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Abstract 

Semi-continuous data characterized by an excessive proportion of zeros and right-skewed continuous positive values 
appear frequently in medical research. One example would be the pharmaceutical expenditure (PE) data for which a 
substantial proportion of subjects investigated may report zero. Two-part mixed-effects models have been developed 
to analyse clustered measures of semi-continuous data from multilevel studies. In this study, we propose a new flex-
ible two-part mixed-effects model with skew distributions for nested semi-continuous cost data under the framework 
of a Bayesian approach. The proposed model specification consists of two mixed-effects models linked by the cor-
related random effects: Part I) a model on the occurrence of positive values using a generalized logistic mixed model; 
and Part II) a model on the magnitude of positive values using a linear mixed model where the model errors follow 
skew distributions including beta-prime (BP). The proposed method is illustrated with pharmaceutical expenditure 
data from a multilevel observational study and the analytic results are reported by comparing potential models under 
different skew distributions. Simulation studies are conducted to assess the performance of the proposed model. The 
DIC3, LPML, WAIC, and LOO as the Bayesian model selection criteria and measures of divergence used to compare the 
models.
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Introduction
Semi-continuous data featured with an excessive pro-
portion of zeros and right-skewed positive values arise 
frequently in health economics and health services 
research [1]. Examples include alcohol consumption, 
household-level consumption of food items, medical 
cost, and substance abuse symptom scales. Statisti-
cal models with normality assumptions ignoring the 
skewness and the spike at zero are not suitable for this 

type of data and may lead to substantial bias and incor-
rect statistical inferences. Two-part (zero-augmented) 
models, originating in econometrics [2, 3], have been 
developed extensively in the last three decades to ana-
lyse this type of data and have been applied to scientific 
fields other than economics such as clinical research 
and health services. In two-part models, we view a 
semi-continuous variable as the result of two processes: 
one binomial process determining whether the positive 
value occurs and one continuous process determin-
ing the actual value given it is nonzero. Therefore, a 
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two-part model consists of two components, with the 
first component (i.e., Part I) modelling the probability 
of a response being positive using the probit or logis-
tic regression, and the second component (i.e., Part II) 
modelling the conditional mean of the positive values 
(given positive values occurred) using the continuous 
regression. According to the data structures, various 
methods have been developed for analysing cross-sec-
tional and longitudinal semi-continuous data [3–7]. 
Olsen and Schafter [6] first extended the two-part mod-
els developed by Duan et al. [3] and Manning et al. [8] 
for cross-sectional data to the longitudinal setting by 
introducing correlated random-effects into the logit and 
log-normal components, respectively, and applied them 
to longitudinal alcohol data. In the two-part mixed-
effects models, the binomial process is typically mod-
elled with mixed-effects logistic or probit regression, 
and the continuous process is naturally modelled via 
linear mixed models (LMMs). The random-effects in the 
two components are generally assumed to be correlated 
through a multivariate normal distribution structure. 
Ignoring the between-component association mistak-
enly can yield biased estimates in the second part of the 
model [9]. The correlated random-effects can capture 
not only the between-component association but also 
the within-subject correlation among repeated meas-
urements collected from the same individual and nested 
data. A between-component correlation means that the 
process giving rise to the positive values is related to 
the magnitude of the observed value given that a posi-
tive response occurred. For example, in a data collection 
of self-reported daily drinks (DDD) where zero repre-
sents no daily drinks and the continuous positive values 
reflect the mean of drinks per day, a positive correlation 
suggests that an individual with high odds of drinking 
tended to drink more alcohol [10].

For the positive part of a semi-continuous variable, 
LMMs with a normality assumption were used by Hus-
ted et al. [11] and Su et al. [9]. However, the positive part 
of a semi-continuous variable is often right-skewed. The 
logarithmic transformation was the most commonly used 
approach to correct the skewness [6, 7] and other mono-
tone increasing functions such as Box-Cox transformation 
that would make the positive component approximately 
normal were also explored [12, 13]. The limitations with 
data transformation in Part II include reduced informa-
tion, difficulty in interpreting the results and possible het-
eroscedasticity [13, 14]. An alternative approach is to use 
generalized linear mixed models (GLMMs) with distri-
butions in the exponential family that can model skewed 
data, such as Log-Normal, Log-Skew-Normal [15], 

Gamma [13], Inverse Gamma, Inverse Gaussian [16], Beta 
[17], Bridge [18], Generalized Gamma family, and Weibull 
distributions [19]. It is noted that GLMMs often involve 
complicated iterative procedures in estimation which may 
lead to intensive computation burden and non-conver-
gence issues. It would be most effective to use a flexible 
distribution to model the right skewed positive values in 
two-part models. Recently, studies have been presented 
using the beta-prime (BP) distribution to fit long-tail 
semi-continuous responses [10, 20, 21]. There is very lim-
ited research on the application of this skew distribution 
in a two-part mixed-effects model [22]. This study is an 
extension of Kamyari et al. (2021), where random effects 
are added to the linear predictor terms by using real two-
level data.

Parameter estimations in two-part modelling could 
be computationally difficult. For two-part models with 
independent random-effects, maximum likelihood esti-
mates (MLE) can be derived by fitting separate mixed-
effects model to each part [1]. For the correlated two-part 
mixed-effects model with log-normal distribution on the 
positive values, Olsen and Shafter [6] and Tooze et al. [7] 
developed different maximum likelihood approaches. 
Several authors have proposed Bayesian approaches to 
fit the two-part models [17, 23–27]. For example, Cooper 
et  al. [23] used a Bayesian approach via Markov Chain 
Monte Carlo (MCMC) to fit a probit-lognormal corre-
lated two-part model on medical cost data.

