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Abstract 

Background  The increased adoption of the internet, social media, wearable devices, e-health services, and other 
technology-driven services in medicine and healthcare has led to the rapid generation of various types of digital data, 
providing a valuable data source beyond the confines of traditional clinical trials, epidemiological studies, and lab-
based experiments.

Methods  We provide a brief overview on the type and sources of real-world data and the common models and 
approaches to utilize and analyze real-world data. We discuss the challenges and opportunities of using real-world 
data for evidence-based decision making This review does not aim to be comprehensive or cover all aspects of the 
intriguing topic on RWD (from both the research and practical perspectives) but serves as a primer and provides use-
ful sources for readers who interested in this topic.

Results and Conclusions  Real-world hold great potential for generating real-world evidence for designing and 
conducting confirmatory trials and answering questions that may not be addressed otherwise. The voluminosity and 
complexity of real-world data also call for development of more appropriate, sophisticated, and innovative data pro-
cessing and analysis techniques while maintaining scientific rigor in research findings, and attentions to data ethics to 
harness the power of real-world data.

Keywords  Real-world data (RWD), Real-world evidence (RWE), Electronic health records, Machine learning, Artificial 
intelligence, Causal inference

Introduction
Per the definition by the US FDA, real-world data (RWD) 
in the medical and healthcare field “are the data relat-
ing to patient health status and/or the delivery of health 
care routinely collected from a variety of sources”[1]. The 
wide usage of the internet, social media, wearable devices 
and mobile devices, claims and billing activities, (disease) 
registries, electronic health records (EHRs), product and 

disease registries, e-health services, and other technol-
ogy-driven services, together with increased capacity in 
data storage, have led to the rapid generation and avail-
ability of digital RWD [2].

The increasing accessibility of RWD and the fast devel-
opment of artificial intelligence (AI) and machine learn-
ing (ML) techniques, together with rising costs and 
recognized limitations of traditional trials, has spurred 
great interest in the use of RWD to enhance the effi-
ciency of clinical research and discoveries and bridge 
the evidence gap between clinical research and practice. 
For example, during the COVID-19 pandemic, RWD 
are used to generate or aid the generation of real-world 
evidence (RWE) on the effectiveness of COVID-19 
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vaccination [3–5], to model localized COVID-19 con-
trol strategies [6], to characterize COVID-19 and flu 
using data from smartphones and wearables [7], to study 
behavioral and mental health changes in relation to the 
lockdown of public life [8], and to assist in decision and 
policy making, among others.

In what follows, we provide a brief review on the type 
and sources of RWD (Section 2) and the common models 
and approaches to utilize and analyze RWD (Section  3) 
, and discuss the challenges and opportunities of using 
RWD for evidence-based decision making (Section  4). 
This review does not aim to be comprehensive or cover 
all aspects of the intriguing topic on RWD (from both 
the research and practical perspectives) but serves as a 
primer and provides useful sources for readers who inter-
ested in this topic.

Characteristics, types and applications of RWD
RWD have several characteristics as compared to data 
collected from randomized trials in controlled set-
tings. First, RWD are observational as opposed to data 
gathered in a controlled setting. Second, many types of 
RWD are unstructured (e.g., texts, imaging, networks) 
and at times inconsistent due to entry variations across 
providers and health systems. Third, RWD may be gen-
erated in a high-frequency manner (e.g., measurements 
at the millisecond level from wearables), resulting in 

voluminous and dynamic data. Fourth, RWD may be 
incomplete and lack key endpoints for an analysis given 
that the original collection is not for such a purpose. 
For example, claims data usually do not have clinical 
endpoints; registry data have limited follow-ups. Fifth, 
RWD may be subject to bias and measurement errors 
(random and non-random). For example, data gener-
ated from the internet, mobile devices, and wearables 
can be subject to selection bias; a RWD dataset is a 
unrepresentative sample of the underlying popula-
tion that a study intends to understand; claims data are 
known to contain fraudulent values. In summary, RWD 
are messy, incomplete, heterogeneous, and subject 
to different types of measurement errors and biases. 
A systematic scoping review of the literature suggests 
data quality of RWD is not consistent, and as a result 
quality assessments are challenging due to the complex 
and heterogeneous nature of these data. The sub-opti-
mal data quality of RWD is well recognized [9–12]; how 
to improve it (e.g. regulatory-grade) is work in progress 
[13–15].

