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Abstract
Background  Cox proportional hazards regression models and machine learning models are widely used for 
predicting the risk of dementia. Existing comparisons of these models have mostly been based on empirical datasets 
and have yielded mixed results. This study examines the accuracy of various machine learning and of the Cox 
regression models for predicting time-to-event outcomes using Monte Carlo simulation in people with mild cognitive 
impairment (MCI).

Methods  The predictive accuracy of nine time-to-event regression and machine learning models were investigated. 
These models include Cox regression, penalized Cox regression (with Ridge, LASSO, and elastic net penalties), survival 
trees, random survival forests, survival support vector machines, artificial neural networks, and extreme gradient 
boosting. Simulation data were generated using study design and data characteristics of a clinical registry and a large 
community-based registry of patients with MCI. The predictive performance of these models was evaluated based on 
three-fold cross-validation via Harrell’s concordance index (c-index), integrated calibration index (ICI), and integrated 
brier score (IBS).

Results  Cox regression and machine learning model had comparable predictive accuracy across three different 
performance metrics and data-analytic conditions. The estimated c-index values for Cox regression, random survival 
forests, and extreme gradient boosting were 0.70, 0.69 and 0.70, respectively, when the data were generated 
from a Cox regression model in a large sample-size conditions. In contrast, the estimated c-index values for these 
models were 0.64, 0.64, and 0.65 when the data were generated from a random survival forest in a large sample size 
conditions. Both Cox regression and random survival forest had the lowest ICI values (0.12 for a large sample size and 
0.18 for a small sample size) among all the investigated models regardless of sample size and data generating model.
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Introduction
Dementia is a complex health condition influencing 
memory, thinking, behavior, and quality of life. In 2015, 
the worldwide costs of dementia were estimated at 
$818 billion USD and 86% of the costs were incurred in 
high-income countries [1]. Dementia is usually preceded 
by mild cognitive impairment (MCI), defined as cogni-
tive concerns with poor cognitive test scores despite 
preserved activities of daily living. Individuals with MCI 
have a substantially higher risk of developing dementia 
compared to people with normal cognition. On aver-
age, 5-10% of people with MCI progress to dementia per 
year [2]; however, not all individuals with MCI progress 
to dementia [3]. In the absence of disease-modifying 
treatments for dementia, there is increased demand for 
clinical decision aids to support early identification of 
individuals with high risk of developing dementia and 
who may benefit from target interventions for modifi-
able risk factors. Such tools can also be used for surveil-
lance purposes: when individuals with MCI progress to 
dementia, they can receive supportive care to live safely 
in the community [4]. In addition, such tools can sup-
port care providers in answering questions for patients 
with MCI and their families about the risk of developing 
dementia and future life planning [5].

Prognostic risk prediction models [6], which estimates 
the probability of developing dementia based on a set 
of patients’ risk factors, constitute a class of models on 
which such decision tools can be developed. Prognos-
tic risk scores for dementia have been developed based 
on regression analysis and machine learning models, 
with the latter being frequently used in recent years. 
For example, a recently published systematic review of 
dementia risk scores showed that about 40% of the pub-
lished models adopted a machine learning algorithm [7]. 
However, the review concluded that most of the identi-
fied risk scores have inherent methodological limitations, 
which include the lack of internal and external valida-
tions of the models, choice of statistical methods for 
developing the risk scores, and the long interval elapsed 
between assessments of individuals at risk [7]. To date, no 
suitable dementia risk score have been adopted as a clini-
cal decision aid for use in routine clinical practice [7, 8].