As a result, In this study, we propose a two-part 
mixed-effects model with a logistic mixed model on the 
occurrence of positive values and a GLMM with BP dis-
tribution on the continuous positive values using the 
Bayesian approach via MCMC procedure with applica-
tion to a three-level pharmaceutical expenditure data. 
The data used for this study was extracted from the 
Iranian pharmaceutical expenditure (PE-2018) survey. 
The survey was a cross-sectional study that had been 
conducted by the National Center for Health Insurance 
Research, Iran Health Insurance Organization. PE-2018 
is a dataset of yearly pharmaceutical expenditure per per-
son conducted in 429 cities in Iran.

The rest of the article is organized as follows. At the 
beginning of Methods, we describe the BP regression 
model. In Model specification, we present the two-
part mixed effects model for responses with BP dis-
tribution. In Numerical study, we apply the proposed 
methodologies to real data and report the analysis 
results. In Simulations, simulation studies are con-
ducted to assess the performance of the proposed 
models. Finally, we conclude the article with a discus-
sion in Discussion.
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Methods
Beta‑prime regression model
The BP distribution [28, 29] is also known as inverted 
beta distribution or beta distribution of the second 
kind, often the model of choice for fitting semi-con-
tinuous data where the response variable is measured 
continuously on the positive real line (Y > 0) because 
of the flexibility it provides in terms of the variety of 
shapes it can accommodate. The probability density 
function (PDF) of a BP distributed random variable Y 
parameterized in terms of its mean μ and a precision 
parameter ψ is given by

where B denote the beta function, μ > 0, ψ > 0, 
E(Y) = μ, and Var(Y) = (μ(1 + μ))/ψ.

Figure  1 displays some plots of the density func-
tion in Eq. (1) for some parameter values. It is evident 
that the distribution is very flexible and it can be an 
interesting alternative to other distributions with posi-
tive support. Figure  1 shows that for a fixed value of 
the mean μ, higher values of ψ lead to a reduction of 
Var(Y), and vice versa. If Y has PDF as in Eq. (1), we 
denote Y~BP(μ, ψ). Next, to connect the covariate vec-
tor Xk, k = 1, …, m to the random sample Y1, Y2, …, Ym 
of Y, we use a suitable link function g1 that maps the 
mean interval (0, +∞) onto the real line. This is given 
as g1(µk) = X ′

kβ , where β is the vector of regression 
parameters, and the first element of Xk is 1 to accom-
modate the intercept. The precision parameter ψk is 
either assumed constant [30, 31] or regressed onto 
the covariates [30, 32] via another link function g2, 
such that g2(ψk) = Z ′

kγ  , where Zk is a covariate vector 
(not necessarily similar to Xk) and γ is the correspond-
ing vector of regression parameters. Similar to Xk, Zk 
also accommodates an intercept. The link functions 

(1)

f
(
y|𝜇,𝜓

)
=

y𝜇(𝜓+1)−1
(
1 + y

)−[𝜇(𝜓+1)+𝜓+2]

B(𝜇(1 + 𝜓),𝜓 + 2)
, y > 0

g1 : ℝy > 0 ⟶ ℝ and g2 : ℝy > 0 ⟶ ℝ must be strictly 
monotone, positive and at least twice differentiable, 
such that µk = g−1

1 X ′
kβ  and ψk = g−1

2

(

Z ′
kγ

)

 , with 
g−1
1 (.) and g−1

2 (.) being the inverse functions of g1(.) 
and g2(.), respectively. We can estimate the parameters 
of the BP regression model defined in Eq. (1) using the 
gamlss function in the R (≥ 3.3.0) language [33] with a 
package of the same name [34].

Model specification
In this section, we present our model for the yearly phar-
maceutical expenditure record in three levels. However, 
our model can be adapted easily to more complicated 
settings.

In the three-level pharmaceutical expenditure record 
data, level 3 is the province; level 2 is the city level that 
nested within province; and level 1 is the subject level 
that is nested in cities. There are two types of correla-
tions at different levels in the pharmaceutical expend-
iture data. The first type exists at the province level, 
where cost records of the same province are correlated. 
For each subject, there also exists another correlation 
within each city. Thus, a three-level random effects 
two-part model is more appropriate for the analysis 
of the pharmaceutical expenditure data. We are inter-
ested in modelling a three-level semi-continuous phar-
maceutical expenditure data, characterized by a large 
portion of zeros and continuous positive values. We 
define notations as follows. Suppose that we observe 
cost record yijk for the k-th subject of city j within 
province i, where i = 1, 2, ..., n, j = 1, 2, ..., ni, and k = 1, 
2, ..., mij. The total number of cities is J =

∑n
i=1 ni , and 

the total number of subjects is N =
∑n

i=1

∑ni
j=1mij . 

Let ωijk = I(yijk > 0) denote the indicator of yijk being 
nonzero. Define by Xijk the covariate vectors for the 
fixed effect. Let p1i and p2i be the correlated random 
effects in the province level with joint density (p1i, p2i) 
for parts I and II of our proposed model, respectively. 

Fig. 1  Plots of probability density function of the BP distribution considering the following values of μ = 0.5 (blue), μ = 1.0 (yellow), μ = 2.0 (green) 
and μ = 3.0 (red). Graphs plotted by using Wolfram Mathematica
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Similarly, define c1ij and c2ij to be the correlated ran-
dom effects with joint density (c1ij, c2ij) in the city level. 
In this paper, we assume that

with Σ1 and Σ2 being positive definite matrices. We 
also assume that (p1i, p2i) and (c1ij, c2ij) are independent 
for all i’s and j’s. Denote by eijk the error term for the posi-
tive value of Yijk. We assume that eijk ∼ N

(

o, σ 2
e

)

 is inde-
pendent of random effects p1i, p2i, c1ij, and c2ij. Define 
τijk = P(ωijk = 1| p1i, c1ij) to be the probability of non-zero 
value for Yijk.

