) 
be the number of individuals whose probabilities of 
belonging to subgroup c are at least as large as 0.01. 
The sequence of subgroup-specific effect estimates 
could then be calculated based on only the partitions 
{Ŝc(j) : j = m∗

c , . . . ,mc, . . . ,m
∗∗
c } . The user-specified 

thresholds may be decided based on whether there are 
insights to be gained from adding individuals (one at a 
time) whose membership probabilities are outside rea-
sonable thresholds. Because our focus is on the impact 
of classification uncertainty, we have elected to impose 
thresholds based on individuals’ predictive or posterior 
probability or likelihood of belonging to a particular sub-
group, rather than (arbitrary) absolute subgroup propor-
tions or sizes alone.

Graphical assessment of sensitivity to classification 
uncertainty
In this section, we describe how to visually inspect the 
relative stability or (in)sensitivity of the constructed tra-
jectories of the subgroup-specific effect estimates from 
the preceding section. We employ two graphical summa-
ries for each subgroup.

Membership probability plot
In the first graphical summary for each subgroup, 
we plot the membership probabilities of individuals 
belonging to that subgroup, such as those in the top 
panels of Fig. 2 (for three different examples from dif-
ferent datasets). In each panel, the curve represents the 
cumulative proportion of individuals (horizontal axis) 
whose subgroup membership probabilities �̂ic for that 
subgroup are greater than or equal to a specified value 
(on the vertical axis). Therefore, the curve is monotoni-
cally decreasing by construction because for any two 
membership probability values l and l′ where l < l′ , 
there are at least as many individuals with membership 
probabilities greater than or equal to l as there are for 
l′ . Each curve graphically depicts the distribution of the 
membership probabilities across the sample. A curve 
with a steeper gradient (thus more closely resembling 
a step function), e.g., Example 1 in the top left panel 
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of Fig. 2, indicates a more distinctive partition of indi-
viduals who either belong (with membership probabili-
ties closer to one) or do not belong (with membership 
probabilities closer to zero), to that subgroup. In con-
trast, a curve with a gentler gradient, e.g., Examples 2 
and 3 in the top center and right panels of Fig. 2, sug-
gests that there are “tentative” individuals whose prob-
abilities of belonging to that subgroup may be closer to 
0.5. The presence of (many) tentative individuals sug-
gests an unclear separation of individuals into members 
and non-members of that latent subgroup. We reiterate 
that our interest is not merely in the values of the prob-
abilities but in how well-separated possible members 
and non-members in each latent subgroup are. Finally, 
a vertical broken line demarcates the proportion of 
individuals imputed to a subgroup.

Treatment effect trajectory plot
In the second graphical summary for each subgroup, 
we plot the trajectory of the subgroup-specific average 
treatment effect estimates described in the preceding 

section. The trajectory is indexed by the sequence of 
(nested) partitions of individuals added one at a time 
to that subgroup, such as those shown in the bottom 
panels of Fig.  2. To aid visual clarity, we will simply 
plot (on the horizontal axis) the same cumulative pro-
portion of individuals belonging to each subgroup as 
for the membership probabilities in the corresponding 
panel above. The values of the effect point estimates are 
plotted on the vertical axis. (The vertical axes in Fig. 2 
differed because these examples are drawn from differ-
ent datasets.) We recommend using the same scale and 
range of values displayed across the classes for a single 
dataset, as we will demonstrate using the applied exam-
ples in the next section. An empty circle in each panel 
marks the subgroup-specific effect estimate based on 
the imputed subgroup memberships. Its value on the 
horizontal axis is the same as that of the vertical broken 
line in the corresponding panel above. In these exam-
ples, we imposed thresholds of 0.99 and 0.01 for the 
membership probabilities to focus attention on the (in)
stability of the trajectory due to individuals who could 

Fig. 2  Examples of plots for gauging the (in)stability of the subgroup-specific (average) treatment effect estimates. The plots are for three different 
subgroups from different datasets. In the top panel, the cumulative proportion of individuals (horizontal axis) whose subgroup membership 
probabilities are above a certain value (on the vertical axis) are plotted. The vertical broken line indicates the proportion of individuals imputed to 
that subgroup. In the bottom panel, the treatment effect estimates as individuals are added one at a time to that subgroup are plotted. The empty 
circles, and error bars, indicate subgroup-specific effect estimates, and 95% CIs, respectively, based on the imputed subgroup memberships



Page 9 of 18Loh and Kim ﻿BMC Medical Research Methodology          (2022) 22:247 	

reasonably be considered as potentially belonging to 
that subgroup.