The increased uptake of machine learning models in 
clinical research is predicated the assumption that ML 
is inherently more powerful than traditional regression 
models because these are non-linear models that can 
capture non-linear associations between explanatory 

variables and the outcome of interest. However, previous 
studies reported no significant differences in the model 
performance between machine learning and logistic 
regression models from a systematic review of empirical 
studies [9]. Such comparisons limit the external gener-
alizability of conclusions about the performances of the 
models. Monte Carlo simulation methodology is an alter-
native approach for assessing comparability of several 
models under a variety of data analytic conditions[10]. 
Although there are a few simulation studies that com-
pared statistical and machine learning approaches to 
risk prediction for time-to-event data [11], these simula-
tion studies are often biased towards the novel approach. 
There is need for unbiased comparisons of machine 
learning and traditional statistical methods to guide the 
selection of optimal methodology for developing clinical 
risk prediction for dementia [11]. The overarching aim of 
this study is to investigate the comparative performance 
of machine learning and (unpenalized and penalized) 
Cox regression models for predicting time-to-event out-
comes (MCI to dementia progression) under a variety 
of data-analytic conditions. We hypothesize that Cox 
regression will have comparable and/or even better accu-
racy (with respect to discrimination and calibration) to 
machine learning algorithms.

Methods
To ensure that the design of the simulation and simula-
tion conditions investigated reflect the characteristics 
and features of real-world datasets, data from a clinical 
registry and a large community-based registry of people 
with MCI were used to inform the selection of simulation 
conditions.

Prospective Registry for persons with memory symptoms 
(PROMPT) Registry
The PROMPT registry of the Cognitive Neurosciences 
Clinic at the University of Calgary is a memory clinic 
registry enrolling all patients with MCI. The PROMPT 
Registry was established in July 2010 and enrolls patients 
referred to the Cognitive Neuroscience Clinic in Cal-
gary, Alberta, Canada, for assessing suspected impair-
ment in cognitive or behavioral function [12]. All patients 
attending the clinic are eligible to participate. To ensure 
complete follow-up, we linked PROMPT participants to 
Alberta healthcare administrative data for surveillance of 
new dementia diagnoses. There were 273 patients with 
MCI in PROMPT (up until April 2020), with age 55 years 

Conclusion  Cox regression models have comparable, and sometimes better predictive performance, than more 
complex machine learning models. We recommend that the choice among these models should be guided by 
important considerations for research hypotheses, model interpretability, and type of data.
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and older, with data on baseline predictors, and with at 
least one follow-up after the baseline visit. The study 
predictors include demographic characteristics (age, 
sex, education, marital status, first language, and hand-
edness), cognitive tests or profiles (total score for the 
Consortium to Establish a Registry for Alzheimer’s Dis-
ease neuropsychological battery, the Montreal Cognitive 
Assessment [MoCA] total score, mild behaviour impair-
ment total score, any neurological signs, family history, 
and cognitive complaints from informants), life-style 
factors (smoking and alcohol abuse), as well as health 
history (hypertension, dyslipidemia, diabetes, hypothy-
roidism, traumatic brain injury, cerebrovascular dis-
ease, cardiovascular disease, mood disorders, insomnia, 
obstructive sleep apnea, any neurological disorders, and 
psychiatric diseases other than mood disorder).

National Alzheimer’s Coordinating Center’s (NACC) 
Registry
The NACC was established by the National Institute 
on Aging (NIA)-funded Alzheimer’s Disease Research 
Centers (ADRCs) that recruits and collects data on 
subjects with cognitive function ranging from normal 
to dementia. The NACC cohort used in this study are 
from Uniform Data Set (NACC-UDS; naccdata.org). 
The NACC-UDS is a longitudinal dataset that includes 
demographic and standardized clinical data collected 
approximately annually. All test centers administered 
standardized forms. Detailed information on the cohort 
and the neuropsychological battery of tests included in 
the UDS are described elsewhere [13–15]. Patient data 
were prospectively collected on pre-specified case report 
forms. We used version 3 (refers to those enrolled from 
2015 onwards) of the NACC due to significant changes 
from previous versions. There were 967 patients with 
MCI in NACC, with age 55 years and older, with data on 
baseline predictors, and with at least one follow-up after 
the baseline visit. The identification of these two study 
cohorts can be found in our Support Document (Figure 
S1-S2). The study predictors include demographic char-
acteristics (age, sex, education, race, first language, hand-
edness, and marital status), cognitive tests or profiles 
(time since initial cognitive decline, memory complaints 
from subjects or informants, family history, MoCA 
total score, geriatric depression scale, neuropsychiatric 
symptoms total score, clinician diagnosed behavioural 
symptoms, motor symptoms, and overall course of the 
decline), life-style factors (smoking), whether referred 
by health professionals, primary reason for coming to 
Alzheimer’s disease centers, as well as medical history 
(hypertension, diabetes, hypercholesterolemia, arthritis, 
urinary incontinence, cerebrovascular disease, cardio-
vascular disease, rapid eye movement sleep behaviour 
disorder, insomnia, traumatic brain injury, cancer, use of 