To obtain interpretable covariate effects on the mar-
ginal mean, we propose the following marginalized 
two-part model that parameterizes the covariate effects 
directly in terms of the marginal mean, μijk = E(Yijk), on 
the original (i.e., untransformed) data scale. The margin-
alized two-part model with random (cluster) effects for 
the zero and the continuous components, respectively, 
specifies the linear predictors.

Part I:

Part II:

where X1N × (r + 1) and X2N × (q + 1) have full rank r and q for 
the zero and the continuous components, respectively; 
α(r + 1) × 1 and β(q + 1) × 1 are the corresponding vectors of 
regression coefficients. As seen in relations (3) and (4), 
the mixing probability and mean of the component of 
the continuous parts are linked to the independent vari-
ables through logit and logarithmic link functions. The 
vectors p1 = (a11, a12, …, a1m)′ and p2 = (a21, a22, …, a2m)′ 
denote random effects of the third level in the compo-
nents of logistic and continuous, respectively, whereas 
c1 =

(

b111, . . . , b11n1 , . . . , b1m1, . . . , b1mnm

)′ and 
c2 =

(

b211, . . . , b21n1 , . . . , b2m1, . . . , b2mnm

)′ are the ran-
dom effects of the second level. For simplicity of inter-
pretation and mathematical calculations, the random 

(2)(p1i, p2i) ∼ N

(

o,�1 =

(

σ 2
p1

ρpσp1σp2
ρpσp1σp2 σ 2

p2

))

and
(

c1ij, c2ij
)

∼ N

(

o,�2 =

(

σ 2
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ρcσc1σc2
ρcσc2σc1 σ 2

c2

))

(3)

�ijk ∼ Bernoulli
�
�ijk

�

logit
�
�ijk
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= logit

�
Pr
�
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��
= X

�

1ijk
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=
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�
+
∑r

�=1
��x�i

(4)
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�
∼ Beta Prime
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μijk,𝜓

�

μijk = E
�
Yijk > 0�p2i , c2ij

�
= exp

�
X

�

2ijk
× � + p2i + c2ij + eijk

�

= exp
��
𝛽0 + p2i + c2ij

�
+
∑q

𝜃=1
𝛽𝜃x𝜃i + eijk

�

effects (p1, p2) and (c1, c2) are assumed to be independent 
and normally distributed with mean zero and variances 
σ 2
p1
, σ 2

p2
, σ 2

c1
 and σ 2

c2
 , respectively [35, 36]. The error terms 

eijk ∼ N
(

0, σ 2
e

)

 are also assumed to be normal distribu-
tion and independent of the random effects at both levels 
2 and 3.

Again and according to the data structure in this study 
(three-level data), X ′

1ijk is the vector of covariates for the 
k-th measurement at the j-th city (level-2) at the i-th 
province (level-3) for the binary part and X ′

2ijk is the vec-
tor of covariates for the k-th measurement at the j-th city 
(level-2) at the i-th province (level-3) for the continuous 
part. The two parts might have common covariates or 
completely different ones. α is the vector of model coeffi-
cients corresponding to the binary part and β is the vec-
tor of coefficients corresponding to the continuous part 
conditional on the values being non-zero. The model can 
be easily extended to include higher-level random effects.

The conditional PDF for yijk is expressed as:

Generally, the estimation of parameters α, β, ψ, Σ1 and 
Σ2 is based on the likelihood function of data given as:

where the log-likelihood for the binary part is

and the log-likelihood for the continuous part is

In this likelihood function (Eq.  5), φ(p1i, p2i) and 
φ(c1ij, c2ij) represents the bivariate normal distribution for 
the random effects with mean vector of zeros and vari-
ance–covariance matrix Σ1 and Σ2 for zero and non-zero 
part respectively. As can be seen from Eq. (5), the likeli-
hood function involves the integral with respect to the 
multivariate normal PDF. Parameter estimation in the 

f
(
yijk|p1i, p2i, c1ij , c2i j

)
=
[
1 − τijk

]1−ωijk
×

[
τijk × BP

(
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)]ωijk

=
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]1−ωijk
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ωijk

}
×

[
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(
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)]ωijk
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With eijk = Y ijk − X ′
2ijkβ − p2i − c2ij
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proposed models can be computationally difficult as the 
likelihood function depends on analytically intractable 
integrals of a non-linear function with respect to the mul-
tivariate normal distribution of random-effects.

Bayesian inferential framework
The parameters in part I and II were individually esti-
mated within a Bayesian inferential framework with 
MCMC sampling of the posteriors.

Let Θ = (α, β, ψ, Σ1, Σ2) be the collection of unknown 
population parameters in models (2), (3) and (4). To 
complete the Bayesian formulation, we specify mutu-
ally independent prior distributions for all the unknown 
parameters as follows:

where by considering the information available from lit-
erature [1, 16, 37] and range of the parameters Normal 
(N), Inverse Gamma (IG), and Inverse Wishart (IW) dis-
tributions are chosen to simplify computations.

