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Abstract 

Background:  Due to identifiability problems, statistical inference about treatment-by-period interactions has not 
been discussed for stepped wedge designs in the literature thus far. Unidirectional switch designs (USDs) generalize 
the stepped wedge designs and allow for estimation and testing of treatment-by-period interaction in its many flex-
ible design forms.

Methods:  Under different forms of the USDs, we simulated binary data at both aggregated and individual levels and 
studied the performances of the generalized linear mixed model (GLMM) and the marginal model with generalized 
estimation equations (GEE) for estimating and testing treatment-by-period interactions.

Results:  The parallel group design had the highest power for detecting the treatment-by-period interactions. While 
there was no substantial difference between aggregated-level and individual-level analysis, the GLMM had better 
point estimates than the marginal model with GEE. Furthermore, the optimal USD for estimating the average treat-
ment effect was not efficient for treatment-by-period interaction and the marginal model with GEE required a sub-
stantial number of clusters to yield unbiased estimates of the interaction parameters when the correlation structure is 
autoregressive of order 1 (AR1). On the other hand, marginal model with GEE had better coverages than GLMM under 
the AR1 correlation structure.

Conclusion:  From the designs and methods evaluated, in general, parallel group design with a GLMM is, preferred 
for estimation and testing of treatment-by-period interaction in a clustered randomized controlled trial for a binary 
outcome.

Keywords:  Stepped wedge design, Hybrid design, Clustered randomized controlled trial, Power analysis, Monte 
Carlo simulation
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Background
The family of unidirectional switch designs (USDs) [1, 2], 
which includes the parallel group design (PGD), stepped 
wedge design (SWD), and delayed start design (DSD) [3] 
and allows for unidirectional switches from a control to a 
new treatment, can be used as a randomized controlled 
trial for estimation of treatment effect. A “complete-pat-
tern” USD with 5 time points is visualized in Fig. 1 (see 
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also  [3]). In general, different switching moments from 
control to intervention create different treatment pat-
terns and the family of USD is a collection of designs that 
randomly allocate (group of ) participants to some, but 
not necessarily all, patterns according to pre-specified 
probabilities. Different variations of USDs utilize differ-
ent patterns. For instance, a PGD can be considered as 
a variation of USD which only uses the pure control and 
treatment pattern.

Efficiencies of different USD variations, in terms of esti-
mation and hypothesis testing for the treatment effect, 
have been established in literature  [2–5]. These results 
are all derived under the assumption of a constant treat-
ment effect across the period.

Due to the sequential nature of treatment switching, 
violation of a homogeneous treatment effect may cause 
a substantial bias in the estimation when not addressed 
properly. For instance, if treatment had a higher effect 
on the outcome at a later period, then not taking into 
account such interaction may lead to an overestimated 
overall treatment effect since the treatment is less allo-
cated at earlier periods than later periods. Therefore, 

it is important to investigate the presence of time-
dependent treatment effects before making the assump-
tion of a stationary treatment effect. This is usually 
addressed via hypothesis testing for the treatment-by-
period interactions. However, so far little work has been 
published on this subject for the family of USDs (except 
for PGDs). Thus the main objective of this study is to 
investigate different analysis approaches for estimating 
and testing treatment-by-period interactions for USDs. 
Of course, not all variations of USD have identifiable 
treatment-by-period interaction effects (e.g., SWD) 
and different designs also lead to different efficiencies. 
Therefore, we study the analysis approaches for each 
variation of the USD that has estimable treatment-by-
period interaction and compare them across different 
designs as well. Nevertheless, there might exist more 
complex forms of treatment-by-period interaction such 
as the time-on-treatment effect [6] where the treatment 
effect depends on the time since the onset of the inter-
vention. In this study, we focus on the simple two-way 
interaction with no additional modifiers.

Fig. 1  Schematic illustration of the USD design families
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Furthermore, we focus on binary clinical outcomes 
when clusters of participants are being randomized 
(clustered randomized trial), and we assume that at each 
period a new set of participants from the cluster enters 
the trial (cross-sectional study). And we only consider 
“standard” designs that all clusters are being observed 
during the same (calender) periods  [7]. We study the 
performances of different test statistics with simulations 
for different USDs. We compare statistical tests (Type 
III tests for the treatment-by-period interaction effects) 
from the generalized linear mixed model (GLMM) and 
from the marginal model with generalized estimating 
equations (GEE), both at aggregated and individual-level 
data.

The definition of the USD will be briefly explained 
in Section  2 and the estimation problem of the SWD 
for treatment-by-period interaction will be illustrated. 
We will list the USD variations that we will study with 
Monte-Carlo simulations. Furthermore, our simulation 
settings and the four analysis methods will be discussed 
and briefly reviewed in Section  2 as well. In Section  3, 
simulation results will be presented and discussed fol-
lowed by a summary and discussion in the final section.

