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Abstract 

Background:  There are situations when we need to model multiple time-scales in survival analysis. A usual approach 
in this setting would involve fitting Cox or Poisson models to a time-split dataset. However, this leads to large datasets 
and can be computationally intensive when model fitting, especially if interest lies in displaying how the estimated 
hazard rate or survival change along multiple time-scales continuously.

Methods:  We propose to use flexible parametric survival models on the log hazard scale as an alternative method 
when modelling data with multiple time-scales. By choosing one of the time-scales as reference, and rewriting other 
time-scales as a function of this reference time-scale, users can avoid time-splitting of the data.

Result:  Through case-studies we demonstrate the usefulness of this method and provide examples of graphical 
representations of estimated hazard rates and survival proportions. The model gives nearly identical results to using a 
Poisson model, without requiring time-splitting.

Conclusion:  Flexible parametric survival models are a powerful tool for modelling multiple time-scales. This method 
does not require splitting the data into small time-intervals, and therefore saves time, helps avoid technological limita‑
tions and reduces room for error.

Keywords:  Multiple time-scales, Flexible parametric survival models, Time-varying covariate, Matched cohort, Cohort 
studies, Epidemiological methods
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Introduction
In survival analysis, the event rates may depend on mul-
tiple time-scales simultaneously, such as time-on-study, 
attained age, time since disease onset, etc, all with dif-
ferent time-origins, such as start date of the study, birth, 
onset of disease, etc. To fit survival models with multiple 
time-scales, it is standard practice to split the data into 
short time-intervals along the relevant time-scales, and 
fit a Cox model or a Poisson generalised linear model 
with categories for the time-intervals [1]. Using the Cox 
model may not be the best approach if we are interested 

in modelling the rates over the multiple time-scales, since 
the baseline hazard function is not estimated in the Cox 
model, and one of the time-scales has to be selected as 
the baseline [2]. Furthermore, fitting either the Cox 
or Poisson model to the time-split data is based on the 
assumption of piecewise constant hazard rates within 
the time-intervals. Fractional polynomials [3] or splines 
[4] can be used instead to obtain smooth estimates of the 
baseline hazard function in the Poisson model. Even so, 
this requires splitting the data into short intervals which 
often leads to very large datasets, thus adding to the chal-
lenges of fitting computationally burdensome models.

In this article, we propose using flexible parametric 
survival models (FPMs) [5, 6] as an alternative approach 
when fitting hazard models with multiple time-scales. 
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This method allows for modelling multiple time-scales as 
continuous functions and does not require time-splitting. 
FPMs with two time-scales are presented through two sce-
narios. In the first scenario, the second time-scale is intro-
duced when individuals experience an intermediate event, 
which is considered as a time-varying covariate. In the sec-
ond scenario, both time-scales are present from the start of 
the study but the second time-scale is relevant only for a 
subset of individuals in the matched cohort. We also com-
pare the results to those from fitting Poisson models. The 
choice of the optimal single time-scale or how to combine 
multiple time-scales into one time-scale has been widely 
discussed [7–12] and is not the focus of this study.

Notation and background
Proportional hazards models with multiple time‑scales
Modelling hazard rates in terms of multiple time-scales 
has been described in different settings, for example in age, 
period and cohort models [13] and in the Lexis model with 
two time-axes [14], and the two-way proportional hazards 
(PH) model  [15]. A thorough description of the general 
approach to modelling multiple time-scales within multi-
state models using Poisson framework has been provided 
by Iacobelli and Carstensen (2013) [16].

In a model with two time-scales and proportional haz-
ards, i.e. a model where time-scales are modelled as main 
effects, the log hazard function can be expressed as:

where p0 and s0 are the baseline hazard functions (which 
can be any functions) for time-scales t1 and t2 , respec-
tively, with γ p and γ s as the corresponding parameter 
vectors. An intercept is included in one of the two func-
tions. The covariates of interest are expressed as x with 
associated log hazard ratios β.

