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Abstract 

Background:  The U.S. Ending the HIV epidemic (EHE) plan aims to reduce annual HIV incidence by 90% by 2030, by 
first focusing interventions on 57 regions (EHE jurisdictions) that contributed to more than 50% of annual HIV diag-
noses. Mathematical models that project HIV incidence evaluate the impact of interventions and inform intervention 
decisions. However, current models are either national level, which do not consider jurisdictional heterogeneity, or 
independent jurisdiction-specific, which do not consider cross jurisdictional interactions. Data suggests that a signifi-
cant proportion of persons have sexual partnerships outside their own jurisdiction. However, the sensitivity of these 
jurisdictional interactions on model outcomes and intervention decisions hasn’t been studied.

Methods:  We developed an ordinary differential equations based compartmental model to generate national-level 
projections of HIV in the U.S., through dynamic simulations of 96 epidemiological sub-models representing 54 EHE 
and 42 non-EHE jurisdictions. A Bernoulli equation modeled HIV-transmissions using a mixing matrix to simulate 
sexual partnerships within and outside jurisdictions. To evaluate sensitivity of jurisdictional interactions on model 
outputs, we analyzed 16 scenarios, combinations of a) proportion of sexual partnerships mixing outside jurisdiction: 
no-mixing, low-level-mixing-within-state, high-level-mixing-within-state, or high-level-mixing-within-and-outside-
state; b) jurisdictional heterogeneity in care and demographics: homogenous or heterogeneous; and c) intervention 
assumptions for 2019–2030: baseline or EHE-plan (diagnose, treat, and prevent).

Results:  Change in incidence in mixing compared to no-mixing scenarios varied by EHE and non-EHE jurisdictions 
and aggregation-level. When assuming jurisdictional heterogeneity and baseline-intervention, the change in aggre-
gated incidence ranged from − 2 to 0% for EHE and 5 to 21% for non-EHE, but within each jurisdiction it ranged from 
− 31 to 46% for EHE and − 18 to 109% for non-EHE. Thus, incidence estimates were sensitive to jurisdictional mixing 
more at the jurisdictional level. As a result, jurisdiction-specific HIV-testing intervals inferred from the model to achieve 
the EHE-plan were also sensitive, e.g., when no-mixing scenarios suggested testing every 1 year (or 3 years), the 
three mixing-levels suggested testing every 0.8 to 1.2 years, 0.6 to 1.5 years, and 0.6 to 1.5 years, respectively (or 2.6 to 
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Introduction
In the United States (U.S.), there were an estimated 1.18 
million people living with HIV (PWH) as of 2019, and 
an estimated average of 36,500 new infections each year 
between 2015 and 2019 [1]. Although HIV disease has no 
cure, consistent use of antiretroviral therapy treatment 
(ART) by infected persons can fully suppress viral load, 
thus preventing transmissions [2]. Further, pre-exposure 
prophylaxis (PrEP) for high-risk susceptible individuals 
can reduce HIV acquisition by 99% [3]. However, there 
are considerable gaps in administering these preventive 
tools. As of 2019, nationally, 87% of PWH were aware of 
their infection (proportion aware), but only 66% of those 
aware were on ART with viral load suppression (propor-
tion with VLS) [4]. Among susceptible persons with PrEP 
eligibility, only 23% were administered PrEP (PrEP cov-
erage). In addition, there is considerable heterogeneity 
in these care proportions by age groups, risk groups, and 
jurisdictions [4]. Across geographical jurisdictions in the 
U.S., the proportion aware ranged from 80 to 96%, the 
proportion with VLS ranged from 49 to 83%, and PrEP 
coverage ranged from 6 to 93% [4].

Taking the above jurisdictional disparities into con-
sideration, the most recent U.S. national strategic plan, 
Ending the HIV Epidemic (EHE) [5, 6], in addition to 
continuing the age and risk group focused efforts as in 
the previous national plan [7], also aims for jurisdictional 
focused efforts as follows. It aims to reduce national inci-
dence by 75% by 2025 by focusing prevention efforts in 
50 counties and 7 states (we will refer to these as the EHE 
jurisdictions), which had accounted for more than 50% of 
nationwide diagnoses in 2017, and reduce incidence by 
90% by 2030 by expanding prevention efforts to the rest 
of the nation (we will refer to these as the non-EHE juris-
dictions) [5].

Mathematical models that simulate future HIV inci-
dence projections help evaluate the impact of interven-
tions and inform intervention decisions. Recent literature 
includes multiple jurisdiction-specific models [8–16] and 
national level models [17, 18] that have conducted inter-
vention analyses related to the U.S. EHE plan. However, 
there are certain gaps in these analyses. The jurisdiction-
specific models evaluate each jurisdiction independently, 
which ignores the interactions between jurisdictions, 

specifically, the sexual partnership mixing between per-
sons of different jurisdictions [19–24]. Also, they only 
focus on a small number of jurisdictions. On the other 
hand, the national level models do not consider the 
jurisdictional heterogeneity in population demograph-
ics, including population size of key risk groups such as 
injecting drug users and men who have sex with men 
(MSM) [25], and care parameters noted above, or the 
interactions between jurisdictions. Jurisdictional hetero-
geneity in demographics and care along with partnership 
mixing between jurisdictions suggest that there is poten-
tial for strategies adopted in one jurisdiction to influence 
the nation-wide HIV incidence [19–24]. However, the 
influence of these jurisdictional interactions, in light of 
the EHE plan, has not been studied, and there are certain 
gaps preventing such analyses. A model than can conduct 
such analyses is not available, and care data specific to 
jurisdiction and partnership mixing for every jurisdic-
tional pair are also not fully available. Moreover, it is not 
clear if jurisdictional interactions influence epidemic pro-
jections (such as incidence and prevalence), or decisions 
inferred through models, or both.

To address these gaps in the literature, we developed a 
national HIV epidemic compartmental simulation model 
representative of the U.S. population and composed of 
96 jurisdictions. The model’s construction enables us 
to evaluate the national epidemic as a whole, with geo-
graphical heterogeneity in population demographics, 
HIV epidemic, and interventions, and thus help identify 
what jurisdiction-specific strategies to adopt, such as 
how often to test, what should be the aim for retention-
in-care, and what should be the target for PrEP coverage 
to achieve the intended goals of the EHE plan.

Using the model, we evaluated the sensitivity of juris-
dictional mixing and jurisdictional heterogeneity on out-
comes such as incidence, prevalence, and intervention 
decisions. Using the model’s comprehensive structure, we 
evaluated these metrics at different geographical levels, 
including individual jurisdictions, aggregated EHE juris-
dictions, aggregated non-EHE jurisdictions, and national 
level aggregation. Understanding the significance of juris-
dictional heterogeneity and mixing through these sen-
sitivity analyses would inform data collection to ensure 
optimal use of resources, and subsequently inform model 

3.5 years, 2 to 4.8 years, and 2.2 to 4.1 years, respectively). Similar patterns were observed when assuming jurisdictional 
homogeneity, however, change in incidence in mixing compared to no-mixing scenarios were high even in aggre-
gated incidence.

Conclusions:  Accounting jurisdictional mixing and heterogeneity could improve model-based analyses.

Keywords:  Jurisdictional mixing, Jurisdictional heterogeneity, HIV/AIDS, HIV intervention analysis, Ending the HIV 
epidemic (EHE) plan, Dynamic compartmental model, Simulation
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development based on the study’s objective and design. 
Note that the scope of work in this paper is limited to 
evaluating the sensitivity of jurisdictional interactions, 
under the intended goals of the model noted above, and 
not to infer decisions. However, upon availability of rel-
evant data, the model can be easily updated to serve as a 
decision-analytic tool.

Methods
Compartmental model
To simulate national-level HIV projections in the U.S., 
we developed two compartmental models, a National-
Model and a Jurisdictional-Model. The compartmen-
tal stratifications in the National-Model included three 
sexual risk groups (HF, HM, MSM), eighty-eight age 
groups (individual ages from 13 to 100), four care con-
tinuum stages (Unaware, Aware no ART, ART no VLS, 
ART VLS), and five disease progression stages (Acute, 
CD4 > 500, CD4 350–500, CD4 200–350, CD4 <   200). 
By further stratifying the compartmental model into 96 
geographical jurisdictions, the Jurisdictional-Model gen-
erated national-level HIV projections through simulation 
of the 96 epidemiological sub-models. We developed the 
models in Python programming. The flow diagram for 
care continuum transitions and disease stage progres-
sions is depicted in Fig.  1. We only simulated sexually 
transmitted cases of HIV and did not model transmis-
sions through injecting drug use. Below, prior to discuss-
ing each model in detail, we provide an overview of the 
mathematical formulation of the compartmental models.