Let the observed data � =

{(
�ij , yij , x1ij , x2ij

)
;i = 1,… , n;j = 1,… , ni

} , 
f(.) be a density function, f(.| .) be a conditional density func-
tion and h(.) be a prior density function. We assume that the 
parameters in Θ are independent of each other; that is:

After specifying the models for the observed data and 
prior distributions of the unknown model parameters, 
we can draw samples for the parameters based on their 
posterior distributions under the Bayesian framework. 
Therefore, the joint posterior density of Θ, conditional on 
D , can be determined by

The integral in (9) has a high dimension and does not 
have a closed solution. Analytic approximations to the 
integrals may not be accurate enough. So, the direct cal-
culation of the posterior distribution of Θ based on the 
observed data D is prohibitive [1]. As an alternative, pos-
terior computation of Θ can proceed using a MCMC pro-
cedure via Gibbs sampling or Metropolis-Hastings (M-H) 
algorithm. While the Gibbs sampler relies on conditional 
distributions [23, 38–40] the Metropolis-Hastings sam-
pler uses a full joint density distribution to generate a 
candidate draws [38, 41]. Certainly, there is a large body 
of work on other computational approaches to sampling 
(slice sampling, adaptive rejection sampling, Hamiltonian 
Monte Carlo, etc.); covering such methods is beyond the 
scope of this study. In an initial review of the software, we 

(8)
α ∼ Nr

(
α0,Λ1

)
, β ∼ Nq

(
β0,Λ2

)

ψ ∼ IG(α, β),Σ−1
1

∼ IW
(
Ω1, ν1

)
,Σ−1

2
∼ IW

(
Ω2, ν2

)

h(�) = h(α)h(β)h(ψ)h(�1)h(�2).

(9)f (�|D) ∝

{

∏n

i=1

∫

∏ni

j=1

[
∫

exp
(

l1ij

)

exp
(

l2ij

)

φ
(

c1ij , c2ij
)

dc1ij dc2ij

]

φ(p1i, p2i) dp1i dp2i

}

h(�)

concluded that it would be faster to use the OpenBUGS 
software. Moreover, due to the high volume of data (cal-
culations) and the time limitation, we could not check 
the performance of other software. However, OpenBUGS 
was chosen because of its generality and simplicity. The 
associated OpenBUGS code is available in Additional 
file 1: Appendix A.1.

Model complexity and fit
There are a variety of methods to select the model that 
best fits the data. However, in this research article, we 
focus on the log pseudo marginal likelihood (LPML) 
and a modified observed deviance information crite-
rion, denoted here by DIC3. In addition, we use of two 
emerging model selection methods, namely leave-one-
out cross-validation (LOO-CV) and widely available 
information criterion (WAIC), due to their fully Bayesian 
nature.

The Bayesian Deviance Information Criterion (DIC3) 
[42] is used to compare the models fitted. It is defined by

where D(θ) = −2E
{

log
[

p
(

y|θ
)]

|y
}

 is the poste-
rior mean deviance taken as Bayesian measure of fit, 
p
(

y|θ
)

=
∏n

i=1 p
(

yi|θ
)

 , E{log[p(y| θ)]| y} is the posterior 
expectation of log[p(y| θ)] and pD is the effective number 
of parameters representing model complexity. The DIC3 
is a natural generalization of the Akaike Information Cri-
terion (AIC) [43] and interpreted as a Bayesian measure 
of fit penalized for increased model complexity. The DIC3 
was developed to solve the problem of determining the 
‘effective’ number of parameters (pD) in complex non-
nested hierarchical models and its computation has been 

coded into the latest version of WinBUGS (1.4). As for 
the usual DIC, minimum DIC3 estimates the model that 
will make the best short-term predictions [42]. Note that 
the DIC3 is only comparable across models with exactly 
the same observed data.

The LPML [44] is another measure for comparing mod-
els that derived from the conditional predictive ordinate 
(CPO) statistics and is one of the most widely used model 
selection criteria available in WinBUGS. It is derived from 
the posterior predictive distribution. For our proposed 
models, a closed form of the CPOi is not available. How-
ever, a Monte Calro estimate of CPOi can be obtained by 
using a single MCMC sample from the posterior distribu-
tion of θ, through a harmonic-mean approximation pro-
posed by [45], as ˆCPOi =

{

1
K

∑K
i=1 g

(

yi|θ
(i)
)−1

}−1
 , 

DIC3 = D(θ)+ pD
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where θ(1), …, θ(K) is a post burn-in sample of size K from 
the posterior distribution from θ, and g is the marginal 
distribution of Y (integrated over the random effects). A 
summary statistic of the CPOi is the LPML, defined by 
LPML =

∑n
i=1 log

(

ˆCPOi

)

 . Larger values of LPML indi-
cate better fit.

The Watanabe-Akaike (or widely applicable) informa-
tion criterion (WAIC) [46, 47] is closely related to the 
more widely known DIC measure, which is based on a 
deviance. The WAIC is a more fully Bayesian approach 
for estimating out-of-sample expectation. In general, 
the WAIC is defined as:

The deviance term in DIC is log
(

p

(

y|
∼
θ

))

 where ∼θ  is a 

point estimate of θ. For WAIC, this term is replaced by 
the log pointwise predictive density (LPPD), defined as:

Just like DIC, there are variants of WAIC which depend 
on how pWAIC is defined. Gelman, Hwang, and Vehtari also 
propose pWAIC2 =

∑n
i=1 Varpost

[

log p
(

yi|θ
)]

 as a penalty 
term, where pWAIC2 is “the variance of individual terms in 
the log predictive density summed over the n data points” 
[48]. Although DIC is a commonly used measure to com-
pare Bayesian models, WAIC has several advantages 
over DIC, including that it closely approximates Bayesian 
cross-validation, it uses the entire posterior distribution 
and it is invariant to parameterisation [49].

Exact cross-validation requires re-fitting the model 
with different training sets. Approximate leave-one-
out cross-validation (LOO-CV) can be computed eas-
ily using importance sampling [50]. The Bayesian LOO 
estimate of out-of-sample predictive fit is

where ppost(θ| y−i) is the posterior distribution based on 
the data without the i-th data point. Unlike LPPD that 
uses data point i for both the computation of posterior 
distribution and the prediction, here LPPDLOO only uses 
it for prediction, and hence there is no need for a penalty 
term to correct the potential bias introduced by using 
data twice [51].