Provided chosen time-scales are measured in the same 
units of time, and their time-origins are known then the 
time-scales can be expressed as functions of one refer-
ence time-scale and corresponding offset terms. For 
example, if t1 is time since diagnosis and t2 is attained age 
then the time-origin for t1 is diagnosis and for t2 it is birth. 
Then using age at diagnosis, a0 , as an offset, we can write 
t2 = t1 + a0 , or symmetrically t1 = t2 − a0 . Thus, with t1 
as the reference time-scale, model (1) can be written as,

Additionally, if a third time-scale of interest is the cal-
endar time,  t3 (origin 0 CE), then we can write it as a 
function of  t1 , as t3 = t1 + c0 , or as a function of  t2 as 
t3 = t2 − a0 + c0 , where c0 is the calendar date of diag-
nosis and acts as another offset term. To demonstrate 

(1)log(h(t1, t2;�p, �s,�)) = p0(t1;�p) + s0(t2;�s) + x� ,

(2)
log(h(t1, t2;�p, �s,�)) =p0(t1;�p) + s0(t2;�s) + x�

=p0(t1;�p) + s0(t1 + a0;�s) + x�

further the symmetry of model (2) with additional time-
scale, we can express the model with three time-scales 
t1, t2, t3 as a function of the reference time-scale t2 and 
offset terms a0, c0,

Non‑proportional hazards models with multiple time‑scales
Models (1) - (3) can be extended further to include 
non-proportional hazards, i.e. interactions between 
covariates and one or more of the time-scales. For exam-
ple, model  (1) with interaction between covariates xl 
( l = 1, . . . , L ) and time-scale t1 is written as:

The covariates included in x can be of any functional 
form and therefore, in model  (4) it is not necessarily a 
linear form that is used in the interaction term with the 
time-scale. Additionally, interactions between time-
scales can also be included, which means that the effect 
of the first time-scale on the outcome can differ along the 
second time-scale. In further discussions and examples, 
we will focus on fitting PH models with two time-scales 
using flexible parametric survival models and compare 
them to Poisson models.

Flexible parametric survival models with multiple 
time‑scales
Flexible parametric survival models (FPMs) were intro-
duced by Royston and Parmar (2002)  [5] and have been 
further developed by others [6, 17, 18]. FPMs on the 
log-hazard scale use a smoothing function for the base-
line hazard in a form of restricted cubic splines, which 
are piecewise cubic polynomial functions that are joined 
at pre-specified positions (knots). The restricted cubic 
splines are often created on the log-scale of time. Users 
are required to choose a number of knots for the splines, 
as well as the position of the knots. Sensitivity analyses 
have shown that estimates produced by FPMs are robust 
to the number and placement of knots [19].

As described in Section 2.1, if the time-scales of inter-
est can be expressed in terms of one time-scale and the 
offset terms then, in its simplest form, the PH FPM on 
the log hazard scale with two time-scales, t1 and t2 is writ-
ten as

(3)
log(h(t1, t2, t3;�p, �s , �q , �)) =p0(t1;�p) + s0(t2;�s) + q0(t3;�q) + x�

=p0(t2 − a0;�p) + s0(t2;�s)

+ q0(t2 − a0 + c0;�q) + x�

(4)
log(h(t1, t2;�p, �s, �)) =p0(t1;�p) + s0(t2;�s)

+ x� + ΣL
l=1

xlpl(t1;�l)

(5)
log(h(t1, t2;�p, kp, �s , k s ,�)) = p0(t1;�p, kp) + s0(t2;�s , k s) + x� ,
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where the baseline hazard functions on the  t1 and  t2 
time-scales are represented by the restricted cubic spline 
functions, p0(t1; γ p, kp) and s0(t2; γ s, ks) , respectively. 
The knot location vectors,  kp and  ks are either chosen 
by default at equally spaced centiles over the distribu-
tion of the event-times or determined by the user. Also 
this model can be easily extended to include interactions 
between the time-scales as well as non-proportional haz-
ards for the covariates of interest.

Poisson model with multiple time‑scales
We can also use the Poisson approach to fit the same 
underlying rate models described in Section  2.1 since 
the likelihood of the rate model is equivalent to the 
likelihood of a Poisson model [15, 16, 20]. To do this, 
users are required to split the data along the relevant 
time-scales into intervals short enough to better sup-
port the assumption of constant hazard rates within 
the intervals, which can come at the cost of high com-
putational burden. Depending on the research area, 
the data can be split along one time-scale, and the 
other time-scale is obtained using the offset between 
time-scales. However, in some situations splitting is 
performed along two or more time-scales. The base-
line hazard functions for the time-scales can be either 
piecewise constant, or smooth functions based on 
the intervals (for example, the start or the mid-point 
of each interval). The log of person-time within each 
interval is included in the model as an offset.