There are many different types of RWD. Figure 1 [16] 
provides a list of the RWD types and sources in medi-
cine. We also refer readers to [11] for a comprehensive 
overview of the RWD data types. Here we use a few com-
mon RWD types, i.e., EHRs, registry data, claims data, 
patient-reported outcome (PRO) data, and data collected 

Fig. 1  RWD Types and Sources (source: Fig. 1 in [16] with written permission by Dr. Brandon Swift to use the figure)
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from wearables, as examples to demonstrate the variety 
of RWD and how they can be used for what purposes.

EHRs are collected as part of routine care across clin-
ics, hospitals, and healthcare institutions. EHR data are 
typical RWD – noisy, heterogeneous, structured, and 
unstructured (e.g., text, imaging), and dynamic and 
require careful and intensive efforts pre-processing 
[17]. EHRs have created unprecedented opportunities 
for data-driven approaches to learn patterns, make new 
discoveries, assist preoperative planning, diagnostics, 
clinical prognostication, among others [18–27], improve 
predictions in selected outcomes especially if linked 
with administrative and claim data and usage of proper 
machine learning techniques [27–30], and validate and 
replicate findings from clinical trials [31].

Registry data have various types. For example, prod-
uct registries include patients who have been exposed to 
a biopharmaceutical product or a medical device; health 
services registries consist of patients who have had a 
common procedure or hospitalization; and disease regis-
tries contains information about people diagnosed with 
a specific type of disease. Registries data enable identifi-
cation and sharing best clinical practices, improve accu-
racy of estimates, provide valuable data for supporting 
regulatory decision-making [32–35]. Especially for rare 
diseases where clinical trials are often of small size and 
data are subject to high variability, registries provide a 
valuable data source to help understand the course of a 
disease, and provide critical information for confirmatory 
clinical trial design and translational research to develop 
treatments and improve patient care [34, 36, 37]. Reader 
may refer to [38] for a comprehensive overview on reg-
istry data and how they help understanding of patient 
outcomes.

Claims data refer to data generated during process-
ing healthcare claims in health insurance plans or from 
practice management systems. Despite that claims data 
are collected and stored primarily for payment purposes 
originally, they have been used in healthcare to under-
stand patients’ and prescribes’ behavior and how they 
interact, to estimate disease prevalence, to learn disease 
progression, disease diagnosis, medication usage, and 
drug-drug interactions, and validate and replicate find-
ings from clinical trials [31, 39–46]. A known pitfall of 
claim data is fraud, on top of some of the common data 
characteristics of RMD, such as upcoding1[47]. The data 
fraud problem can be mitigated with detailed audits and 

adoption of modern statistical, data mining and ML tech-
niques for fraud detection [48–51].

PRO data refer to data reported directly by patients on 
their health status. PRO data have been used to provide 
RWE on effectiveness of interventions, symptoms moni-
toring, relationships between exposure and outcomes, 
among others [52–55]. PRO data are subject to recall bias 
and large inter-individual variability.

Wearable devices generate continuous streams of 
data. When combined with contextual data (e.g., loca-
tion data, social media), they provide an opportunity 
to conduct expansive research studies that are large in 
scale and scope [56] that would be otherwise infeasible 
in controlled trials. Examples of using wearable RWD to 
generate RWE include applications in neuroscience and 
environmental health [57–60]. The wearables generate 
huge amounts of data. Advances in data storage, real-
time processing capabilities and efficient battery technol-
ogy would be essential for the full utilization of wearable 
data.