Mathematically, a compartmental model to simulate 
an epidemic trajectory can be represented as a non-sta-
tionary continuous-time Markov process { Xt : Ω, Gt, πt; 
t = 1 : T}, Xt being the state of an individual transitioning 

through states of an underlying Markov chain defined 
over a state space Ω, state-transitions governed by 
rates in a time-variant generator matrix Gt, and the 
state distribution for the proportion of people in each 
state given by πt, for time t [26]. Here, we can repre-
sent the state space of the underlying Markov chain as 
Ωnat = {[R, A, S, C, D], Death} for the National-Model and 
as Ωjur = {[R, A, S, C, D, J], Death} for the Jurisdictional-
Model, i.e., in addition to a ‘Death’ state, each of the other 
states is a multivariate state, where,
R represents risk-group, R ∈ {Heterosexual males, Het-

erosexual females, Men who have sex with men},
A represents age, A ∈ {13, 14, …, 100},
S represents infection status, S ∈ {Susceptible, Infected},
C represents HIV care status, {C ∈ {∅} if S = Susceptible; 

C∈ {Unaware, Aware no ART, ART no VLS, ART VLS} 
if S = Infected}, {∅} being the null set,
D represents HIV disease stage, {D ∈ {∅} if S = Suscepti-

ble, D ∈ {Acute, CD4 > 500, CD4 350–500, CD4 200–350, 
CD4 <  200} if S = Infected}, and
J represents geographical jurisdiction, J ∈ {1, 2, …, 96}.
Thus, the number of compartments in the National-

Model is the size of its state space given by |Ωnat| = (3 
× 88 × 1 × 1 × 1) + (3 × 88 × 1 × 4 × 5) + (1), where the 
first two elements  represent the size (R × A × S × C × D), 
the first element (3 × 88 × 1 × 1 × 1) is the number of 
states corresponding to S= Susceptible, the second ele-
ment (3 × 88 × 1 × 4 × 5) is the number of states cor-
responding to S= Infected, and the third element (1) 
corresponding to one Death state. Similarly, the number 
of compartments in the Jurisdictional-Model is the size 
of its state space given by |Ωjur| = (3 × 88 × 1 × 1 × 1 × 9
6) + (3 × 88 × 1 × 4 × 5 × 96) + (1) where the first two ele-
ments represent the size (R × A × S × C × D × J), the first 

Fig. 1  Compartmental simulation: Transition diagram with care continuum and disease stages. δd: diagnostic rate in disease stage d, l: proportion 
linked to care within three months of diagnosis, ρ: care drop-out rate, and γ: rate of re-entry to care. Diagnostic rates for people linked to care at 
diagnosis (lδd) (rates on ; dashed arrow), diagnostic rates for people linked to care greater than 3 months after diagnosis ((1 − l)δd) 
(rates on ; dotted arrow), and care-drop-out rates (ρd)(rates on ; thick arrow) are estimated in the model specific to the 
scenario simulated. Rates corresponding to all other arrows are taken from data in literature and are presented in Table S2 of Appendix. (#): numbers 
in each compartment are used for referencing state transitions in Table S2
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element (3 × 88 × 1 × 1 × 1 × 96) is  the number of states 
corresponding to S= Susceptible, the second element 
(3 × 88 × 1 × 4 × 5 × 96) is the number of states corre-
sponding to S= Infected, and the third element (1) cor-
responding to one Death state.

The generator matrix Gt is a square matrix of size equal 
to the number of states, each element representing the 
monthly rates of transition between states. The rates of 
transitioning from any state with S= Susceptible to any 
state with S= Infected are estimated using a Bernoulli 
transmission equation (discussed below and formu-
lated in Appendix Section A3). The rates for all other 
state-transitions, including states that transition persons 
across care stages, disease progression stages, aging, and 
mortality are based on data from the literature (discussed 
in more detail below, under description of each model, 
and the data are presented in Appendix Tables A2, A3, 
and A4). We assume persons do not transition across risk 
groups (i.e., R) or across jurisdictions (i.e., J), and thus 
rates corresponding to those state transitions are zero.

For this continuous-time representation, the  solution 
to the state distribution (πt), which is an array of size 
|Ωnat| for the National-Model and |Ωjuri| for the Juris-
dictional-Model, with each element representing the 
proportion of people in that state at time t, is through 
solving for πt = π0e

Gt t , using some initial state-distri-
bution π0. However, considering the complexity of the 
model, specifically the time-variance of the generator 
matrix, solving it as such for continuous-time t is infeasi-
ble. Therefore, as typically done in compartmental model, 
we numerically solved it using ordinary differential equa-
tions (ODE) as per Euler’s approximation, starting at π0 
and iteratively solving it at sufficiently small increments 
of discrete time-step ∆t (here monthly) as,

Further, in the Markov processes representation of the 
compartmental model, each element of πt denotes the 
proportion of the population in that state, and thus, the 
sum of the elements add to 1. On the other hand, in the 
ODE representation of the compartmental model, with-
out loss of information, we can denote each element of 
πt as the number of people in that state, and thus, the 
sum of the elements add to the total population. Here, to 
determine the initial state distribution π0, we used data 
from the U.S. population (taking data from the U.S. Cen-
sus Bureau for natural demographics related state distri-
butions and data from the U.S. National HIV Surveillance 
Systems for determining HIV-related state distributions) 
in 2010 year-end for the National-Model and 2017 year-
end for the Jurisdictional-Model. We then simulated πt 
over calendar-time t using (1). Thus πt represents the 
cross-sectional distribution of the U.S. population in a 

(1)πt+�t = πt + πtGt�t

specific calendar-time t. Below, we discuss data and esti-
mation processes for the components of the compart-
mental model in (1), including initialization of the model 
(π2010 for National-Model and π2017 for the Jurisdictional 
Model) and transition rates (elements of the time-variant 
generator matrix), specific to the National-Model and 
Jurisdictional-Model.

1)	 National-Model: The main purpose of the National-
Model was, first, for calibration of sexual behavioral 
parameters specific to risk group and age group, as 
data were more widely available at the national level, 
and second, as a comparison against the Jurisdic-
tional-Model to evaluate the sensitivity of jurisdic-
tional heterogeneity and mixing. We briefly discuss 
the model here and present the data used for model 
calibration in the Appendix Sections A2 - A5.

	 We initialized the National-Model to the 2010 HIV 
epidemic, by using data from the NHSS [26] to ini-
tially distribute the population into the different age 
groups, risk groups, disease stage and care contin-
uum compartments (π2010). We simulated the model 
for the period 2011 to 2018, using (1) .

	 We estimated incidence using a Bernoulli transmis-
sion equation (see Appendix Section A3) set as a 
function of behavior, distribution of PWH by care 
continuum, disease stage, disease and care con-
tinuum stage specific HIV transmission risk, PrEP 
coverage among susceptible population, and HIV 
acquisition risk by PrEP status. For the distribution 
of PWH by care continuum and disease stage, we 
calculated these in the simulation as the number of 
PWH in the respective care continuum and disease 
stage, and tracked it in the simulation over time. For 
PrEP coverage among susceptible persons, we used 
data from the NHSS [26]. Note, PrEP coverage in the 
simulation was initiated in year 2017 as it was only 
recently introduced and utilization in prior years 
were minimal (in 2017, 2.8% of the MSM popula-
tion were on PrEP whereas in 2015, 0.7% of the MSM 
population were on PrEP [27]). We assumed PrEP 
only for MSM as < 1% of heterosexuals were admin-
istered PrEP in 2017 [28]). For HIV transmission risk 
by care continuum and disease stage of HIV infected 
persons, and HIV acquisition risk by PrEP-status of 
susceptible persons, we used data from the literature 
(see data in Appendix Table  A12). For behavioral 
data, related to risk group specific partnership mix-
ing, number of partners, proportion of partnership 
type (main or casual), average number of sexual acts 
per partner, number and type (anal or vaginal) of 
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sexual acts per partner, and condom use and effec-
tiveness, we used data from the literature (see data in 
Appendix Tables A5-A11). For the remaining behav-
ioral data related to per act probability of transmis-
sion, and partnership mixing by age group we used 
data ranges from the literature and calibrated the val-
ues by fitting simulated incidence to the surveillance 
estimates of national incidence over the period 2011 
to 2018 (see data in Appendix Tables A13, A5, A6, 
and A9).

	 For the rates of transitioning across disease stages 
(acute, and CD4-count stages) we used data from the 
literature (see Table  A2 Appendix). For simulating 
the transitioning between the care continuum stages, 
we used data from the literature for rate of achieving 
VLS when on ART and for rate of re-entry-to-care 
after dropping out, and data from the NHSS for the 
proportion linking to care at diagnosis (see Table A2 
in Appendix). The remaining two care continuum 
transition parameters, i.e., rates of HIV-diagnosis 
and care-drop-out, are dependent on testing and 
retention-in-care interventions, which are likely to 
change over time. Thus, we estimated these rates in 
the simulation by fitting to the annual NHSS data on 
care continuum distributions (see estimation method 
in Appendix Section A4).

2)	 Jurisdictional-Model: In this model, we further split 
the model into 96 jurisdictions. These jurisdictions 
represent 54 EHE jurisdictions (47 counties and 
7 states) and 42 non-EHE jurisdictions (42 of the 
remaining 43 states) (Table  A1 in Appendix). We 
did not model 3 of the 50 EHE counties stated in the 
EHE plan and 1 non-EHE state due to data unavail-
ability (see Table A1 in Appendix). We initialized the 
Jurisdictional-Model to 2017 as jurisdiction-specific 
HIV related data were only available for 2017, 2018, 
and 2019 at the time of this study. To initially distrib-
ute the population into the different compartments, 
we used census data for the overall population sizes 
[29], NHSS data for HIV population by age group, 
risk group and care-continuum stage [26], and esti-
mates from the literature for the proportion of MSM 
among adult males [25] (see data in Table  A14 in 
Appendix), using jurisdiction-specific data when 
available. As data for care continuum distributions 
specific to risk group within each jurisdiction were 
not available, we assumed that the ratio of risk group 
specific metric to overall population metric observed 
at the national level would be the same as the ratio 
at the jurisdictional-level. Specifically, we applied this 
simplified assumption to two metrics within each 
jurisdiction, proportion aware and proportion with 

ART VLS (see Appendix Section A5). We normal-
ized the values to ensure the sum of the proportions 
across all care continuum stages (Unaware, Aware no 
ART, ART no VLS, ART VLS) is equal to 1 for each 
jurisdiction. We did not model jurisdictions that did 
not have prevalence data, i.e., where data was either 
unavailable or suppressed (see Table A1 in Appendix 
for the list of jurisdictions modeled and excluded).