For consistency with the FPM approach, in this study 
we use restricted cubic splines when using the Poisson 
approach to estimate the smooth effect of the time-scales 
on the baseline hazard.

Non-proportional hazards as shown by model (4) as 
well as interactions between time-scales can also be 
modelled within the Poisson framework.

Application scenarios
To illustrate models with multiple time-scales we ana-
lysed two different case-studies, using both FPMs and 
Poisson models. The models displayed are essentially 
the same, however they illustrate different scenarios 
where multiple time-scales can arise. The first case-study 
includes a time-varying variable that introduces a second 
time-scale upon changing its value, and the second is a 
matched cohort study where the second time-scale is rel-
evant only for the exposed subjects. In both case-studies 

our objective was to model mortality rates with two time-
scales, and graphically represent the estimated rates and 
the survival proportions over different time-points on 
both time-scales.

Time‑varying covariate
Similar to the illness-death example discussed by Iac-
obelli and Carstensen (2013)  [16], for modelling mul-
tiple time-scales, we analysed cohort data of 2,982 
individuals diagnosed during 1978-1993 with primary 
breast cancer in Rotterdam, who had undergone pri-
mary surgery [21, 22]. Patients were followed from the 
initial state surgery until the event of interest death or 
censoring at 10 years post surgery. Throughout the 
follow-up it is also known whether and when they 
experienced the intermediate state relapse or metas-
tasis (RM). RM can, therefore, be treated as a time-
varying covariate, and time since RM as a secondary 
time-scale.

In total 1,139 patients died during the total follow-
up of 19,937 person-years (overall mortality rate 57 per 
1000 person-years), and 1,004 of these deaths occurred 
after RM. During follow-up, 1,477 patients experienced 
RM, and the median time to RM among those with RM 
was 2.43 years (min = 0.1, max = 9.99).

Using the FPM and the Poisson methods, we fitted 
the following hazard model with two time-scales, t1 as 
time since surgery (reference time-scale) and t1 − r as 
time since RM with r as the time of RM,

where IRM was used as a time-varying indicator for patients 
with RM, so that the effect of time since RM on the base-
line hazard can only be estimated after patients have tran-
sitioned to RM. In both methods, for the restricted cubic 
spline functions, p0, s0 , we chose four knots equally placed 
over the distribution of event-times, and we used the 
same knots in both methods, however, in p0 we created 
splines for log(t1) . An intercept of the model is included 
in function p0 as part of the parameters for the reference 
time-scale t1 . As in the model above s0 does not include an 
intercept. There is a choice to be made whether to include 
a parameter for an immediate change in the hazard at 
the time of RM, and setting βRM to 0 would remove this 
change. We also included in the model a restricted cubic 
spline function of age (age at surgery) with six knots and 
an indicator Ihorm for hormonal therapy, assuming propor-
tional hazards for these covariates over both time-scales by 
not including interactions with either of the time-scales.

(6)log(h(t1, t1 − r; γ p, kp, γ s, ks, γ q , kq ,β)) =p0(t1; γ p, kp)+ s0(t1 − r; γ s, ks) · IRM

+ βRM · IRM + q(age; γ q , kq)+ βhorm · Ihorm,
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To fit this model, it was necessary to create two rows 
per individuals for those that experienced RM, where 
indicator IRM changed from 0 to 1 at the time of RM. 
Furthermore, for the Poisson approach, we split the 
reference time-scale, time since surgery, into two-day-
intervals, and used mid-points of the intervals for cre-
ating the splines. For this cohort it may be unnecessary 
to have such short intervals, especially in later part of 
the follow-up, but for other diseases it may be essential.

For the purpose of this study, we chose to keep the 
model simple in terms of the number of covariates, and 
we did not focus on the question of model-specification. 
Therefore, the results may not be clinically representative.

The implementation of analyses for the FPM method 
for this cohort using Stata code is provided in the Sup-
plementary material.