We can then gauge the relative stability of the sub-
group-specific effect estimates when either fewer or 
more (tentative) individuals are presumed to belong to 
that subgroup compared to those imputed to that sub-
group. The uncertainty in the estimates can be (par-
tially) accounted for by assessing its stability relative to 
the 95% CI based on the imputed subgroup member-
ships, which are plotted simply as vertical error bars. 
In Examples 1 and 2 (bottom left and middle panels of 
Fig. 2), the subgroup-specific effect estimates were rela-
tively stable even as fewer (or more) tentative individuals 
were in that subgroup, with the point estimates remain-
ing within the 95% CI. In contrast, in Example 3 (bottom 
right panel of Fig.  2), the subgroup-specific effect esti-
mates displayed larger fluctuations. In particular, when 
the subgroup comprised more individuals (with smaller 
membership probabilities), the estimates were outside 
the lower bound of the CI that was based on the imputed 
memberships. Such instability suggests a sensitivity to 
potential misclassification beyond the sampling uncer-
tainty captured by the 95% CI, which merely assumes the 
imputed subgroups to be fixed. In the next section, we 
describe how to construct perturbed CIs that account for 
sampling uncertainty in both the classification and effect 
estimation models. An unstable trajectory with values 
that are either outside the CI or (dramatically) different 
for different subsets of individuals suggests a possibility 
of contamination by members of other subgroups. Fitting 
a local smoother, or calculating moving averages, can be 
used to further inspect the (in)stability of the trajectory 
numerically; we defer exploring such methods to future 
work. Caution when interpreting the subgroup-specific 
effects is thus advised, and investigators should revisit the 
definitions of the latent subgroups and models for esti-
mating the membership probabilities.

Perturbed confidence intervals
Because each individual can have non-zero probabilities 
of belonging to different classes, multiple pseudo-class 
draws of the imputed class memberships, e.g., assuming 
a binomial or multinomial distribution with the given 
probabilities can be made to classify individuals sto-
chastically [74]. But such an approach accounts for only 
the imprecision from coarsening the probabilistic class 
memberships to deterministic partitions and is no bet-
ter than a single modal assignment [43]. Whereas the 
imputed subgroup memberships are (prediction) error-
prone measures of the latent subgroup memberships, the 
estimated subgroup membership probabilities, based on 
a membership model fitted to the observed sample, are 
subject to sampling uncertainty. Continuing the example 

above, suppose that the individual with subgroup mem-
bership probabilities (�̂j1, �̂j2, �̂j3) = (0.45, 0.55, 0) actu-
ally belonged to subgroup 1, but the estimated values 
of �̂j1 < �̂j2 were due to sampling variability in the esti-
mated parameters of the finite mixture model. Our inter-
est is not merely imputing this individual to subgroup 1 
or 2, either 45% or 55% of the time over repeated random 
classifications, but in acknowledging the sampling uncer-
tainty in the probabilities themselves.

To more honestly reflect the uncertainty in the esti-
mated subgroup membership probabilities when car-
rying out inference of the subgroup effects, we propose 
perturbing the probabilities as follows: 

1	 Randomly draw a value of the subgroup membership 
model parameter estimates from their joint sampling 
distribution, which we denote simply by Ĝ(·) . For 
each individual i = 1, . . . , n , calculate the perturbed 
subgroup membership probabilities, which we 
denote by (�̃ic, c ∈ C) , using the ∼ symbol, after plug-
ging in the randomly drawn values of the parameters 
in the subgroup membership model. Details on how 
to carry out this step under each of two common 
finite mixture modeling approaches, including exam-
ples using freely available R packages, are provided in 
the Online Supplemental Materials.