The question regarding the real data is whether the data 
had better support a true model. To that end, we fit each 
model using OpenBUGS and compute DIC and LPML 
for each. We also export the joint posterior distributions 

WAIC = 2pWAIC − 2LPPD

LPPD =
∑n

i=1
log

∫

p
(

yi|θ
)

ppost(θ)dθ ≈
∑n

i=1
log

1

M

∑M

m=1
p
(

yi|θ
(m)

)

.

LOO = −2LPPDLOO = −2

n∑

i=1

log
∫

p
(
yi|�

)
ppost

(
�|y−i

)
d�

from OpenBUGS into R and compute WAIC and LOO 
with “loo” package [52].

Numerical study
Specific models and implementation
In this section, we apply the zero-augmented gamma with 
random effects and zero-augmented beta-prime with 
random effects to analyze the multilevel pharmaceutical 
expenditure dataset previously described, where response 
(yijk) is the total pharmaceutical expenditure ($USD) for 
all drugs prescribed during a 1 year period related to the 
subject k (k = 1, …, 29,354) that nested within city j (j = 1, 
…, 429) that are nested within province i (i = 1, …, 31). 
From now on, the zero-augmented gamma regression 
model and zero-augmented beta-prime regression model 
with multilevel random effects, will be called ZAG-RE 
model and ZABP-RE model, respectively.

Figure  2(a-d), shows the quintiles of adjusted phar-

maceutical expenditure and counts of drugs by 
provinces and cities in Iran in 2018. Variation in phar-
maceutical expenditure and counts of drugs among 
clusters (provinces and cities) is well shown. The 
PE-2018 dataset contains 16.1% of observations with 
no cost for drugs during the 2018 year. In addition, 
there is accentuated asymmetry in the empirical dis-
tribution of the positive responses, which is confirmed 
by the sample skewness and sample quartiles (Table 1). 
These results proposed a skew distribution as a candi-
date for fitting the pharmaceutical expenditure.

Here we model τijk and μijk as follows:

where X ′
1ijk and X ′

2ijk are the matrices of population 
effects related to subject k, containing an intercept and the 
following six covariates: Totalk (total inpatients expenditure 
($) per year), ICPDk (insurance coverage for prescription 
drugs per year), NDPPk (number of drugs per prescription), 
NOPk (number of prescriptions), Agek (in year), and Sexk 
(1 = male, 0 = female); α and β are coefficient vectors for the 
mean and zero-part regression, respectively; p1i and p2i be 
the correlated random effects in the province level with 
joint density (p1i, p2i) for parts I and II of our model, respec-
tively. Similarly, define c1ij and c2ij to be the correlated ran-
dom effects with joint density (c1ij, c2ij) in the city level.

logit
(
�ijk

)
= X

�

1ijk
× � + p1i + c1ij and log

(
�ijk

)

= X
�

2ijk
× � + p2i + c2ij
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In the absence of historical data/experiment, our 
prior choices follow the specifications described in 
Model specification. Thus, we consider the following 
independent (weak) priors for the MCMC sampling:

ar ∼ N
(

0, 104
)

, r = 1, 2, 3,

βq ∼ N
(

0, 104
)

, q = 1, . . . , 7,

�−1
1 ∼ IW (0.01I2, 2),�

−1
2 ∼ IW (0.01I2, 2) and finally

ψ ∼ IG(0.01, 0.01).

Fig. 2  Quintiles of adjusted pharmaceutical expenditure (PE-2018) and counts of drugs by provinces (right) and cities (left) in Iran in 2018. A, B 
Variation in adjusted pharmaceutical expenditure. C, D Variation in adjusted counts of drugs
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We generate two parallel independent MCMC runs of 
size 200,000 – each of them with widely dispersed initial 
values – and discard the first 100,000 iterations (burn-in 
samples) for later computing of posterior estimates. We 
consider a lag of size 100 to eliminate potential problems 
due to autocorrelation and monitor the convergence of 
the MCMC chains using trace plots and the R statistic 
[53], which indicates convergence of about 1. To improve 
convergence, we divide the response (Yijk) by 100.

Estimation and model comparison
We consider significant those effects whose 95% equal-
tail credible intervals (CI) do not include zero (Table  2 
and Fig. 3). Except NDPP and sex in continuous part of 
ZAG-RE, 95% equal-tail CIs show that, all other variables 
were significant in two parts of models (Fig. 3). Therefore, 
the final ZAG-RE and ZABP-RE models have, respec-
tively, the following systematic setting:

The posterior estimates of parameters of model (Eq. 10) 
shown in Table  2, are quite close in both ZAG-RE and 
ZABP-RE models while estimates of variance compo-
nents differ between them. However, 95% equal-tail CI 
for σp1p2 and σc1c2 includes zero in both models, indicat-
ing no correlation between variances in level 2 and level 
3. Posterior standard deviations of variance components 
are a bit larger under the ZAG-RE model. Also, it is 
important note that the meaning of parameter ψ differs 
between the ZAG-RE and ZABP-RE models. In ZAG-RE 
model, ψ represents the dispersion parameter, while in 

(10)logit
(
�ijk

)
= �0 + �1 × NDPPk + �2 × Agek + �3 × Sexk + p1i + c1ij and

log
(
�ijk

)
= �0 + �1 × Totalk + �2 × ICPDk + �3 × NDPPk + �4 × NOPk + �5 × Agek + �6 × Sexk + p2i + c2ij .

ZABP-RE model, it represents the invariance of Yijk, con-
ditioned on the random effects.

We use DIC3, LPML, WAIC, and LOO as the Bayes-
ian model selection criteria and measures of divergence 
discussed previously to compare the ZAG-RE and ZABP-
RE to fit the PE-2018. Except in computational time, The 
ZABP-RE model performs better according to all other 
criteria, because it has the smaller DIC3, WAIC, and 
LOO-CV and greater LPML (Table  2). Based on those 
results, we select the ZABP-RE as our best model.