Methods
Based on the idea of the stepped wedge design, switch-
ing treatments (from control to the treatment of inter-
est) at different periods leads to different sequences of 
treatment patterns, or patterns in short (See Fig.  1). 
USDs refer to a family of designs that consists of all or 
a few of these patterns. The probabilities p0, p1, . . . , pT 
for each of the patterns are the probabilities of ran-
domly allocating clusters or groups of participants to 
the corresponding patterns where the index represents 
the total number of treated periods in each pattern. By 
setting some of the probabilities to zero, certain pat-
terns would be excluded from the trial. Note that we 
assume here (in line with literature on SWDs) that the 
clinical outcome is collected on each participant at the 
end of each period. The PGD is a USD with pure inter-
vention and control patterns p0 + pT = 1 (see Fig.  1). 
Although no switching is present in this design, it may 
be viewed as a special case of the USD where switch-
ing just happened before the trial started and after the 
trial ended for the pure treatment and control pattern, 

respectively. The commonly used form of SWDs is 
a USD with only “middle” patterns as illustrated in 
Fig. 1 ( p0 = pT = 0 ). The DSD is either pT + ps = 1 , or 
pT + ps + p0 = 1 , where s ∈ {1, 2, . . . ,T − 1} . Girling 
and Hemming’s hybrid design  [2] can also be consid-
ered as a special case of the complete pattern USD 
where p1 = · · · = pT−1 and p0 = pT > 0 . Optimal 
choices for these probabilities for the estimation of the 
treatment effect (when no treatment-by-period interac-
tion exists) has been addressed in literature [2, 3].

Identifiability of all treatment-by-period interac-
tion effects requires participants with control and 
with treatment at each period. This is not the case for 
SWDs. To see why SWD is not identifiable, consider a 
SWD study with T = 4 periods and T − 1 = 3 switch 
moments as shown in Table  1, where the population 
average response at each cell is expressed in terms of 
combinations of a general mean µ0 , the jth period effect 
βj for j = 1, . . . ,T  , an overall treatment effect θ0 , and a 
period-specific treatment effect δj as a difference with 
respect to the overall treatment effect at period j. There 
are 2T − 2 unique cells (out of T 2 − T  cells) but 2T + 1 
parameters are specified. Even if a certain period, say 
period T, is considered as the reference period which 
is common in most statistical software packages, and 
the corresponding parameter βT  and δT  is set to 0, there 
is still not enough degrees of freedom unless further 
restrictions are being made on the parameters. The way 
to mitigate the problem is to require designs to have 
both treatment arms present at all periods. In that set-
ting, the number of unique cells is 2T (from T 2 + T  
cells) and there will be 2T + 2 parameters. The restric-
tion βT = δT = 0 , which are essential and common 
parameter constraints, solves the identifiability prob-
lem. Indeed, in this extended design, one additional 
parameter, namely δ1 , is introduced but two additional 
unique cells are introduced as well, which compensates 
for the degrees of freedom deficiency. Note that Table 1 
is more general than a specific parametric model with 
certain distributional assumptions for the outcome 
variables. For instance, considering an outcome Yijk of 
subject k , (k = 1, . . . , n) at period j(j = 1, . . . ,T ) from 
switch pattern i, (i = 1, . . . ,T − 1) , any generalized lin-
ear (mixed) model with the following specification of 
the marginal mean µijk = E(Yijk):

Table 1  Visualization of the treatment-by-period interaction for a SWD

Switch Period 1 Period 2 Period 3 Period 4

Switch 1 µ0 + β1 µ0 + β2 + θ0 + δ2 µ0 + β3 + θ0 + δ3 µ0 + β4 + θ0 + δ4

Switch 2 µ0 + β1 µ0 + β2 µ0 + β3 + θ0 + δ3 µ0 + β4 + θ0 + δ4

Switch 3 µ0 + β1 µ0 + β2 µ0 + β3 µ0 + β4 + θ0 + δ4
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where g is any monotonic mapping between the mean 
and the linear predictor, βj is the effect of the jth period, 
and xij is a treatment indicator that equals 1 when treated 
and 0 otherwise with corresponding time-dependent 
treatment effect θj = θ0 + δj , conforms to the specifica-
tion of Table 1. Such visualization might become conven-
ient when investigating more complicated identifiability 
problems such as the case of three-way interactions or 
treatment-by-period interaction with a cluster-specific 
fixed effect.