	 We estimated incidence rates using a Bernoulli trans-
mission equation as in the National-Model, i.e., as a 
function of behavior, distribution of PWH by care 
continuum and disease stage, disease and care con-
tinuum stage specific HIV transmission risk, PrEP 
coverage among susceptible population, and HIV 
acquisition risk by PrEP status. For behavioral data, 
under the assumption that sexual behavior only 
changes by risk and age group, and not geography, 
we used the same data (including the calibrated val-
ues) as in the National-Model for every jurisdiction. 
Additionally, we modeled interactions between juris-
dictions by using a jurisdictional mixing matrix for 
partnership formation, using data from behavioral 
surveys and phylogenetic studies [19–24], and evalu-
ating scenarios with varying levels of mixing to test 
its sensitivity. For the distribution of PWH by care 
continuum and disease stage, as with the National-
Model, we calculated these in the simulation, but 
specific to jurisdiction, as the number of PWH in 
care continuum and disease stage are tracked in the 
simulation over time. For PrEP coverage among sus-
ceptible persons, as with the National-Model we used 
data from the NHSS, except to evaluate the sensitiv-
ity of jurisdictional variations in access to PrEP, we 
implemented scenarios that used the national PrEP 
coverage for every jurisdiction and jurisdiction-spe-
cific PrEP coverage. We discuss the scenarios under 
Scenarios modeled.

	 The rates of progression across disease stages (acute, 
and CD4-count stages) are related to natural disease 
epidemiology, thus, we used the same literature data 
as in the National-Model. For simulating the transi-
tioning between the care continuum stages, we used 
the same data as that in the National-Model for the 
rate of achieving VLS when on ART and for the rate 
of re-entry-to-care after dropping. We believe these 
are reasonable as, in our model, the former relates to 
the natural epidemiology, and the latter is not based 
on intervention and partially based on natural disease 
progression.

	 The remaining two care continuum transition param-
eters, i.e., rates of HIV-diagnosis and care-drop-out, 
are related to testing and retention-in-care interven-
tions, and thus, likely to vary across jurisdictions 
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and over time. Thus, as with the National-Model, we 
estimated these rates in the simulation by fitting to 
the annual NHSS data on care continuum distribu-
tions. Additionally, to test the sensitivity of jurisdic-
tional variations, we evaluated multiple scenarios. 
We evaluated scenarios that applied the same rates 
estimated by the National-Model to every jurisdic-
tion (jurisdictional homogeneity). We also evaluated 
scenarios that estimated rates by fitting to jurisdic-
tion-specific NHSS data on care continuum distribu-
tions (jurisdictional heterogeneity) [26] but using the 
same method as in the National-Model (described in 
Appendix Section A4). These scenarios are described 
in more detail under Scenarios modeled.

	 To analyze the sensitivity of jurisdictional mixing 
and heterogeneity, we simulated the epidemic using 
the Jurisdictional-Model for the period 2018 to 2030, 
under two sets of intervention assumptions. One is 
a continuation of status-quo intervention (baseline). 
The second is the adoption of interventions as per the 
EHE strategy to meet EHE care targets (EHE plan). 
Specifically, the EHE adopts a strategy of diagnose 
(through increased testing), treat (through increased 
linkage to care and retention), and prevent (through 
PrEP), as three of its four strategic pillars. Its pre-
vention efforts are aimed to reach care continuum 
targets of 95–95-95 (i.e., 95% awareness of infection 
status among PWH, 95% linkage to care among those 
aware, and 95% VLS among those in care) and PrEP 
coverage of 50% among those eligible for PrEP, by 

2025 in EHE jurisdictions, and by 2030 in all jurisdic-
tions nation-wide [30]. We discuss these scenarios 
modeled in more detail below.

Scenarios modeled
We used the Jurisdictional-Model to simulate the HIV 
epidemic for the period 2018 to 2030. The time-unit in 
the model was monthly. We evaluated 16 scenarios to 
analyze the sensitivity of jurisdictional heterogeneity in 
care continuum and the sensitivity of jurisdictional mix-
ing. Details of each scenario are discussed and summa-
rized in Table  1, their broad differences are as follows. 
Scenarios S1 to S8 assumed homogeneity in care across 
jurisdictions by using national level estimates for HIV-
diagnosis rate, care-drop-out rate, and PrEP coverage 
for every jurisdiction, and homogeneity in risk group 
distribution by assuming national level estimates for the 
proportion of the population who are MSM [25]. On the 
other hand, scenarios S9 to S16 assumed heterogeneity 
in care across jurisdictions by estimating jurisdiction-
specific HIV-diagnosis rate, care-drop-out rate, and PrEP 
coverage, and heterogeneity in risk group distribution by 
using jurisdiction-specific estimates for proportion MSM 
[25]. Scenarios S1 to S4 and S9 to S12 assumed continu-
ation of status-quo interventions by using baseline year 
(2018) estimates for HIV-diagnosis rate, care-drop-out 
rate, and PrEP coverage, and keeping it constant over 
the period 2019 to 2030. Scenarios S5 to S8 and S13 to 
S16 modeled the EHE plan by using time-varying val-
ues for HIV-diagnosis rate, care-drop-out rate, and PrEP 

Table 1  Scenarios simulated using the Jurisdictional-Model

‡ See Table 2 for data assumptions in each mixing category

Scenario no. Mixing assumption‡ Care Intervention
(HIV-diagnosis rate, care-drop-out rate, and PrEP coverage)

Jurisdictional heterogeneity 
assumption

EHE jurisdictions non-EHE jurisdictions

[S1] No-mixing Baseline (2018): Values kept 
constant at 2018 national estimates 
for all years

Baseline (2018): Values kept 
constant at 2018 national estimates 
for all years

Homogeneous care and risk group 
distribution: national estimates used 
for all jurisdictions

[S2] Level 1-mixing
[S3] Level-2 mixing
[S4] Level-3 mixing
[S5] No-mixing EHE plan: Values calibrated to 

nationally achieve EHE targets 
(95–95-95) by 2025, and kept con-
stant at 2025 value thereafter

EHE plan: Values kept constant at 
2018 national estimates until 2025, 
and thereafter, calibrated to nation-
ally achieve EHE targets (95–95-95) 
by 2030

[S6] Level 1-mixing
[S7] Level-2 mixing
[S8] Level-3 mixing
[S9] No-mixing Baseline (2018): Values kept con-

stant at 2018 jurisdiction-specific 
for all years

Baseline (2018): Values kept con-
stant at 2018 jurisdiction-specific 
for all years

Heterogeneous care and risk group 
distribution: jurisdiction-specific 
estimates

[S10] Level 1-mixing
[S11] Level-2 mixing
[S12] Level-3 mixing
[S13] No-mixing EHE plan: Jurisdiction-specific 

estimates calibrated to achieve EHE 
targets (95–95-95) within each juris-
diction by 2025, and kept constant 
at 2025 value thereafter

EHE plan: Jurisdiction-specific esti-
mates kept constant at 2018 values 
until 2025, and thereafter, calibrated 
to achieve EHE targets (95–95-95) 
by 2030 within each jurisdiction

[S14] Level 1-mixing
[S15] Level-2 mixing
[S16] Level-3 mixing
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coverage, estimated to reach the EHE targets (95–95-95 
care targets and 50% PrEP coverage among eligible) by 
2025 for EHE jurisdictions and by 2030 for non-EHE 
jurisdictions. Scenarios S1, S5, S9, and S13 assumed no-
mixing between jurisdictions, Scenarios S2, S6, S10, and 
S14 assumed lower levels of mixing between jurisdictions 
within the same state but no-mixing outside state (Level-
1-mixing), Scenarios S3, S7, S11, and S15 assumed higher 
levels of mixing between jurisdictions within the same 
state but no-mixing outside state (Level-2-mixing), and 
Scenarios S4, S8, S12, and S16 assumed higher levels of 
mixing between jurisdictions within the same state and 
mixing outside state (Level − 3-mixing).

Jurisdictional mixing assumptions
As noted above, we evaluated no-mixing and three 
types of mixing scenarios. Data for partnership mixing 
between persons of different jurisdictions are limited, 
and national level survey data are unavailable. How-
ever, recent phylogenetic studies, which used nucleotide 
sequence data of persons with recent HIV diagnoses in 
the U.S., which infer close transmissions by creating 
pairwise links between persons with closely related viral 
DNA sequence, serve as a suitable source [24]. It must 
be noted that links formed through nucleotide sequenc-
ing do not necessarily indicate direct transmissions (i.e., 
direct partnership links) and are generated using data 
from only positive persons with recent diagnoses. How-
ever, as these studies are conducted at the national level, 
they serve as suitable reference points for informing the 
sensitivity analyses in our study.