We also conducted a sensitivity analysis on the 
prior assumptions for the dispersion parameter (ψ) 
and the fixed effects precision parameter. In particu-
lar, we allowed that the dispersion ψ ∼ Gamma (k, k) 
with k ∈ {0.001, 0.1} and the normal precision on the 
fixed effects to be 0.1, 0.25 and 0.001. We checked the 
sensitivity in the posterior estimates of β by chang-
ing one parameter at a time and refitting both models. 

Although slight changes were observed in parameter 
estimates and model comparison values, the results 
appeared to be robust and did not change our conclu-
sions regarding the best model, inference, and sign of 
the fixed-effects.

From these findings, we further report the results in detail 
only for the best ZABP-RE model in the following Section.

Results for the ZABP‑RE model
We use the ZABP-RE model to interpret parameters 
effects on the mean of positive expenditure (μijk) and the 
probability of non-cost (τijk) by considering individual 

Table 1  Percentage of zeros and descriptive statistics of positive expenditure by sex in PE-2018 dataset

PE-2018 data

Female (n1 = 17,157) Male (n2 = 12,197) Total (n = 29,354)

Number (%) of zeroes 2576 (15.01%) 2147 (17.60%) 4723 (16.10%)

Mean (USD$) 2.8306 2.4397 2.6682

Standard deviation 12.4804 10.8963 11.84928

Coefficient of variation 4.4091 4.4662 4.440926

Skewness 19.128 28.746 22.3550

25% 0.3236 0.270 0.3024

50% 0.9108 0.8640 0.8928

75% 2.2392 2.2374 2.2392
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effects as zero. To measure effects directly on μijk and τijk, 
we take the anti-logarithm of log(μijk) and logit(τijk) in 
Eq. (10), obtaining

We use the posterior means in Table  2 as estimates of 
the parameters. From Eq. (11), parameter βi represents the 
rate of change in the logarithm of the mean of the positive 
expenditure as each of total, ICPD, NDPP, NOP, and age 
increases one unit. Therefore, increasing NOP variable of 
subject k in the original scale by one, the log (μijk) increases 
by 0.22, where exp(0.22) = 1.25 is the increasing value of 
response variable in its original scale. Parameters α0, α1, 
α2 and α3 contribute to the calculation of τijk in Eq. (11). 

(11)
µijk = exp

(

β0 + β1Totalk + β2ICPDk + β3NDPPk + β4NOPk + β5Agek + β6Sexk
)

and

τijk =
exp (α0+α1×NDPPk+α2×Agek+α3×Sexk )
1+exp (α0+α1×NDPPk+α2×Agek+α3×Sexk)

Here, α0 represents the effect of being a female respond-
ent with age and NDPP set to their respective mean. Set-
ting NDPP and age variables to zero – which implies they 

are set to their respective mean in the original scale – the 
probability of no consumption is 1 − τijk = 1 −  exp (1.645)/
(1 + exp(1.645)  ) = 0.16 if subject k is female and 1 − τijk = 
1 −  exp (1.645 − 0.183)/(1 + exp(1.645 − 0.183)  ) = 0.19 if 
subject k is male. Overall, females tend to declare a larger 
expenditure since the estimate of α3 is negative. Parameters 
α1 (0.117) and α2 (−0.010) represent the effect of NDPP and 
age variables in logit (τijk). In particular, as NDPP variable 
increase by one unit, with every additional pharmaceutical 

Table 2  Bayesian selection criteria and posterior estimates of the ZAG-RE and ZABP-RE models fitted to pharmaceutical expenditure 
(PE-2018) data

SD, 2.5 and 97.5% represents standard deviation and percentiles from the posterior distributions of parameters, respectively. Computational time in second

DIC3 deviance information criterion, LPML log pseudo marginal likelihood, WAIC watanabe-akaike information criterion, LOO-CV leave-one-out cross-validation, 
ZAG-RE zero-augmented gamma regression, ZABP-RE zero-augmented beta-prime regression

Criterion ZAG-RE ZABP-RE

DIC3 6754.54 6369.19

LPML − 1124.56 − 1124.28

WAIC 6769.13 6398.17

LOO-CV 6772.95 6403.25

Compute time 4195 s 4338 s

Model Parameter Posterior features
Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%

Zero-part Intercept 1.645 0.051 1.546 1.744 1.234 0.051 1.522 1.714

NDPP 0.117 0.007 0.103 0.132 0.117 0.003 0.093 0.135

Age, year −0.010 0.001 − 0.012 − 0.009 − 0.011 0.001 −0.012 − 0.008

Male −0.183 0.032 −0.119 − 0.246 − 0.184 0.024 − 0.116 −0.241

Continuous-part Intercept −2.320 0.050 −2.419 − 2.222 −0.988 0.015 −1.069 −0.906

Total 0.063 0.002 0.058 0.068 0.013 0.00 0.013 0.013

ICPD −0.061 0.003 −0.066 − 0.056 −0.012 0.00 −0.013 − 0.12

NDPP −0.001 0.005 −0.010 0.008 −0.038 0.003 −0.045 −0.031

NOP 0.110 0.017 0.077 0.142 0.220 0.013 0.194 0.246

Age, year 0.003 0.001 0.002 0.005 0.006 0.001 0.004 0.007

Male −0.019 0.025 −0.067 0.029 −0.092 0.023 −0.137 − 0.047

ψ 0.905 0.014 0.877 0.933 0.499 0.006 0.487 0.512

Variance component σp1 0.144 0.015 0.117 0.176 0.148 0.011 0.112 0.153

σp2 0.020 0.011 0.008 0.045 0.019 0.011 0.008 0.041

σp1p2 −0.004 0.014 −0.029 0.020 −0.004 0.008 −0.022 0.020

σc1 0.718 0.216 0.404 1.250 0.754 0.214 0.397 1.241

σc2 13.53 16.51 1.097 56.570 10.16 4.891 1.090 35.525

σc1c2 −1.698 1.249 −5.018 0.154 −1.700 0.891 −3.851 0.151
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item, the odds of having a positive expenditure increase 
by 12.41%. In addition, with each year growing in age, the 
Odds of having a positive cost decreases by 1%.