Choices of USD
Since it is required to have both treatment arms pre-
sent at each period, designs that satisfy this condition 
will be considered in the simulation. Such a condition 
suggests choosing designs with the pure intervention 
(or control) pattern combined with any other patterns. 
We will study the uniform PGD ( p0 = pT = 1/2 ), 
uniform (3-pattern) DSD ( p0 = ps = pT = 1/3 ) (in 
short, DSDu), and the uniform (full-pattern) USD 
( p0 = p1 = · · · = pT = 1/(T + 1) ) (USDu). We will also 
study the optimal DSD (DSDo), and the optimal USD 
optimized for the estimation of the overall treatment 
effect under the assumption of no treatment-by-period 
interactions for continuous outcomes. The probabili-
ties pi s are calculated according to   [3]. For the optimal 
DSD they are p0 = (1− ρ + nρs)/[2(1− ρ + nρT ] , 
ps = nρT/[2(1− ρ + nρT )] , and 
pT = [1− ρ + nρ(T − s)]/[2(1− ρ + nρT )] , where ρ 
is the intraclass correlation coefficient, n the number 
of subjects per cluster per period, T the total number 
of periods, s the index of the “middle” switching pat-
tern in DSD. For the optimal USD, the probabilities are 
given by p0 = pT = (1− ρ + nρ)/[2(1− ρ + nρT )] , 
and p1 = · · · = pT−1 = nρ/(1− ρ + nρT ) . It should be 
noted that these optimal designs are developed for con-
tinuous outcomes with the assumption of a large num-
ber of clusters. For binary outcomes, the optimal designs 
are unknown and we expect the aforementioned optimal 
designs to remain approximately optimal for large sample 
sizes. Furthermore, ρ for the binary outcome is calculated 
differently as detailed in Section 2.3. An additional com-
plication, in the simulation study with a finite number of 
clusters, is the allocation of the clusters according to the 
exact optimal probabilities will lead to fractional num-
bers of clusters. We consider 2 different rounding options 
for the optimal USD. Following the advice of [3], we first 
consider rounding options for the pure control and treat-
ment pattern, this leads to two options (up or down). 
Rounding up the optimal proportions yields one unique 
USD (denoted as USDo1), while several options are 

g(µijk) = µ0 + βj + θj · xij possible when we round down. After rounding down pat-
terns 0 and 5, we need to either round up patterns 1 and 
4 or round up patterns 2 and 3 (options leading to non-
symmetric allocations are excluded). Since the asymp-
totic relative efficiencies for estimating the treatment 
effect is negligible between the two options [3], we decide 
to choose the former option (denoted as UDSo2), since 
we’d like to put more clusters to patterns that are closer 
to the pure treatment and control patterns. The numbers 
of clusters allocated to each pattern for all design candi-
dates are listed in Table 2 (Section 3).

Brief review of analysis methods
Statistical analysis of USDs can be broken down into two 
general approaches. Either the data can be analysed at an 
aggregated level by taking summary measures at cluster-
period combinations, or the data can be analysed at an 
individual level. The aggregated measure is denoted by 
Yij ≡ M(Yij1, · · · ,Yijn) with M(·) , for instance, the aver-
age or sum, where Yijk denotes the kth observation in 
cluster i of period j. The two candidate methods con-
sidered in this study can be applied either on an aggre-
gated measure or on the individual outcomes. In the 
first method, namely the marginal model with GEE  [8], 
variations between clusters are treated as nuisances and 
the cluster functions as the analysis unit with repeated 
observations (individuals) and both period and treatment 
enter the model as fixed effects. The focus of the analy-
sis is on the fixed effects averaged over the clusters  [9]. 
The second analysis method is a subject-specific mixed 
effects model with clusters as random effect and period 
and treatment again as fixed effects  [2, 10]. Generally 
speaking, aggregation of the outcome does not preserve 
the within-cluster correlation structure for binary/bino-
mial outcomes with a nonlinear link function. This is 
especially true for the working correlation of GEE. For 
instance, suppose the working correlation matrix at the 
individual level follows the Toeplitz correlation struc-
ture. This correlation structure is no longer true at the 
aggregated level. Reassuringly, this is less of a concern 
because the covariance is considered as nuisance param-
eters in GEE. Nevertheless, discussions on the relative 
merits of the two methods for estimation of a common 
treatment effect (without treatment-by-period interac-
tions) are well-discussed in literature [11–14]. In general, 
the marginal model does not rely on the assumption of 
the correlation structure and is robust against misspeci-
fication. However, when the number of clusters is small, 
the empirical “sandwich” estimator  [15–17] used in the 
model underestimates the true (co-)variances of the 
parameters and the Wald-type test is subject to inflated 
Type I error. On the other hand, the mixed effects model 
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approach is sensitive to the specification of the covari-
ance structure and the coefficients are more difficult to 
interpret on a population level.