nonsteroidal anti-inflammatory medication, thyroid dis-
ease, mood disorder, parkinsonism, and Vitamine B12 
deficiency), and physical exams (body mass index, vision, 
and hearing).

These two registries were selected for informing the 
design of this simulation study because of their differ-
ent designs (i.e., sample size, type of patient population, 
number of predictors) and data characteristics (i.e., time-
to-event distribution and censoring rate), which could 
ensure that our simulation and the conditions investi-
gated mimic real-world studies.

For both cohorts, the survival outcome is the time to 
all-cause dementia over a three-year period following 
MCI diagnosis which is based on the standard outcome 
definitions, including Diagnostic and Statistical Manual 
of Mental Disorders and the National Institute on Aging 
– Alzheimer’s Association [16, 17]. In the PROMPT 
(N = 273) and NACC (N = 967) registries, 110 (40%) 
and 224 (23%) of individuals developed dementia from 
MCI at baseline within three years, respectively. Can-
didate predictors were all measured at baseline in both 
cohorts. We acknowledge that people with MCI may 
never develop dementia [3], in this current study, indi-
viduals who did not develop dementia during the three-
year period following MCI diagnosis were assumed to be 
right-censored. Descriptive analysis of the sample char-
acteristics was included in our Support document Table 
S1-S2.

Simulation study
The prediction models compared in this simulation study 
including (1) Cox regression, (2) Cox regression with 
least absolute shrinkage selection operator (LASSO-
Cox), (3) Cox regression with ridge penalty (Ridge-Cox), 
(4) Cox regression with elastic net (EN-Cox), (5) survival 
trees, (6) random survival forests, (7) survival support 
vector machines, (8) survival neural networks, and (9) 
extreme gradient boosting.

A survival tree refers to a non-parametric time-to-
event regression model in which the sample is recursively 
partitioned into homogeneous subgroups based on input 
predictors that maximizes the differences in survival dis-
tributions for the subgroups [18]. Random survival for-
ests [19] is a direct extension of the random forests [20] 
to handle time-to-event outcomes. Random survival 
forests [19] function the same as conventional random 
forests models, except that each splitting is optimized by 
maximizing survival differences between daughter nodes. 
The outcome of random survival forests is the ensemble 
estimate for the cumulative hazard function. Survival 
support vector machines have been extended to analyze 
censored data including regression [21], ranking [22], and 
hybrid approach [23]. The regression method handles 
survival times as a standard regression problem (without 
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penalization for censored observations). The rank-
ing approach is essentially treating the support vector 
machine-based survival analysis as a classification prob-
lem with an ordinal target variable. The hybrid approach 
combines the regression and ranking methods. Since it 
was previously reported that regression constraints per-
form significantly better than ranking constraints, and 
similar to the performance of the hybrid approach on 
clinical data [23], we adopted the regression approach in 
this work. The survival deep neural network “DeepSurv” 
[24], is a non-linear Cox proportional hazard deep feed-
forward neural network that can model hazard rates. 
Specifically, the patients’ baseline data serves as the input 
to the first layer, which is then processed and combined 
in the hidden layers followed by a dropout layer to reduce 
overfitting [25]. The output layer produces estimates for 
the hazard rates similar to Cox regression model. The 
corresponding cost function combines the Cox par-
tial likelihood with regularization, and gradient descent 
optimization is used for estimating the parameters. The 
extreme gradient boosting algorithm is an effective and 
flexible machine learning method [26], which extends the 
original gradient boosting machine [27] with flexibilities 
for different types of outcomes (e.g., binary, continuous, 
or survival data). The extreme gradient boosting survival 
model can be used to process the right-censored survival 
data; it relaxes the linearity assumption between log-haz-
ard ratio and covariates and still has proportional hazards 
assumption [28, 29].