2	 Given the perturbed subgroup membership proba-
bilities (�̃ic, i = 1, . . . , n, c ∈ C) , determine each indi-
vidual’s (perturbed) imputed subgroup using modal 
assignment as C̃i = argmaxc∈C �̃ic . Calculate each 
subgroup-specific effect with the resulting perturbed 
subgroup memberships C̃ = (C̃1, . . . , C̃n) . For each 
perturbation, construct the 100(1− α)% CI under 
the (perturbed) imputed subgroup memberships C̃.

3	 Repeat both steps above, e.g., 1000 times. Combine 
the individual CIs across all perturbations to deter-
mine a “perturbed” CI by setting the lower (or upper) 
endpoint to be the 2.5 (or 97.5) percentile among the 
lower (or upper) endpoints of all the individual CIs.

To reduce the risks of label switching in practice, the sub-
groups in each perturbation can be relabelled to maxi-
mize the similarity between the modal assignment based 
on the perturbed probabilities and the estimated class 
memberships. We elected to eliminate extreme end-
points for CIs from individual perturbations to improve 
the insensitivity of the resulting (combined) perturbed 
CI to extreme values. In principle, the perturbed CI may 
be constructed using the union method instead, where 
the lower (upper) endpoint is the minimum (maximum) 
among all the separate lower (upper) endpoints for the 
CIs. However, such intervals are susceptible to a single 
perturbation that yields extreme CIs and may potentially 
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be unduly conservative with coverage levels exceeding 
their nominal levels [75].

In the Online Supplemental Materials, we use simu-
lated examples to empirically demonstrate that merely 
holding the imputed subgroup memberships fixed can 
lead to CIs that contain the true subgroup effect (far) 
below the nominal coverage level. In contrast, the per-
turbed CIs include the true subgroup effect more fre-
quently, albeit possibly below the nominal coverage level, 
because the bias remains uncorrected. Moreover, we 
evaluate empirically via Monte Carlo simulation the abil-
ity of a constructed trajectory of the subgroup-specific 
effect estimates – using only the estimated subgroup 
membership probabilities – to recover the true effect. We 
consider subgroups defined as either latent classes in a 
latent class model or mixture components in a Gaussian 
mixture model.

In general, pointwise confidence bands for the trajec-
tory of each subgroup-specific effect can be similarly 
constructed using the perturbed probabilities; we defer 
details to the Online Supplemental Materials. Such a par-
ametric bootstrap approach has been employed in other 
contexts, e.g., item response theory score estimation [76, 
77]. Finally, while standard errors of coefficient estimates 
in parametric models that account for the uncertainty in 
the estimated class memberships are available [78], such 
parametric approaches are limited to outcome mod-
els that parametrize the treatment effect as a regression 
coefficient. Extending such approaches to the DR-AIPW 
estimator utilized in this paper is a direction for future 
work.

Applied examples using real‑world data
Percutaneous Coronary Intervention
The “lindner” dataset was from an observational study 
on the effectiveness of an augmented Percutaneous 
Coronary Intervention (PCI) on six-month survival. The 
dataset is publicly available as part of the PSAgraph-
ics [79] and twang [80] packages in R, and contains 
information on 996 patients at the Lindner Center, Ohio 
Heart Health, Cincinnati in 1997. We utilized the version 
of the dataset available as part of the twang package. 
The treatment was whether a patient received usual PCI 
treatment alone ( Z = 0 ) or PCI treatment deliberately 
augmented by a cascade blocker Abciximab ( Z = 1 ); 698 
patients received Abciximab. The outcome was whether 
a patient survived to six months ( Y = 1 ) or not ( Y = 0 ); 
970 patients survived to six months. The following covar-
iates were recorded: whether the patient suffered from a 
recent acute myocardial infarction within the previous 
seven days or not; their left ventricle ejection fraction 
(percentage between 0 and 90); the number of vessels 
involved in an initial PCI procedure (integer between 

0 to 5); whether a coronary stent was deployed or not; 
whether the patient had been diagnosed with diabetes 
mellitus or not; the patient’s height in centimeters; and 
whether the patient was female or male.