Simulation settings
A cross-sectional clustered randomized controlled trial 
that consists of M clusters ( M ∈ {48, 192}1) in total and 
observed over T = 5 periods with subjects per period 
per cluster set to n = 50 . The outcome of interests Yijk 
is assumed to be a Bernoulli random variable for subject 
k (k = 1, . . . , n) at period j (j = 1, . . . ,T ) from cluster 
i (i = 1, . . . ,M) . The following GLMM is used to generate 
the outcome Yijk:

where � is the cumulative distribution function of the 
standard normal distribution, µ0 is a general inter-
cept, b0i

iid∼N (0, σ 2
c ) a random effect of cluster i, βj is 

the fixed effect of period j ( βj = 0.2(j − 3) ), θj = θ0 + δj 
the period-specific treatment effect at period j and 
with θ0 = −0.4 the average treatment effect over peri-
ods. The δj is the difference with the average treatment 

(1)E(Yijk |b0i) = �(µ0 + b0i + βj + θjxij),

effect at period j, two sets of δj is considered, namely a 
linear effect ( δj = −0.1(j − 3) ) and a symmetric effect 
( δj = −0.1|j − 3| ). Finally, xij is the treatment indicator 
for cluster i at period j taking the value of 1 if the cluster 
is allocated to the intervention, and 0 otherwise. In addi-
tion, a set of three different values {0.2, 0.5, 0.8} is cho-
sen for σ 2

c  and the ICC ρ used to calculated each optimal 
designs is derived as

Besides the exchangeable correlation structure used in 
the aforementioned data generating process, we also con-
sidered a simulation setting with an autoregressive order 
1 (AR1) correlation structure between time points at the 
cluster level. That is, the random effect b0i of cluster i is 
now replaced by a random effect bij . This random term 
is assumed to be multivariate normal with mean 0 and 
variance equal to σ 2

c  but now with additional correlation 
between two time points j and k as corr(bij , bik) = r|j−k| . 
Here, the correlation parameter is set to r ∈ {0.5, 0.8} . 
Only aggregated-level analysis will be considered for 
AR1 since the correlation matrix at the individual level is 
cumbersome to specify and the true correlation structure 
is usually unknown in practice. Even at the aggregated 
level, the AR1 correlation structure specified at the latent 

ρ =
σ 2
c

σ 2
c + 1

.

Table 2  Type I error and power of GLMM and GEE at individual and aggregated level for testing treatment-by-period interactions with 
exchangeable correlation structure ( Nh denotes the number of clusters allocated to switch pattern h)

Design σ 2
c

Cluster allocation Type I error Power

N0 N1 N2 N3 N4 N5 GLMM Agg GEE Agg GLMM Ind GEE Ind GLMM Agg GEE Agg GLMM Ind GEE Ind

PGD 0.2 24 0 0 0 0 24 0.053 0.050 0.052 0.050 0.994 0.981 0.994 0.981

PGD 0.5 24 0 0 0 0 24 0.040 0.044 0.039 0.042 0.992 0.917 0.991 0.914

PGD 0.8 24 0 0 0 0 24 0.060 0.056 0.060 0.055 0.984 0.842 0.984 0.829

DSDu 0.2 16 0 0 16 0 16 0.043 0.040 0.043 0.039 0.962 0.861 0.961 0.858

DSDu 0.5 16 0 0 16 0 16 0.040 0.037 0.039 0.037 0.948 0.712 0.948 0.704

DSDu 0.8 16 0 0 16 0 16 0.046 0.051 0.046 0.051 0.951 0.606 0.951 0.588

DSDo 0.2 14 0 0 24 0 10 0.049 0.035 0.050 0.034 0.913 0.724 0.911 0.716

DSDo 0.5 14 0 0 24 0 10 0.042 0.024 0.041 0.022 0.893 0.557 0.893 0.543

DSDo 0.8 14 0 0 24 0 10 0.043 0.037 0.042 0.038 0.857 0.451 0.854 0.445

USDu 0.2 8 8 8 8 8 8 0.047 0.036 0.047 0.036 0.858 0.659 0.858 0.653

USDu 0.5 8 8 8 8 8 8 0.032 0.037 0.032 0.037 0.841 0.511 0.840 0.510

USDu 0.8 8 8 8 8 8 8 0.059 0.046 0.058 0.046 0.827 0.405 0.825 0.402

USDo(1) 0.2 6 9 9 9 9 6 0.039 0.034 0.038 0.034 0.777 0.487 0.775 0.481

USDo(1) 0.5 6 9 9 9 9 6 0.032 0.022 0.031 0.022 0.737 0.365 0.733 0.363

USDo(1) 0.8 6 9 9 9 9 6 0.035 0.030 0.034 0.031 0.696 0.295 0.619 0.289

USDo(2) 0.2 5 10 9 9 10 5 0.036 0.029 0.036 0.029 0.700 0.415 0.698 0.408

USDo(2) 0.5 5 10 9 9 10 5 0.035 0.021 0.035 0.022 0.676 0.320 0.674 0.314

USDo(2) 0.8 5 10 9 9 10 5 0.036 0.034 0.034 0.035 0.644 0.255 0.642 0.251

1  Here we picked M = 48 because we choose the number of clusters to be 
divisible by the number of patterns T + 1 = 6 and to make the differences 
between USDu, USDo1, and USDo2 substantial
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variable level is not preserved at the outcome level and 
an AR1 working correlation structure will still be a mis-
specification for the true correlation structure. We thus 
only used exchangeable working correlation for GEE in 
this setting.