Simulation conditions
The simulation conditions to be investigated include (a) 
sample size (N), (b) censoring rate (CR), (c) the data gen-
erating processes (the relationship between the predic-
tors and hazard function), and (d) number of predictors. 
In order to ensure external generalizability of the study 
results, the data-analytic conditions investigated in our 
simulation study were selected to mimic real-world data 
scenarios obtainable in existing registries [30, 31]. We 
simulated data based on the covariates (design matrix) of 
two cohorts of patients with MCI. With each cohort, two 
different data generating processes based on fitting either 
Cox regression (a typical conventional regression) or ran-
dom survival forests (a typical machine learning explor-
ing non-linearity and high-order interactions) were used. 
Simulated time-to-event outcomes were then generated 
based on predicted survival distribution and predicted 
failure probability (MCI to dementia conversion) at three 
years.

The data generation process is described as shown in 
Fig.  1. Cox regression model and random survival for-
ests were used to fit and predict survival outcomes (sur-
vival distribution and failure probability at three-years) 
for each individual in the real-life sample. The study 
outcome data were no longer used after this step. The 
model (either Cox regression or random survival forests) 
predicted the survival distribution Ŝi (t)  for each indi-
vidual representing the estimates of the random variable 
survival time t  for an individual i  observation. Next, a 
random simulation function [32] was used to draw simu-
lations (i.e., survival times) from the distribution for each 
individual in the sample. The censoring indicator was 
simulated using a Bernoulli distribution with the given 
individual-specific probability p̂i , which was the pre-
dicted failure probability at three-years based on either 
Cox regression or random survival forests. The simula-
tion data were generated based on Cox regression mod-
els and random survival forests also because they had 
relatively better model performance compared with the 
rest of the compared methods (details are in our support 
document Table S3).

The performance of each model was evaluated using 
measures of discrimination and calibration based on 
three-fold cross-validation (CV). Specifically, Harrell’s 
concordance index (c-index) [33], integrated calibration 
index (ICI) for survival models [34], and integrated brier 
score (IBS) [35] were used to assess model accuracy. The 
c-index allows for the computation of concordance prob-
ability, measuring the proportion of the pairs (those can 
be compared) where the observation with the higher sur-
vival time has the higher predicted survival probability by 
the model.

A numerical calibration metric ICI [34] has been 
extended to evaluate the calibration of predicted 

Fig. 1  The process of simulation was conducted as follows:
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probabilities for survival models and it is estimated as 
the mean absolute differences between observed and pre-
dicted probabilities across the sample.
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function g, which can be estimated using either a flexible 
adaptive hazard regression [36] or using a Cox regres-
sion model with restricted cubic splines [34]. The latter 
method with three knots was used in this work since it 
was demonstrated that the two approaches had compa-
rable performance [34]. A smaller ICI value indicates a 
better calibrated prediction model and this metric is sug-
gested to use in comparing different prediction models 
[34].

The IBS, which uses a squared loss function [35], is 
defined as

	
L (S) =

1
NT

N∑

i=1

T∑

j=1

L (Si, ti|t∗j)

.Here, an approximation to integration is made by taking 
the sample mean over all T  unique time points and all 
N  observations, where N  is the number of observations, 
Si  is the predicted survival function for individual i , and 
ti is the survival time. For an individual who developed 
dementia at time t , with predicted survival function, S, at 
time t∗ , is defined by:

	

L (S, t| t∗) =
S(t∗)2I(t ≤ t∗, δ = 1)

G (t)
+

(1 − S(t∗))2I(t > t∗)
G (t)

,where G  is the Kaplan-Meier estimate of the censoring 
distribution. I (•) is the indicator function for example,

	

I (t ≤ t∗, δ = 1) = 1
if t ≤ t∗ and delta = 1;

otherwise I (t ≤ t∗, δ = 1) = 0

A smaller IBS value indicates better calibration and shows 
better combination of discrimination and calibration.