In order to evaluate the predictive performance of our 
best model, we generate 2000 replicates of 𝐘, say, 
Y∗ = (Y(1), …, Y(2000) )T. The ijk-th element of the l-th repli-
cate Y (l)

ijk  is generated through the ZABP-RE(µ(l)
ijk ,φ

(l), τ
(l)
ijk  ) 

model, where µ
(l)
ijk = log−1

(

∑q
θ=1 β

(l)
θ xθi + p

(l)
i + c

(l)
ij

)

 
and τ (l)ijk = logit−1

(

∑r
γ=1 α

(l)
γ xγi + p

(l)
i + c

(l)
ij

)

 . The values 
of α(l) =

(

α
(l)
0 , . . . ,α

(l)
3

)

 , β(l) =
(

β
(l)
0 , . . . ,β

(l)
6

)

 and φ(l) 
are post burn-in samples of size 2000 from the posterior 
distribution of all parameters. Figure 4 (above panel) pre-
sents the histogram of PE-2018 placed with the plot of 
the ZABP-RE and ZAG-RE predictive posterior density. 
In this figure, it is also quite clear that with a slightly more 
computational time, the ZABP-RE model provides an 
adequate fit to the PE-2018 data.

Finally, to evaluate the adequacy of the log-link func-
tion used to model the conditional nonzero mean μ, we 

follow the suggestion given in [54] as depicted in Fig. 4 
(below panel). We divide the values of the linear predic-
tor μijk into 10 intervals, with each interval containing a 
similar number of observations. Then, for each group, we 
build a boxplot of the posterior predictive mean (black 
boxplot) and a boxplot of the nonzero observed values 
(gray boxplot). In Fig. 4, we observe no evidence of link 
misspecification for the nonzero mean μijk, because the 
shapes of the fitted and observed trends are similar.

Simulations
In this section, we propose a simulation study to illustrate 
the performance of the proposed method. Our goals for 
the simulation study were: 1) to investigate the behaviour 
of Bayesian estimates based on the empirical mean squared 
error (MSE), relative bias and percentage of times that the 
95% credible intervals (CI) contains the true parameter 
value and 2) to investigate if the DIC3 and LPML Bayesian 
criteria properly select the best model. We conduct the 
simulation study considering 100 datasets generated from 
ZAG-RE and ZABP-RE models, considering different 

Fig. 3  PE-2018 data. Posterior medians and 95% equal-tail credible intervals for parameters associated with fixed effects on the zero-part (Part I) 
and on the continuous-part (Part II) for the zero-augmented gamma regression and zero-augmented beta-prime regression models
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sample sizes n, say n = 50, 100, 150 and 200. For each data-
set of size n, we model the location parameter μijk through 
log(μijk) = β0 + β1xijk + pi + cij, with pi ∼ N

(

0, σ 2
p

)

 and 
cij ∼ N

(

0, σ 2
c

)

 , i = 1, …, n, j = 1, …, ni, k = 1, …, mij. To keep 
the simulation simple and fast, τ is considered constant 
across observations. We generate independent explanatory 
variables Xijk from a Bernoulli distribution with a parame-
ter equal to 0.8 and set β0 = 2, β1 = 1.5, τ = 0.2, σ 2

p = 1.8 , 
σ 2
c = 2.3 , ψ = 1.0  for the ZAG-RE model and β0 = 2, 

β1 = 1.5, τ = 0.2, σ 2
p = 1.8 , σ 2

c = 2.3 , ψ = 0.1 for the ZABP-
RE model. We consider the following independent non-
informative priors βk~N(0,100), ψ~Gamma(0.01, 0.01), 
σ 2
p ∼ IGamma(0.01, 0.01) , σ 2

c ∼ IGamma(0.01, 0.01) and 
τ~U(0, 1).

For each dataset of size n, we calculate Bayesian estimates 
with 500 points from the posterior distribution. These 
points are based on two parallel independent MCMC runs 
of size 100,000 each, discarding the first 50,000 points to 

Fig. 4  PE-2018 data. (Above panel) predictive density histogram from pharmaceutical expenditure placed with posterior predictive densities 
generated using ZABP-RE regression models. (Below panel) adequacy of log link function linear predictor: conditional predictive posterior nonzero 
mean represented by black boxplots and nonzero observed values by gray boxplot
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eliminate the effect of the initial values. To avoid correlation 
among observations, we consider a thinning of size 100, 
obtaining 500 points from the posterior distribution.

To study the frequentist properties of Bayesian esti-
mates, we calculate the relative bias, the MSE and the 
95% coverage probability (CP). Let 𝜽 = { α, β, ψ, 𝜎2} be 
the true vector of parameters and 𝜃s an element of 𝜽. Let 
θ̂s be the posterior mean of 500 points from the posterior 
distribution of 𝜃s based on dataset i of size n, i = 1, …, 
100, n = 50, 100, 150, 200. The relative bias, the MSE and 
the 95% CP for θ̂s are defined as follows:

where I is the indicator function such that θs lies in 
the interval 

[

θ̂is,LCL, θ̂is,UCL

]

 , with θ̂is,LCL and θ̂is,UCL as the 
estimated lower and upper 95% CIs, respectively. 
Fig.  5A and B present a visual comparison of the 
parameters β0 and β1 under ZAG-RE and ZABP-RE 
generated data for varying sample sizes, where the dot-
ted and black lines represent the ZAG-RE and the 
ZABP-RE fitted model, respectively.