In addition, for all the simulation settings, the param-
eters are specified according to a subject-specific model. 
To translate these regression coefficients or param-
eters (denoted by θS ) into marginal model parameters 
(denoted by θM ), the following relationship is used:

Note that this relationship is exact since we used the pro-
bit link function � (i.e., the cumulative distribution func-
tion of the standard normal distribution) in combination 
with a normally distributed random effect for clusters in 
the simulation process  [18].

The same GLMM model (1) was used to fit each simu-
lated data at the individual level. For the marginal model 
with GEE, the following marginal mean structure was 
considered:

where µM , βMj , θMj are the aforementioned marginal 
model parameters counterparts to the subject-specific 
model parameters µ0 , β0j , and θj , respectively. Further-
more, an exchangeable working correlation structure was 
specified. On the other hand, for the aggregated analy-
sis, the number of events Yij = n

k=1 Yijk per cluster and 
period was summarized first, and a similar GLMM model

was used. Similarly, a marginal model with GEE was used 
to fit the cluster-period event counts.

Bias and coverage probabilities were summarized based 
on 1000 simulations. All simulations were conducted in 
SAS 9.4. For the marginal model with GEE, PROC GEN-
MOD was used and coverage probabilities were based 
on the Wald-type confidence intervals. For GLMM, 
PROC GLIMMIX was used with Laplace approxima-
tion of the likelihood for estimating the parameters. The 
coverage probabilities were derived based on the Wald-
type confidence intervals (asymptotically equivalent to 
the confidence interval based on t-distribution with the 
denominator degrees of freedom assumed to be infinite). 
Powers of the hypothesis test for the treatment-by-period 
interactions were calculated by the generalized score 
test based on empirical standard errors for the marginal 
model with GEE and based on the χ2 test for GLMM. 
Type I errors were calculated under the simulation setting 
of δj = 0 for j = 1, 2, . . . , 5 . The default parameterization 

θM =
θS

√

1+ σ 2
c

.

E(Yijk) = �(µM + βMj + θMjxij),

E(Yij/n|b0i) = �(µ0 + b0i + βj + θjxij)

in SAS is to take the last period as reference, we changed 
this to the third period, since we have chosen β3 = 0 and 
δ3 = 0 . This means that the intercept µ0 has the inter-
pretation of the event probability at period 3. For other 
variables, we followed the default parametrization in 
SAS. We also calculated the Monte-Carlo standard error 
(MCSE) for the simulation results.

Results
To be economical with the presentation, most of the sim-
ulation results are deferred to the Additional files (Addi-
tional files 1, 2, 3 and 4). In this section, we will show 
some important findings.

Bias and coverage probability
Simulation results with regard to the bias and cover-
age probability are presented in Figs.  2, 3, 4, 5, 6, and 
7 under the settings of M = 48 , linear interaction 
effect δj = −0.1(j − 3) , and σ 2

c ∈ {0.2, 0.5, 0.8} with an 
exchangeable correlation structure. All four analysis 
methods estimate the model parameters without bias 
across all USD designs. Furthermore, GLMM had close-
to-nominal coverage probabilities at both aggregated and 
individual levels, while the marginal model with GEE 
had lower coverage probability among all designs at both 
levels. The coverages were especially poor for GEE when 
the estimand was the period effect and the treatment-by-
period effect at period 5. Such phenomenon was even 
more severe in designs with extreme unbalanced treat-
ment-control ratios at the first and last period (namely, 
USDo1 and USDo2). Note that Wald’s confidence interval 
used with GEE is well-known to fall under the nominal 
level in general and it is further lowered by unbalanced 
samples (unequal proportions of treatment and control 
within the period) [19].

On the other hand, when the simulated correlation 
structure is AR1 ( r = 0.8) with M = 48 , taking PGD 
(Fig. 8) and USDo2 (Fig. 9) with linear interaction effect 
as an example, aggregated-level GEE was not able to esti-
mate certain parameters without bias and consequently 
had liberal coverages as well. These parameters are period 
effects at the first and the last period, and treatment-by-
period effect at the last period under designs that have 
extremely unbalanced treatment-control ratios at these 
periods (namely, USDo1 and USDo2). On the contrary, 
aggregated-level GLMM did not have issues with the bias 
of its estimates but suffered from the problem of less sta-
ble coverages. Depending on the parameter, the cover-
ages were either liberal or conservative. Nevertheless, as 
shown in Fig. 10 for the optimal USDo2, the poor perfor-
mances of GEE diminished when the number of clusters 
increased while the suboptimal coverages for the param-
eters remained for the aggregated-level GLMM analysis.
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Type I error and power
The proportion of pure treatment patterns plays an 
important role in both Type I error and the powers 
of the four methods as shown in Tables 2 and 3 for the 

simulation setting with M = 48 , r = 0.8 for AR1, and a 
linear interaction effect. First of all, Type I errors of the 
four methods became more conservative when the pro-
portion of pure treatment patterns decreased from the 