For the sole purpose of illustration, we considered a 
latent class model with the five covariates measuring the 
patients’ medical and health history as manifest indica-
tors of the latent class. Among the manifest indicators, 
only the ventricle ejection fraction variable was continu-
ous; the remaining variables were categorical. Hence, 
solely for fitting a latent class model to the observed 
covariates in this illustrating example, the continu-
ous variable was discretized by binning into the sample 
quintiles to obtain a (coarsely discrete) categorical vari-
able. We fitted different candidate measurement models 
for the latent class and its indicators only, each with a 
fixed number of latent classes between two and ten (so 
that there were nine candidate models in total), using the 
poLCA package [81] in R. We selected the model with 
two latent classes because it minimized the BIC, and the 
AIC was only slightly larger than the minimum value 
for the three-class model. We report the average value 
for each of the five manifest indicators by latent class 
in Table 1. These values indicated the probability (if the 
indicator was binary) or average quintile (if the indicator 
was discretized) that a patient representative of that class 
would exhibit for that characteristic.

Because treatment was non-randomly assigned 
(patients who received Abciximab tended to be more 
severely diseased and thus more likely to suffer from six-
month mortality), the PS and outcome models with all 
available (discretized) covariates were fitted within each 
imputed class to calculate the DR-AIPW effect estima-
tor. Both models included the two demographic variables 
(height and gender) excluded from the latent class model. 

Table 1  Average value for each manifest indicator used in the 
measurement model by latent class for the lindner data. The 
p-value from a Chi-squared test of the frequency table of class 
membership versus values of each indicator is displayed in the 
rightmost column. The estimated proportion in each class is 
stated in the last row. All results were rounded to three decimal 
places

Indicator Class 1 Class 2 p-value

Coronary stent (stent) 0.717 0.639 0.003

Diagnosed with diabetes mellitus (diabetic) 0.196 0.241 0.006

Recent acute myocardial infarction 
(acutemi)

0.000 0.230 0.000

Left ventricle ejection fraction (ejecfrac) 2.643 1.077 0.000

Number of vessels involved in an initial PCI 
procedure (ves1proc)

1.324 1.423 0.000



Page 11 of 18Loh and Kim ﻿BMC Medical Research Methodology          (2022) 22:247 	

We assumed no unmeasured confounding within each 
class after adjusting for all the measured covariates. The 
class-specific effect estimates (listed in increasing order 
of the lower endpoint of the 95% CI shown in parenthe-
ses) based on the imputed class memberships are dis-
played in the second row of Table 2. The results suggested 
a positive effect of augmented PCI only among about half 
the patients. These were patients who were more likely to 
have had a recent acute myocardial infarction within the 
previous seven days but with a smaller number of vessels 
involved in an initial PCI procedure. Nonetheless, there 
was insufficient evidence of treatment effect heterogene-
ity between the estimated classes (due to the overlapping 
CIs). In contrast, the DR-AIPW estimator for the entire 
sample was 0.06 with a 95% CI of (0.02, 0.10), suggesting 
a beneficial average effect across all individuals.

The graphical summaries of the posterior membership 
probabilities of individuals belonging to each latent class, 
and the trajectories of the class-specific effect estimates 
as individuals were added one at a time to each class, are 
plotted in the top and bottom panels of Fig.  3 respec-
tively. Neither latent class was perfectly separated, as 
indicated by the gradients of the curves in the top panels, 
with tentative individuals in each class. The trajectories 
displayed in the bottom row of panels suggested that the 
class-specific effect estimates for both classes appeared 
stable relative to the 95% CI based on the imputed class 
memberships. The positive treatment effect in class 2 
gradually tended toward zero only as more individu-
als, possibly from class 1, were added to that class. The 
endpoints of the perturbed 95% CIs are displayed in the 
third row of Table  2 and plotted as horizontal dotted 
lines in the bottom row of Fig.  3. While the perturbed 
CI for class 1 was slightly wider than that based on the 
imputed memberships, the perturbed CI for class 2 was 
much wider. But the average effect of augmented PCI on 
six-month survival among individuals in class 2, which 

constituted about half the sample, remained statistically 
significant (at 5% level), even after accounting for the 
sampling variability in the estimated membership prob-
abilities, with a perturbed 95% CI of (0.02, 0.30).