To inform the range of values for our sensitivity analy-
ses, we used the following sources, which included sur-
veys and phylogenetic studies. Results from a survey of 
Baltimore heterosexual males suggest that almost 50% 
of the participants chose partners in the same or adja-
cent census tract [19]. Study presented by Gesink et al., 
conducted interviews with MSM from Toronto, Canada 
and reported that 30% of the study’s participants had 
sex with partners outside of their town  [23]. Study of 

phylogenetic analysis of HIV sequences in Shanghai by 
Li et  al., states that 33.8% of the HIV sequences ana-
lyzed were associated to infected individuals from 
another province  [22]. A phylogenetic study by Oster 
et al., using data from young black MSM between ages 
16 to 24 in Mississippi, found signifcant number of clus-
ters with persons from more than one jurisdiction, sug-
gesting significant mixing between  jurisdictions [20]. 
A follow-up survey of young black MSM between ages 
16 to 24  (by Oster et  al.,) found that 20% of the per-
sons reported travelling to another region in or outside 
the state of Mississippi, thus supporting observations 
in the phylogenetic study [20].  Phylogenetic study by 
Board et  al. used nucleotide sequence data of persons 
with recent HIV diagnoses across the U.S. to identify 
proportion of pairs with closely related sequences that 
were between persons of different jurisdictions, which 
at the time of this study was the most comprehensive 
nationally representative study of the U.S population. 
This study also provides the most comprehensive infor-
mation by presenting data specific to risk groups and 
jurisdiction types (within county, within state, and out-
side state). Data from this study showed that among 
risk groups, links ranged between 47 to 65% within the 
same county, between 78 to 88% within the same state, 
and the remaining between persons of different states 
[24]. Because links do not represent direct transmis-
sions, they do not represent partnership links.

For data inferred through phylogenetic analyses it is 
infeasible to determine the time period of mixing. Most 
data reported from the above behavioral surveys were 
from partnerships reported over a period of 12 months 
[19–24]. Therefore, we used these data to model the pro-
portion of annual partnerships that are with persons out-
side their jurisdiction. We used data from [24], which is 
the most comprehensive and nationally representative, to 
inform two sets of scenarios. Further, as mixing is likely 
to vary by jurisdiction and the reported proportions mix-
ing outside jurisdiction in all the above studies were on 
the higher end, to test the sensitivity of this parameter, 

Table 2  Assumptions of sexual partnership mixing across jurisdictions

HM Heterosexual males, HF Heterosexual females, MSM Men who have sex with men;
a Values represent proportion of partnership mixing with the jurisdictional interaction category

Mixing assumption ➔ Level-1mixinga Level-2 mixinga Level-3 mixinga

Risk group ➔ HM HF MSM HM HF MSM HM HF MSM

Jurisdictional interaction category

Same jurisdiction 90% 90% 85% 57% 65% 47% 57% 65% 47%

Other jurisdiction same state 10% 10% 15% 43% 35% 53% 28% 23% 31%

Other states 0% 0% 0% 0% 0% 0% 14% 12% 22%



Page 8 of 20Tatapudi and Gopalappa ﻿BMC Medical Research Methodology          (2022) 22:304 

we evaluated one additional scenario using lower values 
of 90 to 85%, which is below the lowest observed in the 
behavioral survey studies [19–24]. The mixing assump-
tions are summarized in Table 2 and explained below.

1.	 No-mixing (S1, S5, S9, and S13 in Table 1): For these 
scenarios we assumed partnership mixing was 100% 
within jurisdiction, and 0% outside jurisdiction.

2.	 Level-1-mixing (S2, S6, S10, and S14 in Table 1): For 
these scenarios we assumed persons in a jurisdic-
tion could have partnerships with persons in other 
jurisdictions but within the same state and not with 
persons in other states. If the jurisdiction modeled is 
an EHE county or a non-EHE state with EHE coun-
ties within it, we used the following for proportion 
mixing-within-jurisdiction: 90% for HM and HF, and 
85% for MSM (Table  2). For the proportion mixing 
with the other jurisdictions within the state we used 
1 minus mixing-within-jurisdiction. If there are mul-
tiple EHE counties within a state, we split the value 
(1 minus mixing-within-jurisdiction) equally between 
the other EHE jurisdictions and the rest of the state. If 
the jurisdiction modeled is a state with no EHE coun-
ties within it, we assumed 100% mix within their state.

3.	 Level-2-mixing (S3, S7, S11, and S15 in Table 1): These 
scenarios were modeled exactly as in Level-1-mixing, 
except that we assumed higher levels of outside mix-
ing. Specifically, we used the following data from [24] 
for the proportion mixing-within-jurisdiction: 57% 
for HM, 65% for HF, and 47% for MSM (Table 2).

4.	 Level-3-mixing (S4, S8, S12, and S16 in Table 1): For 
these scenarios we assumed persons in a jurisdiction 
could have partnership with persons in any jurisdic-
tion. If the jurisdiction modeled is an EHE county 
or a non-EHE state with EHE counties within it, we 
used the following data from [24] for the proportion 
mixing-within-jurisdiction: 57% for HM, 65% for 
HF, and 47% for MSM (Table  2). We used mixing-
within-state minus mixing-within-jurisdiction data 
for the proportion mixing within state but outside 
their own jurisdiction (28% for HM, 23% for HF, and 
31% for MSM), and distributed it equally among the 
jurisdictions within state. We used 1 minus mixing-
within-state for mixing-outside-state and distributed 
it across all other states weighted by distance to the 
state. If the jurisdiction modeled is a state without 
EHE counties within it, we used mixing-within-state 
data from [24] for mixing within jurisdiction and dis-
tributed the remaining across all other states weight-
ing by the distance to that state. We used the Euclid-
ean distance between the geographical co-ordinates 
(latitude and longitude) of two states as a proxy for 
the distance between jurisdictions.

Evaluating sensitivity of jurisdictional mixing while keeping 
jurisdictional homogeneity in care
We used the Jurisdictional-Model to evaluate the sensitiv-
ity of jurisdictional mixing when assuming jurisdictional 
homogeneity in care. Both when keeping interventions 
at baseline, i.e., HIV-diagnosis rate, care-drop-out rate, 
and PrEP coverage constant over the period 2018 to 2030 
at 2018 baseline values (S1, S2, S3, and S4), and when 
scaling-up interventions over time to meet the 95–95-95 
care and 50% PrEP targets (S5, S6, S7, and S8). To model 
jurisdictional homogeneity in care, we initialized the care 
continuum distribution of each jurisdiction to be equal 
to the national level for year 2017 year-end. We explain 
these scenarios in more detail below.

1.	 Baseline-intervention; jurisdictional homogene-
ity in care (S1, S2, S3, and S4 in Table 1): In these 
scenarios, we used the baseline estimates derived by 
the National-model for rates of HIV-diagnosis and 
care-drop-out, fitted to the national care continuum 
distribution in 2018. We kept these rates constant for 
the following years (i.e., 2019 to 2030) and used the 
same rates for all jurisdictions. We also kept PrEP-
coverage constant at 2018 national level for all years 
and all jurisdictions. While we used jurisdiction-spe-
cific data for PWH in each risk group, we assumed 
that the proportion of the population who are MSM 
is the same for every jurisdiction and used national 
level estimates from [25].

2.	 EHE-plan-intervention; jurisdictional homogene-
ity in care (S5, S6, S7, and S8 in Table 1): In these 
scenarios, we used national level estimates for the 
scale-up in interventions (HIV-diagnosis rate, care-
drop-out rate, and PrEP coverage) to meet the EHE 
targets. Specifically, we used the National-Model 
to estimate the HIV-diagnosis rate, care-drop-out 
rate, and PrEP coverage necessary to linearly scale-
up care continuum proportions and PrEP coverage 
from its national baseline values in year 2018 to the 
EHE targets. For EHE jurisdictions, the interven-
tions were linearly scaled over the period 2019 to 
2025 and kept constant thereafter, and for the non-
EHE jurisdictions, the values were kept constant for 
the period 2018 to 2025 and linearly scaled-up over 
the period 2026 to 2030. To recollect, the EHE tar-
gets were 95–95-95 for the care continuum and 
50% for PrEP coverage among those eligible. In the 
U.S., PrEP eligibility is based on specific indicators, 
such as a person’s risk factor for acquiring HIV and 
recency in other sexually transmitted infections [31]. 
In the model, we do not simulate these PrEP indica-
tors, thus, we use the reported number for persons 
with PrEP indicators to determine the percentage of 
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susceptible population who are eligible for PrEP and 
take 50% of that percentage as the EHE target for 
PrEP coverage. Thus, a 50% coverage among those 
eligible would approximately be equal to 15% cover-
age among all susceptible. Not modeling PrEP indica-
tors but using the above conversion is equivalent to 
assuming that sexual behaviors do not change over 
time, which is reasonable for the scope of our analy-
ses as we do not evaluate behavioral interventions.

Evaluating sensitivity of jurisdictional mixing 
and jurisdictional heterogeneity in care
We used the Jurisdictional-Model to evaluate the sensi-
tivity of jurisdictional mixing and jurisdictional hetero-
geneity in care. Both when keeping HIV-diagnosis rate, 
care-drop-out rate, and PrEP coverage constant over the 
period 2018 to 2030 (Scenarios S9, S10, S11, and S12), 
and when scaling-up over time to meet the 95–95-95 tar-
gets (Scenarios S13, S14, S15, and S16). To model juris-
dictional heterogeneity in care, we initialized the model 
to jurisdiction-specific care data for 2017 year-end and 
estimated jurisdiction-specific HIV-diagnosis rates, care-
drop-out rates, and PrEP-coverage for the period 2019 to 
2030. We explain these scenarios in more detail below.

1.	 Baseline-intervention; jurisdiction-heterogeneity 
in care (S9, S10, S11, and S12 in Table 1): In these 
scenarios, we used the jurisdiction-specific estimates 
for HIV-diagnosis rate, care-drop-out rate, and PrEP 
coverage. We derived jurisdiction-specific HIV-
diagnosis rate and care-drop-out rate in the Jurisdic-
tional-Model by using the 2018 jurisdiction-specific 
care continuum distributions and kept it constant for 
the period 2019 to 2030. We also used 2018 jurisdic-
tion-specific estimates of PrEP coverage and kept it 
constant for the period 2019 to 2030.