Fig. 2  Estimation biases and coverage probabilities of the four approaches (GLMM at individual level (glmm_ind), GLMM at aggregated level 
(glmm_agg), marginal model with GEE at individual level (gee_ind), marginal model with GEE at aggregated level (gee_agg)) using the PGD under 
the settings of M = 48 , n = 50 , linear effect δj = −0.1(j − 3) , and σ 2

c ∈ {0.2, 0.5, 0.8} with an exchangeable correlation structure. (vc: variance 
component, trt*period1-5: treatment-by-period interaction at period 1-5)
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highest proportion of pure treatment patterns (PGD) 
to the lowest proportions (USDo2). In this aspect, GEE 
was more sensitive to the changes in the pure treatment 
pattern proportions compared to GLMM as the Type I 

error of GEE was more conservative compared to 
GLMM among all designs except for the PGD. Neverthe-
less, no difference was observed between analysis at an 

Fig. 3  Estimation biases and coverage probabilities of the four approaches (GLMM at individual level (glmm_ind), GLMM at aggregated level 
(glmm_agg), marginal model with GEE at individual level (gee_ind), marginal model with GEE at aggregated level (gee_agg)) using the DSDu 
under the settings of M = 48 , n = 50 , linear effect δj = −0.1(j − 3) , and σ 2

c ∈ {0.2, 0.5, 0.8} with an exchangeable correlation structure. (vc: variance 
component, trt*period1-5: treatment-by-period interaction at period 1-5)
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aggregated level and individual level for both GEE and 
GLMM approaches.

Furthermore, the proportion of pure treatment pat-
terns also had a substantial effect on the powers of 

the four methods. The highest power was obtained 
under the PGD which has the highest proportion of 
pure treatment patterns. The power of the four meth-
ods decreased as the proportion of pure treatment 

Fig. 4  Estimation biases and coverage probabilities of the four approaches (GLMM at individual level (glmm_ind), GLMM at aggregated level 
(glmm_agg), marginal model with GEE at individual level (gee_ind), marginal model with GEE at aggregated level (gee_agg)) using the DSDo 
under the settings of M = 48 , n = 50 , linear effect δj = −0.1(j − 3) , and σ 2

c ∈ {0.2, 0.5, 0.8} with an exchangeable correlation structure. (vc: variance 
component, trt*period1-5: treatment-by-period interaction at period 1-5)
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patterns decreased. In addition, GLMM always had 
higher power compared to GEE, especially when the 
between-cluster variation is large. Increases in σ 2

c  
also reduced the power of the test within the method 

and no differences were found between individual 
and aggregated level analysis for the same method. 
This phenomenon was less apparent when the simu-
lated correlation structure is AR1. Type I errors and 

Fig. 5  Estimation biases and coverage probabilities of the four approaches (GLMM at individual level (glmm_ind), GLMM at aggregated level 
(glmm_agg), marginal model with GEE at individual level (gee_ind), marginal model with GEE at aggregated level (gee_agg)) using the USDu 
under the settings of M = 48 , n = 50 , linear effect δj = −0.1(j − 3) , and σ 2

c ∈ {0.2, 0.5, 0.8} with an exchangeable correlation structure. (vc: variance 
component, trt*period1-5: treatment-by-period interaction at period 1-5)
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Powers, in general, were worse under AR1 correla-
tion structure for both methods. Considering a MCSE 
of 

√
0.05× 0.95/1000 ≈ 0.007 , Type I errors for the 

aggregated-level marginal model with GEE were 

conservative except for PGD while GLMM had a liberal 
type I error for all designs. The powers of the test were 
low compared to the power of testing for the over-
all treatment effect which had more than 50% power 

Fig. 6  Estimation biases and coverage probabilities of the four approaches (GLMM at individual level (glmm_ind), GLMM at aggregated level 
(glmm_agg), marginal model with GEE at individual level (gee_ind), marginal model with GEE at aggregated level (gee_agg)) using the USDo1 
under the settings of M = 48 , n = 50 , linear effect δj = −0.1(j − 3) , and σ 2

c ∈ {0.2, 0.5, 0.8} with an exchangeable correlation structure. (vc: variance 
component, trt*period1-5: treatment-by-period interaction at period 1-5)
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in the worst-case scenario. The largest MCSE for the 
power would be equal to 0.016 when the true power 
is 50%. Comparing the two analysis methods, GLMM 

still had higher powers compared to GEE consistently 
across different designs. However, the power difference 
between the two did not increase as σ 2

c  increased.

Fig. 7  Estimation biases and coverage probabilities of the four approaches (GLMM at individual level (glmm_ind), GLMM at aggregated level 
(glmm_agg), marginal model with GEE at individual level (gee_ind), marginal model with GEE at aggregated level (gee_agg)) using the USDo2 
under the settings of M = 48 , n = 50 , linear effect δj = −0.1(j − 3) , and σ 2

c ∈ {0.2, 0.5, 0.8} with an exchangeable correlation structure. (vc: variance 
component, trt*period1-5: treatment-by-period interaction at period 1-5)
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Similar results were observed when the interaction 
effect is symmetric and all simulation results for the sym-
metric interaction effect can be found in Additional files 
(Additional files 3 and 4).