Graphical representations of results for model 
with a time‑varying covariate
The FPM and Poisson approaches yielded almost iden-
tical results; coefficients and 95% confidence intervals 
(CI) are displayed in Table 1. The spline coefficients are 
not interpretable on their own but they are used to pre-
dict the shape of the hazard surface at different covari-
ate values. For example, Fig.  1 displays two panels for 
viewing the estimated mortality rates from the FPM. The 
left panel shows the estimated mortality rates per 1000 
person-years along time since surgery (time-scale t1 ) 

Table 1  Coefficients and 95% confidence intervals from the 
FPM and Poisson models of the mortality rates with two time-
scales (t1 as time since surgery, and t2 as time since relapse or 
metastasis (RM)) and a time-varying indicator for the second 
time-scale (Indicator for RM) for Rotterdam Breast Cancer 
patients. Note: the spline coefficients are not interpretable on 
their own but they are used for making smooth predictions of 
the mortality rates

FPM Poisson

Indicator for RM 3.1891 (2.9314, 3.4468) 3.1937 (2.9362, 3.4512)

Age spline 1 -0.0578 (-0.1092, -0.0063) -0.0578 (-0.1092, -0.0063)

Age spline 2 -0.0005 (-0.0009, 0) -0.0005 (-0.0009, 0)

Age spline 3 0.0006 (-0.0002, 0.0014) 0.0006 (-0.0002, 0.0014)

Age spline 4 -0.0001 (-0.0008, 0.0005) -0.0001 (-0.0008, 0.0005)

Age spline 5 -0.0001 (-0.0004, 0.0002) -0.0001 (-0.0004, 0.0002)

Indicator for hor‑
monal therapy

0.3224 (0.1439, 0.5009) 0.3221 (0.1436, 0.5006)

log(t1) spline 1 0.8853 (0.4266, 1.344) 0.8802 (0.4226, 1.3379)

log(t1) spline 2 0.7396 (0.3272, 1.1519) 0.7364 (0.3243, 1.1486)

log(t1) spline 3 -1.0513 (-1.7461, -0.3565) -1.0467 (-1.7412, -0.3521)

t2 spline 1 0.4519 (0.1646, 0.7392) 0.4465 (0.1594, 0.7336)

t2 spline 2 0.0562 (-0.0555, 0.1679) 0.0546 (-0.0571, 0.1662)

t2 spline 3 -0.0153 (-0.0711, 0.0404) -0.0146 (-0.0703, 0.0411)

Intercept -4.0529 (-4.3845, -3.7213) -4.0549 (-4.3864, -3.7234)

Fig. 1  Based on Rotterdam Breast Cancer data, estimated mortality rates per 1000 person-years for breast cancer patients who were aged 50 at 
primary surgery and were treated with hormonal therapy (solid lines) and without hormonal therapy (dotted lines). Left panel shows the mortality 
rates over time since surgery (time-scale t1 ) for patients having relapse or metastasis (RM) at different time-points since surgery as well as for non-RM 
patients. Right panel shows the mortality rates for RM patients along the time since RM (time-scale t2)
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for patients who did not have RM and for patients who 
experienced RM at 0.5, 1, 2, 3, 4, 5 years post surgery, 
respectively. The jumps from “No RM” at these time-
points post-surgery into the RM state are represented 
by the vertical lines. The right panel of Fig. 1 provides an 
alternative view, along the second time-scale, time since 
RM (time-scale t2 = t1 − r , with r as offset as time of RM 
post surgery). From both panels, as from Supplemen-
tary Fig. 1, we see that the mortality rates decrease with 
both time since surgery and with time since RM. Patients 
treated without the hormonal therapy also have lower 
mortality rates than patients who received hormonal 
therapy. The purpose of this article is to demonstrate the 
methods, therefore it is not recommended to interpret 
the results in the clinical sense. Nevertheless, the high 
mortality among patients treated with hormonal ther-
apy can be due to a more severe disease for this group of 
patients. As in Fig. 1, in subsequent figures, we displayed 
results from the FPM only, as there was a complete over-
lap between the two methods of estimated mortality rates 
and survival proportions. Furthermore, for demonstra-
tion purposes, all the predicted values were calculated for 
patients who had primary surgery at age 50.

Supplementary Fig.  1 shows the estimated mortal-
ity rates per 1000 person-years over both time-scales in 
three-dimensional view for patients who had primary 
surgery at age 50, received hormonal therapy and expe-
rienced RM. It can be seen that the peak of the surface 
with grey and orange belts (mortality rates higher than 
600) is concentrated over the quadrant of one to three 
years since surgery and one to three years since RM. The 
mortality rates surface becomes more “shallow” with pro-
gression of time on both time-scales similar to what is 
observed in clinical practice [23].