2.	 EHE-plan-intervention; jurisdiction-heterogeneity 
in care (S13, S14, S15, and S16 in Table 1): In these 
scenarios, we used jurisdiction-specific estimates for 
the scale-up in interventions (HIV-diagnosis rate, 
care-drop-out rate, and PrEP coverage) to meet the 
EHE targets. Specifically, we used the Jurisdictional-
Model to estimate jurisdiction-specific HIV-diagno-
sis rate, care-drop-out rate, and PrEP coverage neces-
sary to linearly scale-up care continuum proportions 
and PrEP coverage from its jurisdiction-specific base-
line values in year 2018 to the EHE target values and 
years. That is, for EHE jurisdictions, the interventions 
were linearly scaled over the period 2019 to 2025 and 
kept constant thereafter, and for the non-EHE juris-
dictions, the values were kept constant for the period 
2019 to 2025 and linearly scaled-up over the period 

2026 to 2030. To recollect, the EHE targets were 
95–95-95 for the care continuum and 50% for PrEP 
coverage among those eligible. PrEP eligibility was 
determined in the same manner as described above 
for EHE-plan-intervention; jurisdictional homogene-
ity scenarios (S5, S6, S7, and S8).

Model verification and output metrics
As the sexual behavioral parameters in the National-
Model were calibrated to the national incidence between 
2011 and 2018, and because these parameters were then 
used in the Jurisdictional-Model, we first verified that 
the annual risk group specific incidence simulated by the 
National-Model compares well with NHSS estimates for 
years 2011 to 2018 (Fig. 2).

Results suggest overall good fit to NHSS incidence for 
all three risk groups.

For each of the 16 scenarios simulated in the Jurisdic-
tional-Model, and for each jurisdiction, we extract the 
following metrics for the period 2018 to 2030: incidence 
as number of new infections per year, prevalence as the 
total number of PWH in that year, HIV-testing interval 
as the inverse of the HIV-diagnosis rate (a proxy), and 
retention-in-care rates as 1 minus the care-drop-out 
rate. HIV-testing intervals and retention-in-care rates 
serve as decision metrics to inform HIV testing and 
retention-in-care intervention programs, and incidence 
and prevalence projections serve as expected outcomes 
from implementing those decisions. We compare these 
metrics across the 16 scenarios to infer the sensitivity of 
model outputs to jurisdictional mixing and jurisdictional 
heterogeneity in care.

Results
While the risk-specific incidence estimates from the 
National-Model were within the range of NHSS estimates 
over the period 2011 to 2018 (as mentioned in Model 
Verification), as expected from the design of the scenar-
ios, the fit of incidence estimates from the Jurisdictional-
Model varied by assumptions in jurisdictional mixing 
and heterogeneity (Fig. 2). Specifically, for years 2018 and 
2019, risk group specific incidence (Fig. 2) and total inci-
dence (Fig. 3) estimated by the Jurisdictional-Model were 
sensitive to jurisdictional mixing (comparing no-mixing 
scenarios S1, S5, S9 and S13, with Level-1-mixing scenar-
ios S2, S6, S10, and S14, Level-2-mixing scenarios S3, S7, 
S11, and S15, and Level-3-mixing scenarios S4, S8, S12, 
and S16).

We did not attempt to calibrate behavioral data to 
improve the fit for each scenario as our objective is to test 
the sensitivity of jurisdictional mixing and heterogene-
ity in care and demographics while keeping all else fixed. 
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Fig. 2  Comparing annual risk group specific incidence projections between NHSS, National-Model, and Jurisdictional-Model*. NHSS: National HIV 
Surveillance System; NHSS-National: national level estimates from NHSS; *Using period 2011 to 2019 to validate that National-Model simulated 
estimates are within range of NHSS estimates; using period 2018 to 2019 to verify that Jurisdictional-Model simulated estimates (from scenarios 
S1 to S4 †, and S9 to S12‡) generate incidence in magnitudes similar to National-Model estimates; and using period 2020 to 2030 to observe 
differences between Jurisdictional-Model scenarios S1, S2, S3, S4, S9, S10, S11, and S12. † Scenarios S5, S6, S7, and S8, start at the same baseline 
(2018) as S1, S2, S3, and S4, respectively. ‡ Scenarios S13, S14, S15, and S16, start at the same baseline (2018) as S9, S10, S11, and S12, respectively

Fig. 3  Comparing annual incidence projections between 16 scenarios simulated in Jurisdictional-Model and NHSS estimates*. NHSS: National 
HIV Surveillance System; NHSS-National: national level estimates from NHSS. *Using period 2018 to 2019 to verify that Jurisdictional-Model 
simulated estimates generate incidence in magnitudes similar to NHSS estimates; and using period 2020 to 2030 to observe differences between 
Jurisdictional-Model scenarios S1 to S16. †Scenarios S1 to S8 assume jurisdictional homogeneity; Scenarios S9 to S16 assume jurisdictional 
heterogeneity; Scenarios S1 to S4 and S9 to S12 assume baseline intervention; Scenarios S5 to S8 and S13 to S16 scale-up interventions as per 
EHE-plan



Page 11 of 20Tatapudi and Gopalappa ﻿BMC Medical Research Methodology          (2022) 22:304 	

Further, the Jurisdictional-Model excluded some coun-
ties and states due to data suppression from small data. 
However, the magnitude of the estimates are close to the 
national ranges, providing verification that the Jurisdic-
tional-Model, which simulated local HIV epidemics in 96 
jurisdictions can collectively generate results close to the 
overall national estimates.

In baseline-intervention scenarios, incidence projec-
tions for the period 2018 to 2030 were sensitive to juris-
dictional mixing, both when assuming jurisdictional 
homogeneity in care (S1 compared to S2, S3 and S4) 
and jurisdictional heterogeneity in care (S9 compared 
to S10, S11, and S12) (Fig. 2), but more so in the former 
than the latter as seen by the percent change in incidence 
(Table 3). Compared to S9, the aggregated national inci-
dence in S10, S11, and S12 changed by 2 to 2%, 7 to 5%, 
and 8 to 9%, respectively, whereas, compared to S1, the 
aggregated national incidence in S2, S3, and S4 changed 
by 7 to 11%, 24 to 22%, and 24 to 26%, respectively, the 
range corresponding to years 2018 to 2030 (see ‘All’ risk 
group ‘National’ in Table 3).

In EHE-plan-intervention scenarios, in 2018, the per-
cent change in incidence in mixing compared to no-mix-
ing were similar to that in baseline-intervention scenarios 
above, which is expected as they start at the same base-
line in 2018. However, as incidence decreased over the 
period 2019 to 2030 from scale-up of care, the differences 
diminished (Fig. 3, Table 4). Compared to S13, the aggre-
gated national incidence in S14, S15, and S16 changed 
by 2% to − 1, 7% to − 3, and 8% to 1%, respectively, and 
compared to S5, the aggregated national incidence in S6, 
S7, and S8 changed by 7 to 4%, 24 to 6%, and 24 to 10%, 
respectively, the range corresponding to years 2018 and 
2030 (see ‘All’ risk group ‘National’ in Table 4). While the 
care metrics in S13 to S16 were estimated in the Juris-
dictional-model during the simulation and thus varied 
by scenario and jurisdiction, the care metrics in S5 to S8 
were extracted from the National-model and thus were 
constant across scenarios and jurisdictions. Therefore, 
diminishing differences in both sets of scenarios suggest 
that, while incidence is sensitive to jurisdictional mix-
ing when incidence was high, as incidence decreases, the 
sensitivity of mixing diminishes.

The differences in aggregated national incidence esti-
mates between no-mixing and different levels of mixing 
assumptions observed in year 2018 (Fig. 3, Tables 3 and 
4) predominantly resulted from the non-EHE jurisdic-
tions (see Fig.  4, summarized in Tables  3 and 4). When 
assuming jurisdictional homogeneity in care, compared 
to no-mixing S1, incidence in S2, S3, and S4 changed 
by 19 to 28%, 67 to 55%, and 60 to 60%, respectively, for 
non-EHE jurisdictions (see ‘All’ risk group “Non-EHE” in 
Table  3), whereas, it changed by − 3% to − 4, − 10% to 

− 8%, and − 5% to − 4%, respectively, for EHE jurisdic-
tions (see ‘All’ risk group “EHE” in Table  3), the range 
corresponding to years 2018 to 2030. Similarly, when 
assuming jurisdictional heterogeneity in care, compared 
to no-mixing S9, incidence in S10, S11, and S12 changed 
by 5 to 7%, 18 to 15%, and 19 to 21%, respectively, for 
non-EHE jurisdictions (see ‘All’ risk group “Non-EHE” in 
Table 3), whereas it changed by − 1% to − 1, − 2% to − 2, 
and 0% to 0%, respectively, for EHE jurisdictions (see ‘All’ 
risk group “EHE” in Table 3).