Discussion
Simulation results demonstrated that the parallel group 
design is the best design choice among all studied candi-
date USDs in terms of the standard error of the estimate 

Fig. 8  Estimation biases and coverage probabilities of the two approaches (GLMM at aggregated level (glmm_agg), marginal model with GEE at 
aggregated level (gee_agg)) using the PGD under the settings of M = 48 , n = 50 , linear effect δj = −0.1(j − 3) , and σ 2

c ∈ {0.2, 0.5, 0.8} with an AR1 
correlation structure ( r = 0.8 ). (vc: variance component, trt*period1-5: treatment-by-period interaction at period 1-5)



Page 14 of 18Zhan et al. BMC Medical Research Methodology          (2022) 22:294 

for treatment-by-period interactions which consequently 
results in the highest power for hypothesis testing. Fur-
thermore, GLMM has higher power than the marginal 
approach with GEE across all studied designs and obtains 
a better coverage of the true values. Nonetheless, no 

difference between aggregated and individual-level analysis 
was found for both GLMM and GEE. Although power com-
parison between different designs and analysis approaches 
is not ideal when not all Type I errors are maintained, the 
differences in the testing powers as demonstrated by the 

Fig. 9  Estimation biases and coverage probabilities of the two approaches (GLMM at aggregated level (glmm_agg), marginal model with GEE at 
aggregated level (gee_agg)) using the USDo2 under the settings of M = 48 , n = 50 , linear effect δj = −0.1(j − 3) , and σ 2

c ∈ {0.2, 0.5, 0.8} with an 
AR1 correlation structure ( r = 0.8 ). (vc: variance component, trt*period1-5: treatment-by-period interaction at period 1-5)
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simulation results were substantial and cannot be explained 
entirely by the difference in Type I errors. Therefore, it is 
reasonable to conclude that different choices of designs will 
lead to a systematic difference in the power of hypothesis 
testing for the treatment-by-period interactions.

The consensus in the current literature is that USD 
(and its less efficient stepped wedge design variants) is 
more efficient compared to the PGD in terms of estimat-
ing treatment effect under the common settings when the 
intraclass correlation coefficient is substantial  [2, 3, 20, 

Fig. 10  Estimation biases and coverage probabilities of the two approaches (GLMM at aggregated level (glmm_agg), marginal model with GEE at 
aggregated level (gee_agg)) using the USDo2 under the settings of M = 192 , n = 50 , linear effect δj = −0.1(j − 3) , and σ 2

c ∈ {0.2, 0.5, 0.8} with an 
AR1 correlation structure ( r = 0.8 ). (vc: variance component, trt*period1-5: treatment-by-period interaction at period 1-5)



Page 16 of 18Zhan et al. BMC Medical Research Methodology          (2022) 22:294 

21]. Our simulation results demonstrate that this does 
not hold for the treatment-by-period interactions. Par-
allel group design is by far the most efficient design for 
treatment-by-period interaction estimations compared to 
other forms of the USDs. Heuristically, it is not a surprise 
since none of the candidate designs except for the PGD 
admits to a balanced treatment allocation within each 
period. For instance, the uniform USD with an odd num-
ber of periods has exactly one period, namely the middle 
period, that has balanced intervention and control arms. 
When the number of periods is even, no periods contains 
balanced treatment allocation. Furthermore, it is known 
that the power function of the χ2-test (of the treatment 
effect) for a variance component model with the continu-
ous outcome varies inversely with the quantity 1

K0
+ 1

K1
 

for K0 and K1 the number of clusters exposed to the 
control and intervention treatment, respectively  [22]. 
Consequently, a balanced allocation ratio is an optimal 
solution that maximizes the power function. When it 
comes to testing for the treatment-by-period interaction, 
it has been shown in the present study that the allocation 
ratio between the control and intervention arm also plays 
a similar role on the power such that the parallel group 
design is the best design choice among all candidates.

In practice, testing for the treatment-by-period inter-
actions is usually conducted after the trial comple-
tion with a certain design already chosen  [23]. Our 

simulation results have shown that testing for the treat-
ment-by-period interactions usually won’t have enough 
power, especially when the correlation structure is not 
exchangeable. The safest choice when planning a trial 
when the treatment-by-period interaction is potentially 
present is to use the PGD. Furthermore, design choices 
are frequently evaluated for the purpose of estimating the 
treatment effect alone and does not take into account the 
treatment-by-period interactions. This has been studied 
in the literature for randomized trials: the inflation factor 
for the interaction test to have the same power as the one 
for the overall treatment effect can be as large as 16 when 
the interaction is half the size of the overall effect  [23]. 
We recommend also taking into account treatment-by-
period interactions when it comes to evaluating the fam-
ily of USDs.