We can also assess the time-varying effect of experi-
encing RM on mortality rates compared to not having 
RM given the same time since surgery, same age at sur-
gery and same treatment with or without hormonal ther-
apy. This is represented by mortality rate ratio with 95% 
CI over time since RM in Fig. 2. From Fig. 2 we observe 
that the relative effect of having RM increases rapidly 
with time since RM: from rate ratio 24.27 (95% CI: 18.75, 
31.4) at time 0 since RM to rate ratio of 52.51 (95% CI: 
41.2, 66.93) at 3.65 years since RM, followed by a rapid 
decline reaching 19.91 (95% CI: 8.02, 49.41) at 10 years 
since RM. To clarify further this comparison, the mortal-
ity rate for individuals at 10 years since RM is 19.91 times 

the mortality rate for individuals who never experience 
RM given these individuals have the same time since 
surgery, the same age and therapy. The model assumes 
that the mortality rate ratio at a certain time since RM 
(i.e. at certain values of t2=t1 − r ) is the same irrespec-
tive of time since surgery (i.e. t1 ) and time of RM (i.e. r) as 
long as the comparison is made between individuals hav-
ing the same time since surgery. This means that we get 
the same mortality rate ratio for the effect of RM in com-
parison to no RM when, for example, t1 = 2 , r = 1 , and 
t1 = 3 , r = 2 , as both comparisons are at one year after 
RM. This comes from the fact that the model does not 
include an interaction term between RM and t1 , nor does 
it include an interaction between t1 and t2 time-scales. 
However, with more complex models that include inter-
actions between time-scales as well as time-dependent 
effects of the covariates, the graphical representation of 
the mortality rate ratio would have to be displayed for 
different values of both time-scales.

In addition to the mortality rates, we can also obtain sur-
vival proportions for different sub-groups along both time-
scales. The 95% CI (not shown) were computed using the 
bias-corrected percentile bootstrap method with 1000 sam-
ples. Figure 3 provides examples of predicted survival prob-
abilities on either of the time-scales. For example, panel (A) 
shows smooth predicted survival curves over time since 

Fig. 2  Estimated mortality rate ratio and 95% confidence interval 
for breast cancer patients in the Rotterdam Breast Cancer data, 
experiencing relapse or metastasis (RM) after primary surgery versus 
patients without RM, over time since RM

Fig. 3  Predicted survival proportions for breast cancer patients in the Rotterdam Breast Cancer data, who were aged 50 at primary surgery and 
were treated with hormonal therapy (solid lines) and without hormonal therapy (dotted lines). Panel (A) shows the survival proportions over time 
since surgery (time-scale t1 ) for patients having relapse or metastasis (RM) at different time-points since surgery as well as for non-RM patients. 
Panel (B) shows the survival proportions since RM (time-scale t2 ) for patients having RM at different time-points. Panel (C) shows 1-, 3- and 5-year 
survival proportions since RM across time since surgery

(See figure on next page.)
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Fig. 3  (See legend on previous page.)



Page 7 of 12Batyrbekova et al. BMC Medical Research Methodology          (2022) 22:290 	

surgery for patients without RM and for patients with RM 
at 1, 2, 3, 4, 5 years post surgery. Panel (B), on the other 
hand, depicts the survival proportions over time since RM. 
Both panels supplement each other and aid in comparison 
of the sub-groups. In addition to the conventional repre-
sentations of predicted survival in panels (A) and (B), it can 
be of interest to assess the survival proportions chosen for 
specific time-points since RM and time-points since sur-
gery. Panel (C) displays the probability of surviving 1, 3 and 
5 years after RM across different time points since surgery. 
It can be seen that the survival proportions are higher for 
patients with longer time since surgery given the same time 
since RM. For example, the probability to survive three 
years after RM for patients on hormonal therapy is 0.206 
(95% CI: 0.142, 0.276) and 0.465 (95% CI: 0.394, 0.544) at 
four and eight years since surgery, respectively.