Hyper-parameter tuning was performed for each sur-
vival method, except for unpenalized Cox regression, 
based on random grid search (1000 evaluations in total) 
using five-fold CV with c-index as the scoring metric. 
The search space for each hyper-parameter and the tuned 
hyper-parameters used are included in our support docu-
ment (Table S4). For each combination of simulation 
condition, a total of 500 replications was drawn based 
on each data generation process. All analyses were con-
ducted using the R statistical programming language 
[37].

Simulation results
Model performance measure: c-index
Figure  2 describes the distribution of accuracy for the 
nine survival models using Harrell’s c-index for the simu-
lation conditions when the data generating process was 
based on Cox regression and random survival forests. 
Simulated conditions represented relatively small sample 
size (based on characteristics and features of PROMPT 
dataset) and relatively large sample (based on charac-
teristics and features of NACC dataset). When the data 
were generated based on a Cox regression model, the 
estimated c-index values for all the models were generally 
higher than when the data were simulated based on ran-
dom survival forests, regardless of the sample size.

When the data were generated based on small sample 
size and Cox regression, the estimated mean c-index was 
the highest for penalized Cox regression with elastic net 
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(EN-Cox) and with LASSO (LASSO-Cox), but the low-
est for survival neural networks. In addition, the esti-
mated mean c-index values for random survival forests, 
Cox regression, and Ridge-Cox were slightly lower than 
the EN-Cox and LASSO-Cox. On the other hand, when 
data were generated based on a random survival forests 
model, only random survival forests and survival sup-
port vector machines had estimated mean c-index val-
ues greater than 0.5, The estimated mean c-index values 
for Cox regression, Ridge-Cox, EN-Cox, survival trees, 
and survival neural networks were comparable but less 

than 0.5. When the data were generated based on a large 
sample size, regardless of the data generation model, 
there were negligible differences between the estimated 
c-index values for most of the models, except for survival 
support vector machine and survival neural networks 
models, which had the lowest estimated c-index values.

Model performance measure: calibration
Figure  3 describes the distribution of ICI values for all 
nine models, out of 500 replications for Cox regression 
and random survival forests data generation processes. 

Fig. 2  Distribution of the estimated c-index of nine models, assessed from three-fold CV across 500 replications
NB: There are four panels, with the top two panels (A and B) are for the small samples (based on characteristics and features of PROMPT dataset), the bot-
tom two panels (C and D) are for the large samples (based on characteristics and features of NACC dataset). Left and right panel are for the Cox regression 
used for data generating process [DGP] and random survival forests [RSF] based DGP, respectively. Each panel consists of nine boxplots corresponding 
to each of the nine survival analysis models. Each boxplot shows the variation in the Harrell’s c-index [c-index] across the 500 simulation replicates when 
a certain DGP and survival analysis method were applied. Cox: Cox proportional hazards; Ridge-Cox: Cox regression based on ridge penalty; LASSO-Cox: 
Cox regression based on Least Absolute Shrinkage Selection Operator penalty; EN-Cox: Cox regression based on elastic net penalty; SurvTree: Survival 
Tree; RSF: Random survival forests; SSVM: Survival support vector machine; SNN: Survival neural networks; XGBoost: Extreme gradient boosting
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When the sample size was small and Cox regression 
model was used to generate time-to-event outcomes, the 
extreme gradient boosting, random survival forest, sur-
vival neural networks, and Cox regression had the low-
est estimated ICI values. In addition, the LASSO-Cox 
and survival support vector machine model had higher 
estimated ICI values, suggesting these two models were 
more poorly calibrated than the rest of the models. On 
the other hand, when the simulation data were generated 
based on random survival forests, the extreme gradient 
boosting, EN-Cox, and random survival forest tended to 

result in estimates with the lowest ICI values in the simu-
lation replications. The Cox regression model, LASSO-
Cox, and survival neural networks had slightly higher 
estimated ICI values than random survival forests. Fur-
thermore, when sample size was large, regardless of the 
data generation model, the extreme gradient boosting, 
random survival forest, survival neural networks, and 
Cox regression tended to result in estimates with the 
lowest ICI values in the simulation replications than the 
rest of the models. On the contrary, LASSO-Cox tended 