Using and analyzing RWD
A wide range of research methods are available to 
make use of RWD. In what follows, we outline a few 
approaches, including pragmatic clinical trials, target trial 
emulation, and applications of ML and AI techniques.

Pragmatic clinical trials are trials designed to test the 
effectiveness of an intervention in the real-world clinical 
setting. Pragmatic trials leverage the increasingly inte-
grated healthcare system and may use data from EHR, 
claims, patient reminder systems, telephone-based care, 
etc. Due to the data characteristics of RWD, new guide-
lines and methodologies are developed to mitigate bias in 
RWE generated by RWD for decision making and causal 
inference, especially for per-protocol analysis [61, 62]. 
The research question under investigation in pragmatic 
trials is whether an intervention works in real life and tri-
als are designed to maximize the applicability and gener-
alizability of the intervention. Various types of outcomes 
can be measured in these trials, but mostly patient-cen-
tered, instead of typical measurable symptoms or mark-
ers in explanatory trials. For example, ADAPTABLE trial 
[63, 64] is a high-profile pragmatic trial and is the first 
large-scale, EHR-enabled clinical trial conducted within 
the U.S. It used EHR data to identify around 450,000 
patients with established atherosclerotic cardiovascular 
disease (CVD) for recruitment and eventually enrolled 
about 15,000 individuals at 40 clinical centers that were 
randomized to two aspirin dose arms. Electronic patient 
follow-up for patient-reported outcomes was completed 
every 3 to 6 months, with a median follow-up was 26.2 
months to determine the optimal dosage of aspirin in 
CVD patients, with the primary endpoint being the 

1  Upcoding refers to instances in which a medical service provider obtains 
additional reimbursement from insurance by coding a service it provided as a 
more expensive service than what was actually performed
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composite of all-cause mortality, hospitalization for non-
fatal myocardial infarction, or hospitalization for a non-
fatal stroke. The cost of ADATABLE is estimated to be 
only 1/5 to 1/2 of a traditional RCT of that scale.

Target trial emulation is the application of trial design 
and analysis principles from (target) randomized trials to 
the analysis of observational data [65]. By precisely speci-
fying the target trial’s inclusion/exclusion criteria, treat-
ment strategies, treatment assignment, causal contrast, 
outcomes, follow-up period, and statistical analysis, one 
may draw valid causal inferences about an intervention 
from RWD. Target trial emulation can be an important 
tool especially when comparative evaluation is not yet 
available or feasible in randomized trials. For example, 
[66] employs target trial emulation to evaluate real-world 
COVID-19 vaccine effectiveness, measured by protection 
against COVID-19 infection or related death, in racially 
and ethnically diverse, elderly populations by comparing 
newly vaccinated persons with matched unvaccinated 
controls using data from the US Department of Veterans 
Affairs health care system. The simulated trial was con-
ducted with clearly defined inclusion/exclusion criteria, 
identification of matched controls, including matching 
based on propensity scores with careful selection of 
model covariates. Target trial emulation has also been 
used to evaluate the effect of colon cancer screening on 
cancer incidence over eight years of follow up [67], and 
the risk of urinary tract infection among diabetic patients 
[68].

RWD can also be used as historical controls and refer-
ence groups for controlled trials, with assessment of the 
quality and appropriateness of the RWD and employ-
ment of proper statistical approaches for analyzing the 
data [69]. Controlling for selection bias and confounding 
is key to the validity of this approach because of the lack 
of randomization and potentially unrecognized baseline 
differences, and the control group needs to be compa-
rable with the treated group. RWD also provide a great 
opportunity to study rare events given the data volumi-
nousness [70–72]. These studies also highlight the need 
for improving the RWD data quality, developing surro-
gate endpoints, and standardizing data collection for out-
come measures in registries.