Matched cohort
In a matched cohort, when individuals with a certain 
disease or characteristic are matched to population con-
trols, or comparators without the characteristics, using 
matching variables such as age, sex and calendar year, 
then attained age is often the most relevant time-scale. 
However, time since diagnosis can also be of importance 
for the exposed individuals, but is not relevant for the 
matched comparators in the cohort. We explore this type 
of scenario by analysing matched cohort data of Swedish 
patients with myeloproliferative neoplasms (MPN). Our 

Table 2  Coefficients and 95% confidence intervals from the 
FPM and Poisson models of the mortality rates with two time-
scales (t1 as attained age, and t2 as time since MPN diagnosis) 
for cohort of Swedish MPN patients diagnosed during 1987-2009 
and matched comparators. Note: the spline coefficients are not 
interpretable on their own but they are used for making smooth 
predictions of the mortality rates

FPM Poisson

Indicator for MPN 1.5563 (1.4543, 1.6583) 1.5620 (1.4602, 1.6639)

Indicator for sex 
(0 = Men, 1 = 
Women)

-0.3273 (-0.3623, 
-0.2923)

-0.3272 (-0.3622, -0.2922)

t1 spline 1 0.0657 (0.0508, 0.0805) 0.0657 (0.0508, 0.0805)

t1 spline 2 0.0001 (-0.0001, 0.0002) 0.0001 (-0.0001, 0.0002)

t1 spline 3 -0.0006 (-0.0010, 
-0.0003)

-0.0006 (-0.0010, -0.0003)

t1 spline 4 0.0007 (0.0004, 0.0010) 0.0007 (0.0004, 0.0010)

t2 spline 1 -0.4661 (-0.6089, 
-0.3234)

-0.4740 (-0.6167, -0.3314)

t2 spline 2 -0.0821 (-0.1315, 
-0.0327)

-0.0842 (-0.1336, -0.0348)

t2 spline 3 0.0344 (0.0045, 0.0644) 0.0355 (0.0055, 0.0654)

t2 spline 4 -0.0028 (-0.0113, 0.0058) -0.0029 (-0.0114, 0.0057)

Intercept -8.8858 (-9.6864, 
-8.0853)

-8.8859 (-9.6864, -8.0854)

Fig. 4  Estimated mortality rates per 1000 person-years for Swedish MPN patients and matched comparators where solid lines are for men and 
dotted lines are for women. Left panel shows the mortality rates over attained age (time-scale t1 ) for patients with different ages at diagnosis and 
for comparators. Right panel shows the mortality rates for MPN patients along the time since diagnosis (time-scale t2)
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objective was to model mortality rates and estimate sur-
vival proportions for the MPN cases compared to popu-
lation comparators over the time-scales attained age and 
time since diagnosis.

A detailed description of the disease and patient char-
acteristics of the MPN matched cohort are provided else-
where [24]. Briefly, each MPN patient at age 18 years or 
older was matched to four individuals from the Swedish 
general population based on sex, age and calendar year 
of diagnosis during 1987 - 2009. Furthermore, the first 
30 days of follow-up were excluded to avoid surveillance 
bias. In total the cohort consisted of 9,164 MPN cases 
and 35,763 matched controls with follow-up until death 
or censoring on December 31, 2010 or at maximum of 10 
years of follow-up. In total 5,108 deaths were observed 
among MPN subjects, and 11,677 among non-MPN sub-
jects (overall mortality rates were 91 and 39 per 1000 per-
son-years, respectively).

Similar to the previous case-study, using the FPM and 
Poisson methods we fitted the following hazard model,

where t1 is attained age (reference time-scale), t1 − a0 is 
time since diagnosis (second time-scale) with a0 as age at 
MPN diagnosis, IMPN is the indicator for the MPN cases, 
and Isex is the indicator for sex (0 = Men, 1 = Women). 
Even though this model might not be the most relevant, 
in terms of covariates included, it is useful for demon-
stration purposes. Furthermore, it has been shown that 
there is no need to include all matching variables in the 
model in the analysis of matched cohort data if there is 
no additional confounding [25]. In both FPM and Poisson 
methods, we chose five knots for both spline functions 
g0, v0 , equally placed over the distribution of event-times, 
where the first knot and the last knot are placed at the 
first and last event times, respectively. Additionally, for 
the Poisson method, we split the person-time by two-day 
intervals, and used mid-points of the intervals when cre-
ating the splines.

Graphical representations of results for matched cohort
As in the previous case-study, the coefficients and 95% 
CI displayed in Table  2 from the FPM and Poisson 
approaches are almost identical. The predicted mortality 
rates and survival proportions were the same from both 
methods, hence the figures that follow, represent results 
for attained ages 60-95 from the FPM method only.