Right Heart Catheterization
The “RHC” dataset was from an observational study on 
the effectiveness of Right Heart Catheterization in the 
initial care of critically ill patients [11]. It was distributed 
as part of the Hmisc package in R. The dataset contained 
information on hospitalized adult patients at five medi-
cal centers in the U.S. who participated in the Study to 
Understand Prognoses and Preferences for Outcomes 
and Risks of Treatments (SUPPORT). The treatment was 
whether a patient received an RHC within 24 hours of 
admission ( Z = 1 ) or not ( Z = 0 ); 2184 patients received 
an RHC. The outcome was whether a patient died at 
any time up to 180 days since admission ( Y = 1 ) or not 
( Y = 0 ); 3722 patients died within the considered time-
frame. There were 5735 participants with 73 covariates.

For the sole purpose of illustration, we considered a 
latent class model with 60 of the covariates measuring 
the patients’ medical and health history as manifest indi-
cators of the latent class. Among the manifest indicators, 
20 were continuous; each was discretized by binning into 
the sample quintiles to obtain (coarsely discrete) categor-
ical variables. We fitted six possible (measurement) mod-
els for the latent class and its indicators only, each with 
a different number of latent classes (between two and 
seven4), using the poLCA package [81] in R. We selected 
the model with four latent classes because it minimized 
the AIC and BIC, and the subgroup-specific DR-AIPW 
estimators given the imputed class memberships could 
be calculated. While larger models (five to seven-class 
models) had lower values of the AIC and BIC, the sub-
group-specific effect estimator could not be calculated 
for certain imputed classes that either contained only 
treated or untreated or had only survived or deceased 
individuals. Due to space constraints, we report the aver-
age value for each of the manifest indicators in the Online 
Supplemental Materials.

Because treatment was non-randomly assigned 
(patients who received an RHC tended to have existing 
health or medical conditions, and thus more likely to 
suffer from six-month mortality), the PS and outcome 
models with all available (discretized) covariates were 
fitted within each imputed class to calculate the DR-
AIPW effect estimator. Both models included the 13 
demographic and socioeconomic status variables (age, 
gender, ethnicity, years of education, income, and health 

Table 2  Estimated class proportions (top row), and class-
specific average treatment effects (second and third rows), 
for the latent classes in the lindner data. The class-specific 
confidence intervals (CIs) were based on estimated class 
memberships that were either held fixed (second row), or based 
on perturbed probabilities that accounted for the uncertainty 
in the estimates (third row). The classes were listed in increasing 
order of the lower endpoints of the CIs based on the estimated 
memberships. All results were rounded to two decimal places

Latent class 1 2

Proportion 0.51 0.49

Fixed 0.01 (-0.01, 0.03) 0.09 (0.03, 0.16)

Perturbed 0.01 (-0.02, 0.05) 0.09 (0.02, 0.30)

4  The algorithm for an eight-class model failed to converge.
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insurance) excluded from the latent class model. We 
assumed no unmeasured confounding within each class 
after adjusting for all the measured covariates. The class-
specific effect estimates (listed in increasing order of the 
lower endpoint of the 95% CI shown in parentheses) 
based on the imputed class memberships are displayed in 

the second row of Table 3. The results suggested a harm-
ful effect of RHC only among about 40% of the patients. 
These were patients who were more likely to have had 
multiple organ system failure (MOSF) with sepsis, cir-
rhosis, gastrointestinal diagnoses, chronic renal disease 
or hemodialysis, or upper GI bleeding and were less likely 

Fig. 3  Plots for assessing the stability of the class-specific (average) treatment effect estimates in the lindner data. Details on how to interpret 
each plot are described in Section 3.2 and in the caption of Fig. 2. The endpoints of the perturbed CI for the effect within each class are plotted as 
horizontal dotted lines. The upper endpoint of the CI for class 2 is much larger than that of the other class and thus omitted to improve visualization. 
The sample average treatment effect is plotted as a horizontal solid gray line