In terms of analysis of RWD, statistical models and 
inferential approaches are necessary for making sense 
of RWD, obtaining causal relationships, testing/validat-
ing hypotheses, and generating regulatory-grade RWE 
to inform policymakers and regulators in decision mak-
ing – just as in the controlled trial settings. In fact, the 
motivation for and the design and analysis principles in 
pragmatic trials and target trial emulation are to obtain 
causal inference, with more innovative methods beyond 
the traditional statistical methods to adjust for potential 

confounders and improve the capabilities of RWD for 
causal inference [73–76].

ML techniques are getting increasingly popular and 
are powerful tools for predictive modeling. One reason 
for their popularity is that the modern ML techniques 
are very capable of dealing with voluminous, messy, 
multi-modal, and various unstructured data types with-
out strong assumptions about the distribution of data. 
For example, deep learning can learn abstract represen-
tations of large, complex, and unstructured data; natural 
language processing (NLP) and embedding methods can 
be used to process texts and clinical notes in EHRs and 
transform them to real-valued vectors for downstream 
learning tasks. Secondly, new and more powerful ML 
techniques are being developed rapidly, due to the high 
demand and the large group of researchers in the field 
attracted by the hot topic. Thirdly, there are also many 
open source codes (e.g., on Github) and software libraries 
(e.g., TensorFlow, Pytorch, Keras) out there to facilitate 
the implementation of these techniques. Indeed, ML has 
enjoyed a rapid surge in the last decade or so for a wide 
range of applications in RWD, outperforming more con-
ventional approaches [77–85]. For example, ML is widely 
applied in in health informatics to generate RWE and for-
mulate personalized healthcare [86–90] and was success-
fully employed on RWD collected during the COVID-19 
pandemic to help understand the disease and evaluate its 
prevention and treatment strategies [91–95]. It should be 
noted that the ML techniques are largely used for predic-
tions and classification (e.g., disease diagnosis), variable 
selections (e.g, biomarker screening), data visualization, 
etc, rather than generating regulatory-level RWE; but this 
may change soon as regulatory agencies are aggressively 
evaluating ML/AI for generating RWE and engaging 
stakeholders on the topic [96–99].

It would be more effective and powerful to combine 
the expertise from statistical inference and ML when it 
comes to generating RWE and learning causal relation-
ships. One of the recent methodological developments 
is indeed in that direction – leveraging the advances in 
semi-parametric and empirical process theory and incor-
porating the benefits of ML into comparative effective-
ness using RWD. A well-known framework is targeted 
learning [100–102] that has been successfully applied in 
causal inference for dynamic treatment rules using EHR 
data [103] and efficacy of COVID-19 treatments [104], 
among others.

Regardless of which area a RWD project focuses on 
– causal inference or prediction and classification, rep-
resentativeness of RWD of the population where the 
conclusions from the RWD project will be generalized 
to is critical. Otherwise, estimation or prediction can be 
misleading or even harmful. The information in RWD 
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might not be adequate to validate the appropriateness of 
the data for generalization; in that case, the investigators 
should resist the temptation to generalize to groups that 
they are unsure about.

Challenges and opportunities
Various challenges – from data gathering to data quality 
control to decision making – still exist in all stages of a 
RWD life cycle despite all the excitement around their 
transformative potentials. We list some of the challenges 
below, where plenty of opportunities for improvement 
exist and greater efforts are needed to harness the power 
of RWD.