In baseline year, 2018, though overall differences in 
incidence between mixing assumptions were minimal 
when assuming heterogeneity in care, i.e., differences 
between scenarios S9 to S12 (Table  3) were minimal 
and between S13 to S16 were minimal (Table  4), the 
differences at the individual jurisdictions varied over 
a wide range. Taking differences in incidence within 
each jurisdiction, compared to S13, incidence in S14, 
S15, and S16 changed by − 8 to 30%, − 31 to 109%, 
and − 27 to 94%, respectively, the range corresponds to 
data across individual jurisdictions (see ‘All’ risk group 
“National” in Table  5). Further, taking only EHE juris-
dictions, compared to S13, incidence in S14, S15, and 
S16, changed by − 8 to 11%, − 31 to 39%, and − 27 to 
46%, respectively (see ‘All’ risk group “EHE” Table 5 and 
Fig. 5a). Considering only non-EHE jurisdictions, com-
pared to Scenario 13, incidence in S14, S15, and S16, 
changed by − 5 to 30%, − 18 to 109%, and − 11 to 94%, 
respectively (see ‘All’ risk group “Non-EHE” in Table 5, 
and Fig.  5b). Differences in risk group specific inci-
dences for S13 compared to S14, S15, and S16, for EHE 
and non-EHE jurisdictions had similar observations 
as above (Table 5, and Figs. A2a and A2b for HM, A3a 
and A3b for HF, and A4a and A4b for MSM in Appen-
dix). Scenarios S9 to S12 have the same observations as 
above for year 2018, as they start at the same baseline 
values as S13 to S16, respectively.

A consequence of the differences in the jurisdictional-
level incidence estimates is that the jurisdiction-level 
decisions inferred from the model would vary based 
on our mixing assumption. We summarize HIV-test 
intervals across jurisdictions into two cohorts: inter-
val <  2 years, and interval between 2 and 4 years (Table 6). 
When test interval was < 2 years, compared to S13, test 
intervals in S14, S15, and S16, changed by − 23 to 15%, 
− 44 to 53%, and − 45 to 48%, respectively, the range 
corresponding to the minimum and maximum changes 
over all years, risk groups, and jurisdictions (see ‘All’ risk 
group “National” in Table  5). Representing these in test 
intervals, suppose S13 on average suggests testing every 
1 year, S14, S15, and S16, would suggest testing every 0.8 
to 1.2 years, 0.6 to 1.5 years, and 0.6 to 1.5 years, respec-
tively. When test interval was 2–4 years, compared to 
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Table 3  Change in aggregated incidencea (2018, 2030)b in mixing scenarios compared to no-mixing (baseline interventionc)

HM Heterosexual males, HF Heterosexual females, MSM Men who have sex with men

National: aggregate of all EHE and non-EHE jurisdictions; EHE: aggregate of all EHE jurisdictions; Non-EHE: aggregate of all non-EHE jurisdictions
a  % change in incidence in mixing compared to no-mixing scenario = 100 × (mixing scenario – no-mixing scenario)/mixing scenario)
b  Values presented are for years 2018, 2030, respectively, and represents the range over the duration of the simulation
c  Scenarios 1 to 4 and 9 to 12 keep care metrics (HIV-diagnosis rate, care-drop-out rate, and PrEP coverage) fixed at the 2018 baseline values for the full duration of the 
simulation

Scenario no. ➔ S1 S2 S3 S4 S9 S10 S11 S12

Care assumption ➔ Homogeneity in care across jurisdictions (2018, 2030)b Heterogeneity in care across jurisdictions (2018, 2030)b

Mixing assumption ➔ No-mixing Mixing 
level 1

Mixing 
level 2

Mixing level 3 No-mixing Mixing level 1 Mixing level 2 Mixing level 3

Risk group Jurisdiction type

All National Ref 7, 11% 24, 22% 24, 26% Ref 2, 2% 7, 5% 8, 9%

EHE Ref -3, −4% −10, −8% −5, − 4% Ref −1, −1% −2, −2% 0, 0%

Non-EHE Ref 19, 28% 67, 55% 60, 60% Ref 5, 7% 18, 15% 19, 21%

HM National Ref 5, 8% 22, 21% 24, 25% Ref 5, 4% 21, 14% 21, 16%

EHE Ref −2, −4% −9, −10% 0, − 4% Ref −2, − 2% −8, −7% −6, −6%

Non-EHE Ref 15, 25% 65, 65% 57, 64% Ref 14, 11% 59, 36% 57, 39%

HF National Ref 4, 9% 15, 20% 16, 23% Ref 2, 3% 7, 7% 8, 10%

EHE Ref −2, −4% −8, −9% −5, − 5% Ref − 1, − 1% −3, −3% −2, −3%

Non-EHE Ref 14, 26% 50, 56% 45, 59% Ref 5, 7% 17, 16% 17, 21%

MSM National Ref 8, 12% 27, 22% 27, 27% Ref 1, 2% 5, 4% 6, 9%

EHE Ref −3, −4% −11, −8% −5, − 4% Ref 0, − 1% − 1, −2% 1, 2%

Non-EHE Ref 20, 29% 72, 54% 64, 60% Ref 4, 6% 14, 12% 15, 19%

Table 4  Change in aggregated incidencea (2018, 2030)b in mixing scenarios compared to no-mixing (EHE planc)

HM Heterosexual males, HF Heterosexual females, MSM Men who have sex with men

National: aggregate of all EHE and non-EHE jurisdictions; EHE: aggregate of all EHE jurisdictions; Non-EHE: aggregate of all non-EHE jurisdictions;
a  % change in incidence in mixing compared to no-mixing scenario = 100 × (mixing scenario – no-mixing scenario)/mixing scenario)
b  Values presented are for years 2018, 2030, respectively, and represents the range over the duration of the simulation
c  Scenarios 5 to 8 and 13 to 16 scale-up care metrics (HIV-diagnosis rate, care-drop-out rate, and PrEP coverage) from 2018 baseline to reach EHE targets by 2025 for 
EHE jurisdictions and by 2030 for non-EHE jurisdictions

Scenario no. ➔ S5 S6 S7 S8 S13 S14 S15 S16

Care assumption ➔ Homogeneity in care across jurisdictions
(2018, 2030)b

Heterogeneity in care across jurisdictions
(2018, 2030)b

Mixing assumption ➔ No-mixing Mixing 
level 1

Mixing 
level 2

Mixing 
level 3

No-mixing Mixing 
level 1

Mixing 
level 2

Mixing level 3

Risk group Jurisdiction  type

All National Ref 7, 4% 24, 6% 24, 10% Ref 2, −1% 7, −3% 8, 1%

EHE Ref −3, 0% −10, 1% −5, 7% Ref − 1, 4% −2, 8% 0, 15%

Non-EHE Ref 19, 7% 67, 9% 60, 13% Ref 5, −4% 18, − 11% 19, − 9%

HM National Ref 5, 4% 22, 10% 23, 13% Ref 5, 0% 21, 0% 21, 5%

EHE Ref −2, −2% −9, −4% −6, 0% Ref −2, 0% −8%, − 25 −6, 2%

Non-EHE Ref 15, 9% 65, 21% 63, 24% Ref 14, 0% 59, 5% 57, 6%

HF National Ref 4, 4% 15, 7% 15, 10% Ref 2, −2% 7, −5% 8, − 2%

EHE Ref −2, −1% −8, 0% −7, 4% Ref − 1, 2% −3, 4% − 2, 8%

Non-EHE Ref 14, 7% 50, 11% 47, 14% Ref 5, −3% 17, − 9% 17, − 7%

MSM National Ref 8, 4% 28, 6% 26, 10% Ref 1, − 1% 5, − 3% 6, 2%

EHE Ref −3, 0% − 11, 2% − 9, 8% Ref 0, 5% − 1, 10% 1, 18%

Non-EHE Ref 20, 6% 72, 8% 67, 11% Ref 4, − 5% 14, − 13% 15, − 11%
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Fig. 4  Comparing annual incidence between 16 scenarios simulated in Jurisdictional-Model, aggregated by EHE and non-EHE jurisdictions. 
†Scenarios S1 to S8 assume jurisdictional homogeneity; Scenarios S9 to S16 assume jurisdictional heterogeneity; Scenarios S1 to S4 and S9 to S12 
assume baseline intervention; Scenarios S5 to S8 and S13 to S16 scale-up interventions as per EHE-plan

Table 5  Change in jurisdiction-specific incidencea (min, maxb) in mixing scenarios compared to no-mixing (2018e, with jurisdictional 
heterogeneityc)

HM Heterosexual males, HF Heterosexual females, MSM Men who have sex with men

National: aggregate of all EHE and non-EHE jurisdictions; EHE: aggregate of all EHE jurisdictions; Non-EHE: aggregate of all non-EHE jurisdictions;
a  Jurisdiction-specific % change in incidence in mixing compared to no-mixing scenario = 100 × (mixing scenario – no-mixing scenario)/mixing scenario)
b  Values presented are the range (minimum, maximum) across jurisdictions for year 2018
c  Scenarios S9 to S12 and Scenarios S13 to S16 assume jurisdictional heterogeneity
d  Scenarios S9 to S12 (baseline intervention) and e Scenarios S13 to S16 (EHE plan intervention) start at same baseline using 2018 care metrics (HIV-diagnosis rate, 
care-drop-out rate, and PrEP coverage)

Scenario no. ➔ S9d (or S13)e S10d (or S14)e S11d (or S15)e S12d (or S16)e

Mixing assumption ➔ No-mixing Mixing level 1
(min, max) b

Mixing level 2 (min, 
max) b

Mixing level 
3 (min, max) b

Risk group Jurisdiction type

All National Ref − 8, 30% −31, 109% −27, 94%

EHE Ref − 8, 11% − 31, 39% − 27, 46%

Non-EHE Ref −5, 30% −18, 109% − 11, 94%

HM National Ref −9, 63% − 37, 269% − 31, 221%

EHE Ref − 9, 13% − 37, 56% − 31, 43%

Non-EHE Ref 0, 63% 0, 269% 8, 221%

HF National Ref − 8, 36% − 27, 125% − 23, 99%

EHE Ref −8, 9% − 27, 31% − 23, 25%

Non-EHE Ref −4, 36% − 14, 125% − 11, 99%

MSM National Ref − 9, 24% − 31, 84% − 34, 71%

EHE Ref −9, 12% − 31, 44% − 34, 52%

Non-EHE Ref −6, 24% −22, 84% −17, 71%
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S13, test intervals in S14, S15, and S16, changed by − 14 
to 15%, − 33 to 60%, and − 28 to 37%, respectively, the 
range is the minimum and maximum changes over all 
years, risk groups, and jurisdictions (see ‘All’ risk group 
“National” in Table  6). Representing these in test inter-
vals, suppose S13 on average suggests testing every 
3 years, S14, S15, and S16, would suggest testing every 
2.6 to 3.5 years, 2 to 4.8 years, and 2.2 to 4.1 years, respec-
tively. These changes in testing intervals from changes in 
mixing assumptions were similar in both EHE and non-
EHE jurisdictions.