Table 3  Estimated class proportions (top row), and class-specific average treatment effects (second and third rows), for the latent 
classes in the RHC data. The class-specific confidence intervals were based on estimated class memberships that were either held 
fixed (second row), or based on perturbed probabilities that accounted for the uncertainty in the estimates (third row). The classes 
were listed in increasing order of the lower endpoints of the CIs based on the estimated memberships. All results were rounded to two 
decimal places

Latent class 1 2 3 4

Proportion 0.20 0.32 0.08 0.39

Fixed 0.01 (-0.05, 0.07) 0.04 (-0.03, 0.11) 0.09 (-0.02, 0.20) 0.08 (0.03, 0.13)

Perturbed 0.01 (-0.05, 0.07) 0.04 (-0.04, 0.12) 0.09 (-0.57, 0.31) 0.08 (0.03, 0.14)
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to have cancer. Nonetheless, there was insufficient evi-
dence of treatment effect heterogeneity between the esti-
mated classes (due to the overlapping CIs). In contrast, 
the DR-AIPW estimator for the entire sample was 0.06 
with a 95% CI of (0.04, 0.09), suggesting a statistically sig-
nificant harmful average effect across all individuals.

The graphical summaries of the posterior member-
ship probabilities of individuals belonging to each latent 
class, and the trajectories of the class-specific effect esti-
mates as individuals were added one at a time to each 
class, are plotted in the top and bottom rows of panels 
of Fig. 4 respectively. None of the four latent classes were 
perfectly separated, as indicated by the gradual gradients 
of the curves in the top panels, with tentative individu-
als in each class. The trajectories displayed in the bottom 
row of panels suggested that the class-specific effect esti-
mates were relatively stable for classes 1, 2, and 4, mak-
ing up about 92% of the sample. However, the trajectory 
of estimates for the remaining 8% of patients in class 3 
fluctuated as more individuals were added to that class, 
beyond the sampling variability under the imputed class 
memberships. The endpoints of the perturbed 95% CIs 
are displayed in the third row of Table 3 and plotted as 
horizontal dotted lines in the bottom row of Fig. 4. While 

the perturbed CIs for classes 1, 2, and 4 were slightly 
wider than those based on the imputed memberships, 
the perturbed CI for class 3 was much wider. The average 
effect of RHC on six-month mortality among individu-
als in class 4, which constituted about 40% of the sample, 
remained statistically significant (at 5% level), even after 
accounting for the sampling variability in the estimated 
membership probabilities, with a perturbed 95% CI of 
(0.03, 0.14).

Discussion
Comparisons with existing work using latent class models
When latent class models are used to impute the indi-
vidual subgroup memberships, specific existing bias cor-
rection procedures may be considered. Bray et  al. [12] 
recommend an “inclusive latent class analysis” where the 
individual posterior probabilities of belonging to each 
latent class, and the estimated average potential out-
comes, are conditioned on the same set of covariates. 
In the latent class model (in the first “classify” step), all 
observed baseline covariates that are conditioned on in 
the class-specific effect estimator (in the second “ana-
lyze” step) should thus be included as independent “con-
comitant” predictors or explanatory variables. However, 
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Fig. 4  Plots for assessing the stability of the class-specific (average) treatment effect estimates in the RHC data. Details on how to interpret each 
plot are described in Section 3.2 and in the caption of Fig. 2. The endpoints of the perturbed CI for the effect within each class are plotted as 
horizontal dotted lines. The CI for class 3 is much wider than those of the other classes and thus omitted to improve visualization. The sample 
average treatment effect is plotted as a horizontal solid gray line
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as demonstrated in the applied examples, assuming such 
“concomitant-variable” latent class models [82] may 
require distinguishing between observed covariates that 
are either manifest (“auxiliary” response) indicators, 
or concomitant (independent) predictors, of the latent 
classes [83]. Gardner [13], following [41] and [42], derives 
unbiased estimators of the true latent class-specific aver-
age potential outcomes that correct for potential errors 
in the imputed latent class memberships. However, the 
validity of the estimator is predicated on assuming con-
ditional independence between the latent class indicators 
and external observed variables given the latent class. 
Recent modifications of bias-adjusted methods that allow 
for violations of this assumption are limited to settings 
with “one or two” ([45], p.361) external variables, which 
can be unrealistic when there are several covariates (i.e., 
explanatory variables) that directly affect the indicators, 
which in turn directly affect both treatment and outcome 
(i.e., “distal” outcomes). Moreover, it is unclear whether 
non-continuous external variables are permitted and 
whether these methods are implemented in R outside of 
specific software [84, 85].