Data quality: RWD are now often used for other pur-
poses than what they are originally collected for and 
thus may lack information for critical endpoints and not 
always be positioned for generating regulatory-grade evi-
dence. On top of that, RWD are messy, heterogeneous, 
and subject to various measurement errors, all of which 
contribute to the lower quality of RWD compared to data 
from controlled trials. As a result, accuracy and precision 
of results based on RWD are negatively impacted and 
misleading results or false conclusions can be generated. 
While these do not preclude the use of RWD in evidence 
generation and decision making, data quality issues need 
to be consistently documented and addressed as much 
as possible through data cleaning and pre-processing 
(e.g., imputation to fill in missing values, over-sampling 
for imbalanced data, denoising, combining disparate 
pieces of information across databases, etc). If an issue 
can be addressed during the pre-processing stage, efforts 
should be made to correct it during data analysis or cau-
tion should be used when interpreting the results. Early 
engagement of key stakeholders (e.g., regulatory agencies 
if needed, research institutes, industries etc.) are encour-
aged to establish data quality standards and reduce 
unforeseen risks and issues.

Efficient and practical ML and statistical procedures: 
Fast growth of digital medical data and the fact that 
workforce and investment flood into the field also drive 
the rapid development and adoption of modern statistical 
procedures and ML algorithms to analyze the data. The 
availability of open-source platforms and software greatly 
facilitate the application of the procedures in practice. 
On the other hand, noisiness, heterogeneity, incomplete-
ness, and unbalancedness of RWD may cause consider-
able under-performance of the existing statistical and 
ML procedures and demand new procedures that target 
specifically at RWD and can be effectively deployed in 
the real world. Further, the availability of the open-source 
platform and software and the accompanied conveni-
ence, while offered with good intentions, also increases 
the chance of practitioners misusing the procedures, if 

not equipped with proper training or understanding the 
principles of the techniques before applying them to real-
world situations. In addition, to maintain scientific rigor 
during the RWE generation process from RWD, results 
from statistical and ML procedures would require medi-
cal validation either using expert knowledge or conduct-
ing reproducibility and replicability studies before they 
are being used for decision making in the real world 
[105].

Explainability and interpretability: Modern ML 
approaches are often employed in a black-box fashion 
and there a lack of understanding of the relationships 
between input and output and causal effects. Model 
selection, parameter initialization, and hyper-parameter 
tuning are also often conducted in a trial-and-error man-
ner, without domain expert input. This is in contrast to 
the medical and healthcare field where interpretability 
is critical to building patient/user trust, and doctors are 
unlikely to use technology that they don’t understand. 
Promising and encouraging research work on this topic 
has already started [106–111], but more research is 
warranted.

Reproducibility and replicability: Reproducibility and 
replicability2 are major principles in scientific research, 
RWD included. If an analytical procedure is not robust 
and its output is not reproducible or replicable, the pub-
lic would call into questions the scientific rigor of the 
work and doubt the conclusion from a RWD-based study 
[113–115]. Result validation, reproducibility, and repli-
cability can be challenging given their messiness, incom-
pleteness, unstructured data, but need to be established 
especially considering that the generated evidence could 
be used towards regulatory decisions and affect the lives 
of millions of people. Irreproducibility can be mitigated 
by sharing raw and processed data and codes, assuming 
no privacy is compromised in this process. For replica-
bility, given that RWD are not generated from controlled 
trials and every data set may has its own unique data 
characteristics, complete replicability can be difficult or 
even infeasible. Nevertheless, detailed documentation of 
data characteristics and pre-processing, pre-registration 
of analysis procedures, and adherence to open science 
principles (e.g., code repositories [116]) are critical for 
replicating findings on different RWD datasets, assuming 
they come from the same underlying population. Readers 
may refer to [117–119] for more suggestions and discus-
sions on this topic.