As for analysis methods, it is preferred to use GLMM 
rather than GEE. For GEE, estimating the treatment-
by-period interactions without bias, when the corre-
lation structure is more complex than exchangeable 
requires a large number of clusters which may not be 
feasible in practice. Nevertheless, the difference in 
power between the GLMM and the marginal model 
with GEE is mainly due to the differences in the hypoth-
esis testing approaches (i.e., the generalized score test 
for the marginal model with GEE and Wald’s test for the 
GLMM). Moreover, the estimator for the covariances of 

Table 3  Type I error and power of GLMM and GEE at aggregated level for testing treatment-by-period interactions with AR1 
correlation structure ( Nh denotes the number of clusters allocated to switch pattern h)

Design σ 2
c

Cluster allocation Type I error Power

N0 N1 N2 N3 N4 N5 GLMM Agg GEE Agg GLMM Agg GEE Agg

PGD 0.2 24 0 0 0 0 24 0.077 0.046 0.595 0.406

PGD 0.5 24 0 0 0 0 24 0.078 0.050 0.323 0.181

PGD 0.8 24 0 0 0 0 24 0.076 0.045 0.228 0.128

DSDu 0.2 16 0 0 16 0 16 0.088 0.044 0.510 0.288

DSDu 0.5 16 0 0 16 0 16 0.084 0.037 0.299 0.140

DSDu 0.8 16 0 0 16 0 16 0.076 0.038 0.222 0.101

DSDo 0.2 14 0 0 24 0 10 0.090 0.035 0.431 0.249

DSDo 0.5 14 0 0 24 0 10 0.086 0.040 0.246 0.114

DSDo 0.8 14 0 0 24 0 10 0.007 0.043 0.187 0.086

USDu 0.2 8 8 8 8 8 8 0.073 0.039 0.407 0.195

USDu 0.5 8 8 8 8 8 8 0.083 0.039 0.244 0.101

USDu 0.8 8 8 8 8 8 8 0.078 0.036 0.180 0.074

USDo(1) 0.2 6 9 9 9 9 6 0.090 0.031 0.372 0.157

USDo(1) 0.5 6 9 9 9 9 6 0.081 0.029 0.228 0.085

USDo(1) 0.8 6 9 9 9 9 6 0.082 0.029 0.185 0.068

USDo(2) 0.2 5 10 9 9 10 5 0.085 0.033 0.341 0.144

USDo(2) 0.5 5 10 9 9 10 5 0.083 0.026 0.214 0.068

USDo(2) 0.8 5 10 9 9 10 5 0.071 0.024 0.166 0.061
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the parameter estimate (i.e., model-based and empiri-
cal sandwich estimator) also plays an important role. 
In GEE, the robust sandwich estimator was used for 
both the generalized score test and the Wald test while 
in GLMM either the robust sandwich estimator or the 
model-based estimator can be adopted. Additional sim-
ulation results can be found in the additional file (Addi-
tional file  5) where we show the powers of the GLMM 
and the marginal model with GEE at the aggregated level 
with AR1 correlation structure ( σ 2

c = 0.8, r = 0.8 ) under 
USDo2 using different hypothesis testing approaches in 
combination with both model-based and robust sand-
wich standard error estimators. In line with previous 
study [24], the robust Wald test was more liberal and had 
higher power than the generalized score test for the mar-
ginal model with GEE. It had similar power compared to 
the power of the χ2 test used in GLMM with the model-
based estimator. Meanwhile, using the robust estimator 
for GLMM parameter estimates in place of the model-
based estimator brought the power of the test down to 
the same level as the power of the generalized score test. 
Some authors have performed comparative work in this 
area  [24, 25], but it is largely a work in progress which 
falls outside the scope of our presented study.

One of the limitations of the presented study is that 
we only considered a handful of settings and models. 
For instance, we did not consider the time-on-treat-
ment effects  [6] which might be considered as a three-
way interaction between treatment, period, and cluster. 
Therefore, it is important to study the problem of treat-
ment-by-period interaction from a more theoretical per-
spective and consider different models under the family 
of USDs. Another limitation is that we only consider 
binary outcomes. For continuous and time-to-event out-
comes, the impact of treatment-by-period interaction is 
yet to be investigated.

Conclusions
In the present study, we compared four analysis meth-
ods for estimating and testing the treatment-by-period 
interactions under various unidirectional switch design 
choices. Via Monte Carlo simulation, it has been found 
that the parallel group design is the most efficient in 
terms of estimating and testing the treatment-by-period 
interactions. Whilst no substantial difference is observed 
between analysis at an aggregated level and individual 
level, GLMM has higher efficiencies and better point esti-
mates compared to the marginal model with GEE under 
different designs. Its coverages were worse than the mar-
ginal model with GEE when the correlation structure is 
AR1 even when the number of clusters is as high as 192.
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