Relative bias
(

̂θs

)

=
1

100

100
∑

i=1

(

̂θis − θs

θs

)

MSE
(

̂θs

)

=
1

100

100
∑

i=1

(

̂θis − θs

)2

CP
(

̂θs

)

=
1

100

100
∑

i=1

I
(

θs ∈
[

̂θis,LCL, ̂θis,UCL

])

As expected, these figures reveal that if we use 
a true (ZAG-RE and ZABP-RE) model to fit zero 
augmented-skew data, relative bias and MSE, for 
parameters β0 and β1, tend to decrease as sample size 
increases indicating that the Bayesian estimates pos-
sess good consistency properties. In addition, both 
CP of β0 and β1 tend to be around 95% as the sam-
ple size increases when the true model is considered. 
However, when we do not fit the data by their respec-
tive true model (model misspecification), the rela-
tive bias and the MSE tend to be smaller in ZABP-RE 
model. Moreover, as expected in both cases we can 
see that the performance of the CP gets worse when 
a misspecified model is considered. For the sake of 
completeness, the MSE, relative bias and CP for all 
the parameters (β0, β1, τ, σ2) are presented in Table B1 
(Additional file  1: Appendix B). It can be seen from 
this table that the Bayesian estimates of the mixture 
proportion τ are highly robust to model misspecifica-
tion, and this behaviour is independent of the sam-
ple size. The dispersion parameters (σ2 and ψ) in both 
models are not comparable, because they are in differ-
ent scale. In all results, relative bias of σ 2

c  are greater 
than σ 2

p  and it shows that the dispersion of responses 
is more at the level-2 than the level-3. In the compari-
son of the two models, the differences in MSE values 
of both σ 2

p  and σ 2
c  are absolutely more in misspeci-

fied model. The results of coverage probability of sig-
mas show that the coverage level in both models are 
acceptable, however, in true models, the values of the 
CP are slightly larger than the misspecified model.

Fig. 5  Simulation study. Relative bias, mean squared error, and coverage probability for β0 and β1 using the zero-augmented gamma (⋯) regression 
and zero-augmented beta-prim (−) regression models
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Summary of model performance in simulations are 
presented in Table 3. Table 3 presents the averages of the 
Bayesian model comparison criteria. We calculate the 
LPML, DIC3, WAIC, LOO, and convergence rate using 
100 samples of size n = 100 each. All criteria favoured the 
true (simulated) model.

Discussion
In this article, we proposed a Bayesian mixture model 
with random effects for modelling semi-continuous data 
augmented by zeros. We suggest the Gamma and BP dis-
tributions in continuous part of the models. A simulation 
study and real data analysis are conducted to compare 
the ZAG-RE and ZABP-RE on the multi-level semi-con-
tinuous data and results demonstrated that the ZABP-RE 
performs better on the zero-augmented multilevel semi-
continuous data.

Our flexible class contains the zero-augmented versions 
of the two parametric exponential family of distributions, 
such as Gamma, beta-prime, inverse Gaussian, Weibull, 
log-normal, and Tweedie. Our model is able to simulta-
neously accommodate zeros and positive outcomes, right-
skewness, within subject correlation because of nested 
measurements and between-subject heterogeneity. One 
of the differentials of this study was the inclusion of ran-
dom effects in the analysis of factors related to semi-con-
tinuous data using the beta-prime distribution that were 
not considered in before studies and statistical packages 
[10, 20–22], and this is our major contribution.

One of the advantages of the Bayesian approach com-
pared to the classical approach is the estimates in the 

part I. Where, the maximum likelihood estimator of a 
probability of non-zero value, when zero response is 
observed, does not perform well on the boundary of 
the parameter space [37]. For a simple BP model, the 
Maximum Likelihood estimation is available using 
GAMLSS. However, the MLE results in our data did 
not reach convergence for some parameters by adding 
random effects. In this research, using Bayesian statis-
tics with Gibbs and Metropolis-Hasting sampling, this 
problem is avoided. In the future, it would be interest-
ing to continue the study of various different MCMC 
methods and hopefully apply them to health cost data.

Simulation studies reveal good consistency properties 
of the Bayesian estimates as well as high performance of 
the model selection techniques to pick the appropriately 
fitted model. We also apply our model to a dataset from 
yearly pharmaceutical expenditure data conducted in 
429 cities in Iran (PE-2018) to illustrate how the proce-
dures can be used to evaluate model assumptions and 
obtain unbiased parameter estimates. Although our 
modelling is primarily motivated from the PE-2018, it 
can be easily applied to other datasets and distributions, 
because the models considered in this article have been 
fitted using standard available software packages, like 
R and OpenBUGS (code available in Additional file  1: 
Appendix A). This makes our approach easily accessible 
to practitioners of many fields of research.

Although the zero-augmented positive model con-
sidered here has shown great flexibility to deal with 
zero-augmented clustered data, its robustness can be 
seriously affected by the presence of heavy tails in the 
random effects, obscuring important features among 
individual variation. Liu et al. [13] and Bandyopadhyay 
et  al. [55] proposed a remedy to accommodate skew-
ness in the random effect simultaneously, using skew-
normal/independent distributions. We suppose that 
our method can be used under the zero-augmented 
positive model and should yield satisfactory results at 
the expense of additional complexity in implementa-
tion. Another useful extension of the proposed model 
involves the possibility of heteroscedasticity of ψ by 
allowing the dependence of g(ψ) on covariates, with 
g(.) being an appropriate link function, as proposed in 
[56]. An in-depth investigation of such extensions is 
beyond the scope of the present research article, but it 
is an interesting topic for further research.
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