2  Reproducibility refers to “instances in which the original researcher’s data 
and computer codes are used to regenerate the results” and replicability refers 
to “instances in which a researcher collects new data to arrive at the same sci-
entific findings as a previous study.” [112]
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Privacy: Ethical issues exist when an RWD project 
is implemented, among which, privacy is a commonly 
discussed topic. Information in RWD is often sensitive, 
such as medical histories, disease status, financial situ-
ations, and social behaviors, among others. Privacy risk 
can increase dramatically when different databases (e.g., 
EHR, wearables, claims) are linked together, a common 
practice in the analysis of RWD. Data users and policy-
makers should make every effort to ensure that RWD 
collection, storage, sharing, and analysis follow estab-
lished data privacy principles (i.e., lawfulness, fairness, 
purpose limitation, and data minimization). In addition, 
privacy-enhancing technology and privacy-preserving 
data sharing and analysis can be deployed, where there 
already exist plenty effective and well-accepted state-
of-the-art concepts and approaches, such as differential 
privacy3[120] and federated learning4[121, 122]. Investi-
gators and policymakers may consider integrating these 
concepts and technology when collecting and analyzing 
RWD and disseminating the results and RWE from the 
RWD.

Diversity, Equity, Algorithmic fairness, and Transpar-
ency (DEAT): DEAT is another important ethical issue 
to consider in an RWD project. RWD may contain infor-
mation from various demographic groups, which can be 
used to generate RWE with improved generalizability 
compared to data collected in controlled settings. On the 
other hand, certain types of RWD may be heavily biased 
and unbalanced toward a certain group, not as diverse 
or inclusive, and in some cases, even exacerbate dispar-
ity (e.g., wearables and access to facilities and treatment 
may be limited to certain demographic groups). Greater 
effort will be needed to gain access to RWD from under-
represented groups and to effectively take into account 
the heterogeneity in RWD while being mindful of the 
limitation for diversity/equity. This topic also relates to 

algorithmic fairness, which aims at understanding and 
preventing bias in ML models. Algorithmic fairness is 
an increasingly popular research topic in literature [123–
127]. Incorrect and misleading conclusions may be drawn 
if the trained models systematically disadvantage a cer-
tain group (e.g., a trained algorithm might be less likely 
to detect cancer in black patients than white patients or 
in men than women). Transparency means that infor-
mation and communication concerning the processing 
of personal data must be easily accessible and easy to 
understand. Transparency ensures that data contributors 
are aware of how their data are being used and for what 
purposes and decision-makers can evaluate the quality of 
the methods and the applicability of the generated RWE 
[128–131]. Being transparent when working with RWD 
is critical for building trust among the key stakeholders 
during an RWD life cycle (individuals who supply the 
data, those who collect and manage the data, data cura-
tors who design studies and analyze the data, and deci-
sion and policy makers).

The above challenges are not isolated but rather con-
nected as depicted in Fig. 2. Data quality affects the per-
formance of statistical and ML procedures; data sources 
and the cleaning and pre-processing process relate to 
result reproducibility and replicability. How data are 
analyzed and which statistical and ML procedures to 
use have an impact on reproducibility and replicability, 
whether privacy-preserving procedures are used dur-
ing data collected and analysis and how information is 
shared and released relate to data privacy, DEAT, and 
explainability and interpretability, which can in turns 
affect which ML procedures to apply and development of 
new ML techniques.

Conclusions
RWD provide a valuable and rich data source beyond 
the confines of traditional epidemiological studies, clini-
cal trials, and lab-based experiments, with lower cost in 
data collection compared to the latter. If used and ana-
lyzed appropriately, RWD have the potential to generate 
valid and unbiased RWE with savings in both cost and 
time, compared to controlled trials, and to enhance the 
efficiency of medical and health-related research and 

Fig. 2  Challenges in RWD and Their Relations

3  Differential privacy provides a mathematically rigorous framework in which 
randomized procedures are used to guarantee individual privacy when releas-
ing information.
4  Federated learning enables local devices to collaboratively learn a shared 
model while keeping all training data on the local devices without sharing, 
mitigating privacy risks.
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decision-making. Procedures that improve the quality of 
the data and overcome the limitation of RWD to make 
the best of them have been and will continue to be devel-
oped. With the enthusiasm, commitment, and invest-
ment in RWD from all key stakeholders, we hope that the 
day that RWD unleashes its full potential will come soon.
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