In this paper, we have focused on how the effects of 
an observed treatment on an observed outcome may 
differ among individuals belonging to different latent 
classes defined using the observed covariates. Lanza 
et al. [86] and Clouth et al. [87] consider settings where 
an observed treatment affects an unobserved outcome, 
whose levels take the form of latent classes while adjust-
ing for observed covariates that serve as explanatory 
variables for the latent classes. In contrast, Bray et  al. 
[12], Bray et al. [88], and Schuler [89], consider settings 
where an unobserved treatment, whose levels take the 
form of latent classes, affect observed outcomes while 
adjusting for observed covariates that serve as explana-
tory variables for the latent classes. We have focused on 
settings where, in the context of latent class analysis, the 
observed treatment and outcome are both “distal out-
come” (response) variables that are affected by the latent 
(explanatory) class. In principle, latent class methods for 
estimating the association between latent (explanatory) 
classes and observed (response) variables when com-
bining measurement models with structural regression 
models [42, 90], may be used to estimate class-specific 
treatment effects. But these methods would demand 
additional stringent assumptions about (i) how the latent 
class variable moderates the effect of treatment on the 
outcome, and (ii) adjusting for the observed confounders 
of treatment and outcome in the (correctly-specified lin-
ear) outcome model; see, e.g., [91] and [92]. Mayer et al. 
[92] consider effect heterogeneity by assuming covariate-
treatment (statistical) interaction terms to evaluate (con-
ditional) treatment effects for all unique combinations 

of the (observed) covariates. Moreover, outcome regres-
sion models which demand specifying complex interac-
tions between possible moderators with treatment, such 
as (latent) class-treatment, covariate-treatment, and 
class-covariate-treatment terms, can become unwieldy, 
unstable, and uninterpretable when there are more than 
a handful of covariates. In contrast, we propose using an 
estimator that (i) permits either continuous or non-con-
tinuous outcomes by accommodating non-linear models 
for the latter, and (ii) is not contingent on correctly mod-
eling the outcome in terms of (possibly complex) func-
tions of the latent classes, treatment, and covariates.

Limitations and future directions
There are several avenues for future research that extend 
the ideas developed in this paper. When substantive 
interest is in assessing treatment effects on the outcome 
that are moderated by (potentially complicated functions 
of ) the covariates [92], a finite mixture regression model 
[37] for the outcome may be considered as a more par-
simonious parametric alternative for categorizing indi-
viduals. More parsimonious approaches to fitting the 
estimation models within each class have the benefits of 
borrowing information on the confounding mechanisms 
across classes and easier model interpretation. But such 
approaches would require extending the DR-AIPW esti-
mator to allow for such an outcome model; moreover, 
perturbing the class membership probabilities would 
require accounting for the (joint) sampling variability of 
the parameters in the outcome model and the propen-
sity score model. Moreover, it is rarely known in practice 
the extent to which confounding mechanisms are either 
similar or differ across classes. A flexible approach, there-
fore, permits researchers to utilize any suitable estima-
tion method within each class. In future work, we will 
explore effect estimators using data-adaptive nonpara-
metric machine learning-based algorithms which utilize 
sample splitting, cross-fitting, and averaging to reduce 
the risk of overfitting [93], and compare them with par-
ametric approaches which permit correcting for clas-
sification errors but may be prone to structural model 
misspecification.