Fig. 3  Distribution of the estimated ICI of nine models, assessed from three-fold CV across 500 replications
NB: There are four panels, with the top two panels (A and B) are for the small samples (based on characteristics and features of PROMPT dataset), the bot-
tom two panels (C and D) are for the large samples (based on characteristics and features of NACC dataset). Left and right panel are for the Cox regression 
used for data generating process [DGP] and random survival forests [RSF] based DGP, respectively. Each panel consists of nine boxplots corresponding to 
each of the nine survival analysis models. Each boxplot shows the variation in the integrated calibration index [ICI] across the 500 simulation replicates 
when a certain DGP and survival analysis method were applied). Cox: Cox proportional hazards; Ridge-Cox: Cox regression based on ridge penalty; 
LASSO-Cox: Cox regression based on Least Absolute Shrinkage Selection Operator penalty; EN-Cox: Cox regression based on elastic net penalty; SurvTree: 
Survival Tree; RSF: Random survival forests; SSVM: Survival support vector machine; SNN: Survival neural networks; XGBoost: Extreme gradient boosting
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to result in estimates with the highest ICI values com-
pared with the remaining models.

Figure 4 describes the distribution of the IBS values for 
all the investigated models when the data generation pro-
cess was based on Cox regression and random survival 
forests. When data were generated based on Cox regres-
sion for small sample size condition, random survival 
forests, extreme gradient boosting, and Cox regression 
model had lower estimated mean IBS values. In contrast, 
LASSO-Cox and the survival support vector machine 
models had the highest estimated mean IBS values. 

When the simulation data was generated based on ran-
dom survival forests model, Cox, LASSO-Cox, EN-Cox, 
survival neural networks, extreme gradient boosting, and 
random survival forests all had comparable estimated IBS 
values. On the other hand, Ridge-Cox survival trees, and 
survival support vector machines had higher estimated 
mean IBS values than the rest of the models. When 
sample size was large and the data generating process 
was based on Cox regression, EN-Cox, random survival 
forests, survival neural networks, and extreme gradient 
boosting all had analogous estimated IBS values as Cox 

Fig. 4  Distribution of the estimated IBS of nine models, assessed from three-fold CV across 500 replications
NB: There are four panels, with the top two panels (A and B) are for the small samples (based on characteristics and features of PROMPT dataset), the bot-
tom two panels (C and D) are for the large samples (based on characteristics and features of NACC dataset). Left and right panel are for the Cox regression 
used for data generating process [DGP] and random survival forests [RSF] based DGP, respectively. Each panel consists of nine boxplots corresponding to 
each of the nine survival analysis models. Each boxplot shows the variation in the integrated brier score [IBS] across the 500 simulation replicates when 
a certain DGP and survival analysis method were applied). Cox: Cox proportional hazards; Ridge-Cox: Cox regression based on ridge penalty; LASSO-Cox: 
Cox regression based on Least Absolute Shrinkage Selection Operator penalty; EN-Cox: Cox regression based on elastic net penalty; SurvTree: Survival 
Tree; RSF: Random survival forests; SSVM: Survival support vector machine; SNN: Survival neural networks; XGBoost: Extreme gradient boosting
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regression model. However, LASSO-Cox had the high-
est estimated mean IBS value. In contrast, when the data 
were generated based on random survival forests, the 
Cox regression, Ridge-Cox, EN-Cox, random survival 
forests, survival neural networks, and extreme gradient 
boosting all had relatively small and similar estimated 
IBS values, while the LASSO-Cox and survival trees had 
higher estimated IBS values.

Discussion
This study evaluated the accuracy of (penalized and unpe-
nalized) Cox regression and machine learning survival 
models using Monte Carlo simulation. Our simulation 
results show that Cox regression and machine learning 
model had comparable predictive accuracy across three 
different performance metrics and data-analytic condi-
tions. Unpenalized Cox regression, random survival for-
ests, and extreme gradient boosting had slightly higher 
estimated discriminatory performance (i.e., c-index) 
and were better calibrated than the remaining models, 
regardless of data generation model and sample size.