The estimated levels of retention-in-care were similar 
across S13 to S16, and high (ranging from 93.5 to 100%), 
suggesting the need for highly effective retention-in-care 
programs to achieve the EHE targets.

For EHE jurisdictions, the cumulative reduction in inci-
dence (over the period 2018 to 2030) in EHE scenarios 
compared to baseline scenarios were similar across juris-
dictional mixing and jurisdictional heterogeneity assump-
tions (Table  7). However, for non-EHE jurisdictions, 
reduction in incidence were similar across jurisdictional 
heterogeneity assumptions but different across jurisdic-
tional mixing assumptions. In non-EHE jurisdictions, while 
the expected incidence reduction in no-mixing assump-
tion was 5% when assuming jurisdictional homogeneity in 
care (and 9% when assuming jurisdictional heterogeneity in 
care), the incidence reductions in level-1 mixing was 14% 

(and 15%), level-2 mixing was 24% (and 24%), and level-3 
mixing was 23% (and 25%) (Table 7).

Compared to incidence in 2019, none of the EHE-plan-
intervention scenarios (S5 to S8 or S9 to S12) could reduce 
incidence by 75% by 2025 or 90% by 2030, as aimed for in 
the EHE plan. When considering jurisdictional heterogene-
ity (S9 to S12), aggregated incidence in EHE jurisdictions in 
2018 were similar or higher than aggregated incidence in 
non-EHE jurisdictions. With intervening in EHE jurisdic-
tions as per the EHE-plan, aggregated incidence in EHE 
jurisdictions significantly reduced over the period 2019 
to 2025 (by ~ 43% in S16). Because of continuation of the 
baseline-intervention up to 2025 in non-EHE jurisdictions, 
its aggregated incidence change over the period 2019 to 
2025 was minimal, its incidence surpassing that in the EHE 
jurisdictions by the end of 2024. Over the period 2019 to 
2025, though non-EHE jurisdictions had some reductions 
in incidence in scenarios with mixing (~ 11% in S16) ben-
efiting from the interventions in EHE, incidence in EHE 
jurisdictions increased because of the mixing, thus negat-
ing the overall benefits. As a result, by the end of 2025, the 
reduction in national aggregated reduction in incidence 
was 28% (in S16). The reduction in national aggregated 
incidence by 2030 compared to 2019 was about 58% (in 
S16). Note that the EHE plan is to first focus on only EHE 
jurisdictions for the first phase (2019 to 2025) and then 
non-EHE jurisdictions in second phase (2025 to 2030), i.e., 

Fig. 5  a Comparing percentage change in incidence estimates for no-mixing compared to mixing (EHE jurisdictions*, baseline, 2018). Level-1: 
Scenario S14; Level-2: Scenario S15; and Level-3: Scenario S16. * The title on each subplot is the EHE jurisdiction (county or state) along with values 
of incidence in year 2018 under the no-mixing scenario [S13]. b Comparing percentage change in incidence estimates for no-mixing compared to 
mixing (non-EHE jurisdictions*, baseline, 2018). Level-1: Scenario S14; Level-2: Scenario S15; and Level-3: Scenario S16. * The title on each subplot is 
the non-EHE jurisdiction (state) along with values of incidence in year 2018 under the no-mixing scenario [S13]
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scaling-up interventions over period 2019 to 2030 for EHE 
jurisdictions and period 2025 to 2030 for non-EHE jurisdic-
tions. Instead, if we scale-up interventions over period 2019 
to 2025 in all jurisdictions, both EHE and non-EHE, and 
keep it constant thereafter up to 2030, we would achieve a 
reduction in national incidence of about 52% by 2025 and 
67% by 2030 (see Fig. A5 in Appendix).

The corresponding changes in prevalence (number of peo-
ple with HIV) estimates over the period 2017 to 2030 are pre-
sented in Fig. 6 along with the national surveillance estimates 
(‘NHSS-National’) for years 2017–2019 and sum of the 96 
jurisdictions for 2017 (‘NHSS-Sum of jurisdictions’). Simu-
lated estimates of prevalence match close to the surveillance 
estimates for years 2017 to 2019, however, following from the 
changes in incidence over time (Fig. 2), prevalence were most 
sensitive to jurisdictional mixing in Scenarios S1 to S4 which 
assumed homogeneity in care and baseline interventions.

Discussions
In this study, we developed a compartmental model to 
project the national HIV epidemic in the U.S. We first 
developed a National-Model, which calibrated risk group 

and age group specific sexual behavioral parameters at 
the national level for years 2011–2018. The National-
model was not split into individual jurisdictions. We then 
developed a Jurisdictional-Model, which split the popu-
lation into 96 jurisdictions, and simulated the national 
HIV epidemic in the U.S. from 2018 to 2030 as a compo-
sition of 96 local epidemics. We used the Jurisdictional-
Model to evaluate the sensitivity of jurisdictional mixing 
and jurisdictional heterogeneity in care on aggregated-
national and jurisdiction-specific HIV incidence esti-
mates, and the corresponding intervention decisions, 
such as HIV-testing interval and retention-in-care, 
inferred from the model.

We believe this is the first model that simulates the 
U.S. national HIV epidemic through simulating interact-
ing individual sub-geographical jurisdictions. Previous 
models in the literature have either focused on modeling 
jurisdictions individually and independently of other 
jurisdictions or aggregated into a national model assum-
ing homogeneity among the national population. Though 
the scope of the models in the literature were differ-
ent than that presented here, there were some common 

Table 7  Percentage reduction in cumulative incidence† (2018–2030) (EHE plan⁋ compared to baseline intervention§)

HM Heterosexual males, HF Heterosexual females, MSM Men who have sex with men

National: aggregate of all EHE and non-EHE jurisdictions; EHE: aggregate of all EHE jurisdictions; Non-EHE: aggregate of all non-EHE jurisdictions;
†  % reduction in cumulative incidence in EHE plan scenarios⁋ compared to its corresponding baseline scenario§ and calculated as 100 × (EHE plan scenario-baseline 
scenario)/ baseline scenario)
§  Scenarios 1 to 4 and 9 to 12 keep care metrics (HIV-diagnosis rate, care-drop-out rate, and PrEP coverage) fixed at the 2018 baseline values for the full duration of 
the simulation
⁋  Scenarios 5 to 8 and 13 to 16 scale-up care metrics (HIV-diagnosis rate, care-drop-out rate, and PrEP coverage) to reach EHE targets by 2025 for EHE jurisdictions and 
by 2030 for non-EHE jurisdictions
*  Scenarios 5 to 8 and 1 to 4 assume jurisdictional homogeneity

** Scenarios 9 to 12 and 13 to 16 assume jurisdictional heterogeneity

Scenario no. ➔ (reference scenario) S5⁋

(ref S1§)
S6⁋

(ref S2§)
S7⁋

(ref s3§)
S8⁋

(ref S4§)
S13⁋

(ref S9§)
S14⁋

(ref S10§)
S15⁋

(ref S11§)
S16⁋ (ref 
S12§)

Care assumption ➔ Homogeneity in care across jurisdictions* Heterogeneity in care across jurisdictions**

Mixing assumption ➔ No-mixing Mixing 
level 1

Mixing 
level 2

Mixing 
level 3

No-mixing Mixing 
level 1

Mixing 
level 2

Mixing level 3

Risk group Jurisdiction  type

All National −24% − 27% − 30% − 30% − 30% −31% − 33% −33%

EHE −41% − 40% −38% − 40% −45% − 44% −41% − 41%

Non-EHE −5% −14% − 24% − 23% − 9% − 15% − 24% −25%

HM National − 23% − 24% − 27% − 27% − 25% − 27% − 30% − 30%

EHE −36% − 35% − 34% − 37% − 40% − 39% − 37% − 37%

Non-EHE −4% −12% − 22% − 20% − 9% − 15% − 25% − 25%

HF National −24% − 25% − 28% − 28% − 25% −27% −30% − 30%

EHE −38% −38% − 36% − 38% − 43% − 42% − 40% −39%

Non-EHE −3% − 12% −21% − 20% − 8% − 14% − 22% − 23%

MSM National −25% − 27% − 31% −31% − 32% − 33% −35% − 35%

EHE − 43% −42% − 40% − 41% −47% − 45% −42% − 41%

Non-EHE −5% − 14% − 25% − 24% − 10% −16% − 25% − 26%
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observations in terms of intervention findings and more 
broadly model development from our study that matched 
with that in the literature. Specifically, that the EHE tar-
gets cannot be achieved by continuation of status-quo 
interventions [9, 10, 13], the heterogeneity in epidemics 
and care uptakes across jurisdictions generate a need for 
more tailored interventions that may vary across jurisdic-
tions [8–10, 13], the lack of data for developing compre-
hensive models for every jurisdiction, and the role that 
models could play in improving data collection by identi-
fying most sensitive parameters to inform data priorities 
[8, 10].