For the sole purpose of illustration, we made three 
simplifying assumptions in the applied examples. First, 
because common latent class methods are restricted to 
manifest indicators being (unordered) categorical vari-
ables, we discretized continuous variables which were 
indicators of the latent classes. In general, indicators can 
consist of categorical and continuous variables. Hence, 
an alternative to latent class analysis under such settings 
is to implement model-based clustering of a combination 
of binary and Gaussian data, such as FLXMCmvcombi 
in the flexmix package [94]. Second, as with other 
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latent class methods, we assumed the number of latent 
classes to be known a priori, and we used the widely 
adopted AIC and BIC model selection criteria to deter-
mine the number of classes. Hence, as with other latent 
class methods, a specified subgroup or class member-
ship model can only be fitted to observed data with a suf-
ficiently large sample size and a relatively small number 
of latent classes. A further complication for researchers 
seeking to test class-specific treatment effects is that they 
must further take into account the feasibility of fitting 
fully class-specific structural models. Third, we assumed 
that the missing data are missing completely at random, 
so that a complete case analysis is appropriate [95]. In 
practice, researchers should consider other methods 
which allow for missing data when estimating latent class 
models with concomitant variables or multilevel latent 
class models, such as MultiLCIRT [96].  For example, 
[97] proposed a causal latent class model using a dynamic 
propensity score method to estimate weights in order to 
discover latent subgroups of patients with a latent class 
model estimated with the MultiLCIRT package.

In this paper, we have defined subgroups using the 
baseline covariates alone. Alternatively, the classes may 
be defined as part of a propensity score model that simul-
taneously fits more than one regression to the observed 
data with unknown partitions. For example, [25] imple-
mented such finite mixture logistic regression models as 
propensity score models (under the multilevel setting) 
that partition the treatment selection processes into dis-
tinct latent classes. But a finite mixture logistic regression 
(with more than one component) for a binary depend-
ent variable is unfeasible in general because a Bernoulli 
mixture model (with only one trial) is identifiable if and 
only if there is just one component [98, 99]. Extend-
ing the proposed sensitivity analysis to multilevel mix-
ture logistic regression models for the propensity score 
would thus require different approaches that preserve 
the cluster structure when adding individuals to each 
subgroup. The proposed method can be readily adapted 
for quantitative or continuous treatments by utilizing 
generalized propensity scores for the treatment [100]. 
For example, discrete mixtures of linear regression mod-
els [94] can be utilized to estimate the subgroup-specific 
generalized propensity score models. Extending the 
proposed sensitivity analysis to longitudinal data, such 
as when treatment directly influences the probability of 
being in a certain latent class on the first time occasion 
and the probability to transit from a certain latent class 
to another over time [101], is complicated. Because the 
latent class membership probabilities change over time, 
the constructed partitions – and subsequently trajec-
tories of class-specific effect estimates – may similarly 

change over time, which can make assessing stability 
challenging.

Permitting unmeasured confounding due to mis-
classification (e.g., when unmeasured confounding is 
limited to a particular subgroup [102], and individu-
als from that subgroup are misclassified) introduces an 
additional source of bias. Conversely, misclassification 
may potentially result from unmeasured confounding 
when variables that are simultaneously indicators of 
the latent subgroups and common causes of treatment 
and outcome are unmeasured. For simplicity, we have 
focused on the conceptual development of the sensitivity 
analysis procedure assuming all confounders are meas-
ured and defer addressing more complex scenarios with 
potentially different sources of biases to future work. 
Finally, we considered just two different classes of finite 
mixture models where the covariates were used exclu-
sively to measure the latent classes merely to motivate 
the proposed sensitivity analysis procedure. In principle, 
nonparametric soft clustering approaches, such as “pos-
sibilistic fuzzy C-means” [103] may be accommodated 
in the proposed strategy. Such methods partition indi-
viduals into distinct classes without assuming a latent 
(parametric) model for the observed data distribution, 
allowing each individual to belong to multiple classes 
simultaneously. Membership grades used to measure the 
degree to which each individual belongs to each given 
class may be derived to sum to one across the classes, 
but need not represent a probabilistic measure for 
ordering the individuals by their (decreasing) likelihood 
of misclassification. Further work is also required to 
quantify the uncertainty in the individual membership 
grades toward perturbing the class membership prob-
abilities when assessing the trajectories of class-specific 
effect estimates.
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