These findings are consistent with conclusions from 
previous studies that have investigated the performance 
of conventional regression models and machine learn-
ing models for predicting binary outcomes [9, 30]. In a 
systematic review of 71 studies that employed logis-
tic regression models and machine learning models for 
binary outcome predictions, the authors found no sig-
nificant differences in the discriminatory performance 
between machine learning and logistic regression models 
[9]. A recent study used Monte Carlo simulations to com-
pare logistic regression with machine learning models 
and concluded that these models had comparative per-
formance with respect to predictive accuracy, whereas 
(penalized) logistic regression and boosted trees tended 
to have better performance compared to other methods 
[30].

A major implication of our study conclusion is that 
the choice between Cox regression and machine learn-
ing algorithms for predicting time-to-event outcomes 
should be based on important considerations other than 
model accuracy since there is no significant difference in 
the discriminatory performance of both classes of mod-
els. Considerations for research objectives and data char-
acteristics (e.g., outcome distribution, type, and number 
of predictors), and interpretability of the model results 
could influence model selections. For example, Cox 
regression models could be more suitable for addressing 
research questions when quantifying and explaining the 
impact of predictors on time-to-event outcomes are of 
interests. In contrast, machine learning algorithms might 
be more suited for prediction in datasets that include 
unconventional predictor variables, such as voxel-level 
imaging data.

This study has several strengths and some limitations. 
A strength of this study is that the design and imple-
mentation of the simulation study were informed by 
real-world data characteristics rather than theoretical 
distributional data characteristics which might be unreal-
istic in data analytic conditions encountered in dementia 
research. Second, a more robust approach to the design 
and implementation of the simulation study was taken 
to ensure unbiased comparison of the predictive perfor-
mance of the models investigated. The simulation study 
was comprehensive in its investigation of both discrimi-
nation and calibration for the model performance and 
use of multiple data generation models that ensure the 
fairness of the model comparison. Nevertheless, this 
study has limitations. First, the simulation conditions 
investigated were limited to data characteristics (e.g., 
between-predictor correlation structures) commonly 
seen in existing registries and observational studies of 
patients with mild cognitive disorders and not represen-
tative of the general population. While our simulation 
conditions did not examine the data characteristics seen 
in other populations (e.g., cardiac population investigated 
by [30]), our findings are consistent with conclusions 
from other relevant simulation studies in other patient 
populations [30]. Second, our simulation study assumed 
that there was no competing event that could have pre-
vented the occurrence of dementia during the three-year 
period. Competing events, such as mortality, can mask 
the observation of progression to dementia, especially in 
the population of MCI patients which is predominantly 
made up to older adults and the elderly. Future research 
will explore the impact of competing risk of death on 
the accuracy of these models. Another limitation is the 
significant drop in predictive accuracy of all nine mod-
els when the simulation data were generated based on 
the random survival forests in small samples (N = 276), 
although this was not the case when Cox regression was 
used as the data generating model. This decrease in pre-
dictive accuracy could be attributed to the fact that the 
random survival forests data generation process is sen-
sitive to the small sample size of the PROMPT registry. 
Finally, our simulation study assumed that the study pre-
dictors included in the model were known and hyper-
parameter tuning was used to reduce model overfitting. 
Future studies will explore the impact of variable selec-
tion methods on the accuracy of (penalized and unpenal-
ized) Cox regression and machine learning models.

Conclusion
In summary, machine learning and traditional regression 
models remain widely used methodologies for developing 
clinical risk predictions models. Our study reveals negli-
gible differences in the discrimination and calibration of 
Cox regression and machine learning models, such as 
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survival random forest, for predicting time-to-event out-
comes. This study adds to the body of literature investi-
gating the comparative performance of these two classes 
of models, which are widely used in prognostic research. 
Since conventional Cox regression model are generally 
more interpretable and are well-calibrated than most 
machine learning algorithms, we recommend its uptake 
for developing clinical risk prediction models. More 
importantly, the choice among these models should be 
guided by important considerations for research hypoth-
eses, model interpretability, and type of data. Future 
studies will investigate how the variable selection meth-
ods influence the accuracy of these models.
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