In addition to observations on heterogeneity across 
populations, that generated some of the work in the liter-
ature, our work was additionally motivated by the obser-
vations in partnership mixing between jurisdictions, in 
both sexual behavior surveys and phylogenetic analyses 
of clusters [19–24]. However, there are challenges to 
developing a model that is fully representative of all juris-
dictions. First, large-scale national level data for partner-
ship mixing such as from behavioral surveys are limited 
to small populations. Second, they are infeasible to gen-
erate for every jurisdiction pair. Third, though current 
model types do not simulate jurisdictional interactions, 
it is not clear if jurisdictional interactions are significant 
enough to alter decisions, and thus the need for more 

comprehensive jurisdictional models over current model 
types.

Therefore, we focused the scope of this work on con-
ducting extensive sensitivity analyses to evaluate the fol-
lowing: 1) the sensitivity of jurisdictional mixing on the 
national HIV incidence estimates under baseline inter-
vention, i.e., if care and PrEP coverage continued at 2018 
levels, would incidence estimates from the model change 
based on jurisdictional mixing assumptions, and would 
they be different when assuming jurisdictional homo-
geneity versus jurisdictional heterogeneity; 2) the sensi-
tivity of jurisdictional mixing on the projected national 
HIV incidence estimates and incidence reductions when 
simulating the EHE plan interventions, i.e., if the EHE 
care-continuum and PrEP targets were reached, would 
the corresponding incidence estimates and reductions 
compared to baseline-intervention vary based on mixing 
assumptions, and would they be different when assum-
ing jurisdictional homogeneity versus jurisdictional het-
erogeneity; and 3) the sensitivity of jurisdictional mixing 
on the intervention decisions inferred through simulated 
estimates under the EHE plan, i.e., would model out-
comes for HIV-testing frequency and retention-in-care 
to achieve the EHE plan’s targets vary based on jurisdic-
tional mixing assumptions. We discuss our observations 
for each below.

Fig. 6  Comparing PWH projections between 16 scenarios simulated in Jurisdictional-Model and NHSS estimates*. PWH: people with HIV; NHSS: 
National HIV Surveillance System; NHSS-National: national level estimates from NHSS; NHSS-Sum of Jurisdictions: sum of jurisdiction level estimates 
from NHSS. *Using period 2018 to 2019 to verify that Jurisdictional-Model simulated estimates generate PWH in magnitudes similar to NHSS 
estimates; and using period 2020 to 2030 to observe differences between Jurisdictional-Model scenarios S1 to S16. NHSS-Sum of jurisdictions 
value (denoted by a shaded circle in the figure) and NHSS-National value (denoted by a star in the figure) for year 2018 is compared with model 
generated estimate. † Scenarios S1 to S8 assume jurisdictional homogeneity; Scenarios S9 to S16 assume jurisdictional heterogeneity; Scenarios S1 
to S4 and S9 to S12 assume baseline intervention; Scenarios S5 to S8 and S13 to S16 scale-up interventions as per EHE-plan
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Under baseline-intervention, our results suggest that 
nationally aggregated incidence (and thus PWH esti-
mates) were sensitive to both jurisdictional mixing and 
jurisdictional heterogeneity assumptions, i.e., keep-
ing one fixed and varying the other resulted in different 
incidence estimates. Comparing across mixing assump-
tions, nationally aggregated incidence were more sensi-
tive to jurisdictional mixing when assuming jurisdictional 
homogeneity in care than when assuming jurisdictional 
heterogeneity in care. Incidence aggregated over non-
EHE jurisdictions were more sensitive to jurisdictional 
mixing assumptions than incidence aggregated over EHE 
jurisdictions. However, within each jurisdiction, inci-
dence estimates in both EHE and non-EHE jurisdictions 
were sensitive to jurisdictional mixing assumptions irre-
spective of jurisdictional homogeneity or heterogeneity 
in care.

Under EHE intervention, though nationally aggre-
gated incidence estimates were sensitive to jurisdictional 
mixing and heterogeneity in 2018 (baseline interven-
tion starts in 2018), as incidence decreased over time 
with implementation of the EHE plan, the sensitivity 
decreased. In 2030, incidence estimates were similar 
across all scenarios. However, the cumulative incidence 
reduction in 2030 compared to 2018 were sensitivity, 
with variations by EHE and non-EHE similar to that in 
baseline-intervention (discussed above). Cumulative 
incidence reductions in EHE plan compared to baseline-
intervention, calculated within each mixing and care 
assumption, had similar estimates except for aggregated 
non-EHE jurisdictions, which were sensitivity to jurisdic-
tional mixing.

Under EHE intervention, jurisdictional-level decisions 
related to HIV-testing intervals, inferred from the model 
to reach the EHE targets, were sensitive to jurisdictional 
mixing and jurisdictional heterogeneity assumptions. 
Comparing across jurisdictional mixing assumptions, 
compared to the no-mixing scenario, while there were 
differences in HIV-test intervals even at the lowest mix-
ing-level, the differences were more predominant in the 
higher-mixing scenarios. These results suggest that when 
modeling jurisdictions independently, understanding the 
magnitude and accounting for the mixing outside juris-
dictions could lead to better decisions.

From the above three observations, we can infer the 
following. If a model’s goal is to estimate changes in 
incidence in EHE plan compared to baseline interven-
tion, and the focus is on aggregated national level inci-
dence estimates, jurisdictional mixing and heterogeneity 
assumptions play a minor role. Though the aggregated 
national incidence estimates were not always sensitive to 
jurisdictional mixing,within each jurisdiction, incidence 
estimates, and corresponding model-inferred decisions 

were sensitive, for both EHE and non-EHE jurisdictions. 
Therefore, if a model’s goal is to infer jurisdiction-specific 
decisions, then, in developing jurisdiction-specific mod-
els, in addition to using jurisdiction specific care and 
demographics, accounting for outside mixing can help 
improve model-based analyses.

Our results also suggest that increased testing, care-
retention, and PrEP as per the EHE plan may not achieve 
the 90% incidence reduction goal of the EHE plan by 
2030. Diagnose (through increased testing), treat (through 
care retention), and prevent (through PrEP), the interven-
tions modeled in our analyses, are three of the four stra-
tegic pillars of the EHE plan. The fourth pillar is respond, 
through phylogenetic network cluster-based detection 
and response of new outbreaks. Our results suggest that 
use of the fourth pillar would be key to achieving the 
overall incidence reduction goals of the EHE.

Our model has limitations. Our model only simulates 
sexual partnership and does not model transmission due 
to injecting drug use. Jurisdiction-specific data on care 
or mixing are not fully available, and thus, our model is 
currently limited to be used as a tool to evaluate its sen-
sitivity to model-inferred decisions. Sexual partnership 
mixing within and outside jurisdictions are likely influ-
enced by several factors including individual preferences 
and social conditions [19–23], and thus vary by jurisdic-
tion, which we did not model. We assumed there are no 
change in behavioral, demographic, and disease trans-
mission factors over time. Several simplifying assump-
tions were made in model development for partnership 
mixing (which remained consistent across geographies) 
as jurisdiction-specific partnership mixing and sexual 
behavior data by age and risk group were not available, 
which could also impact the outcomes. However, as the 
scope of the analyses was to evaluate the sensitivity of 
jurisdictional mixing and heterogeneity, and thus the 
need to inform data collection and model development, 
and not to infer decisions, we believe, the above assump-
tions are reasonable. Our model is currently limited to be 
used as a tool to evaluate its sensitivity to model-inferred 
decisions. However, if data were to become available, our 
model can also serve as a decision analytic tool.

Conclusions
We developed a Jurisdictional-Model, which split the 
population into 96 jurisdictions, and simulated the 
national HIV epidemic in the U.S. from 2018 to 2030 as 
a composition of 96 local epidemics. Such a model will 
help evaluate the national epidemic as a whole, while 
considering geographical heterogeneity in population 
demographics, HIV epidemic, and intervention deci-
sions. It would be instrumental in identifying what juris-
diction-specific strategies to adopt, such as how often to 
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test, what should be the aim for retention-in-care, and 
what should be the target for PrEP coverage to achieve 
the intended goals of the EHE plan.

However, there are data gaps to be addressed before 
the model can serve as a decision analytic tool. Here we 
focused the analyses on evaluating the sensitivity of those 
data gaps, specifically jurisdictional mixing and jurisdic-
tion heterogeneity, on key outcomes of interest, with 
the objective to inform data collection and future model 
development. From observed results, we can infer that 
jurisdictional-level decisions inferred from the model 
were sensitive to jurisdictional mixing and jurisdictional 
heterogeneity assumptions, however, the differences were 
minimal under low mixing. Therefore, when modeling 
jurisdictions independently, understanding the magnitude 
and accounting for the mixing outside jurisdictions could 
add robustness to model inferred analyses. We can also 
infer that jurisdictional mixing and heterogeneity, though 
sensitive to jurisdiction-specific intervention decisions, 
were not sensitive to national aggregated estimates for 
incidence reductions in EHE plan compared to baseline-
intervention. Our study also suggests that only increased 
testing, care-retention, and PrEP may not achieve 90% 
incidence reduction by 2030, which is the goal of the EHE. 
Thus, additional interventions would be necessary. Our 
work also highlights gaps in data on epidemic and care 
metrics specific to jurisdictions. Upon availability of such 
data, the model can serve as a decision-analytic tool to 
infer jurisdiction-specific intervention strategies for reach-
ing the EHE goals nationally.
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