From both panels of Fig. 4, it can be seen that for the 
same attained age, the mortality for male MPN patients 
is much higher right after diagnosis than after 10 years 
of having the disease. For example, among men at age 

(7)

log(h(t1, t1 − a0;�g , kg , �v , kv , �)) =g0(t1;�g , kg ) + v0(t1 − a0;�v , kv) ⋅ IMPN

+ �MPN ⋅ IMPN + �sex ⋅ Isex ,

80 right after the diagnosis, the mortality rate is 260 per 
1000 person-years, whereas for 80 year-olds that were 
diagnosed 10 years ago the rate is 149 per 1000 person-
years. However, this mortality rate is still higher than 
the mortality rate for 80 year-olds who were diagnosed 
five years ago (133 per 1000 person-years). Addition-
ally, the mortality rates surface per 1000 person-years 
in Supplementary Fig.  2 shows a characteristic steep 
increase in the mortality rates with progression of 
time on both time-scales, attained age and time since 
diagnosis.

After an initial decline in the first two years since 
diagnosis, given the same attained age and sex, the 
mortality rate ratio is shown to be averaging at 2.51 
(95% CI: 2.33, 2.7) for MPN cases relative to non-MPN 
matched controls over time since diagnosis (Fig. 5). A 
steep initial decline in mortality after diagnosis has 
been observed also for other diseases, for example, 
diabetes [26].

Different graphical views of survival proportions are 
shown in Fig. 6. Panels (A) and (B) provide two alterna-
tive displays of the same survival proportions for patients 
with ages at diagnosis 70, 75, 80, 85 over time-scales 
time since diagnosis and attained age, respectively. As 
expected, younger patients have better survival as well as 
women in all age groups. In panel (C), we have a cross-
sectional view of panel (B), where 1-, 3-, 5-, 10-year 
survival proportions are plotted with respect to age at 
diagnosis. The dramatic decrease in survival for older 
age groups given the same lengths of time since diagnosis 
is more apparent in this figure. For example, the 5-year 
overall survival is 81.07% (95% CI: 80.09, 81.99) and 
58.49% (95% CI: 57.09, 59.8) for a male patient diagnosed 
at age 64 and 74, respectively.

Fig. 5  Estimated mortality rate ratio and 95% confidence interval 
over time since diagnosis for Swedish MPN patients in comparison to 
matched comparators without MPN
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Fig. 6  Predicted survival proportions for Swedish MPN patients where solid lines are for men and dotted lines are for women. Panel (A) shows the 
survival proportions over time since diagnosis (time-scale t2 ). Panel (B) shows the survival proportions over attained age (time-scale t1 ) for different 
ages at diagnosis. Panel (C) shows 1-, 3-, 5- and 10-year survival proportions across age at diagnosis
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Discussion
There are situations when it is necessary to include mul-
tiple time-scales in a hazard model. For example, both 
woman’s age and time since first childbirth have a simul-
taneous impact on breast cancer incidence [27] and mor-
tality among individuals with dementia is dependent on 
time since onset and attained age [28], and for chronic 
diseases, such as diabetes mellitus, rates of complications 
are dependent on person’s age and duration of the disease 
[26]. The study design may dictate which time-scales to 
include in the hazard model. For example, in the illness-
death framework by allowing non-Markov assumption, 
the baseline hazard can take into account both time 
from the initial state as well as time from the intermedi-
ate state. And, in the matched cohort design, it may be 
required that the hazard model includes additional time-
scales specific to the subgroups of the cohort. A recent 
study has also demonstrated how multiple time-scales 
can be incorporated within the relative survival frame-
work in a multistate setting [29].

An established method, such as the Poisson GLM, 
is a powerful tool when it comes to modeling the haz-
ard rates with multiple time-scales. However, users are 
required to split the dataset along the chosen time-
scales and make an unrealistic assumption of piecewise 
constant hazard rates within the time-intervals. Fur-
thermore, with longer follow-up times, and larger vol-
umes of data, it can be computationally challenging to 
model with a large dataset containing finely split per-
son-time. For certain studies it might be sufficient to 
split along one time-scale and keep track of the time-
intervals on other time-scales, but there can be situ-
ations when it is necessary to split along two or more 
time-scales simultaneously, and therefore, increasing 
the computational burden, as well as running a higher 
risk of making errors when it comes to splitting the 
person-time along multiple time-scales.

In this study we aimed to introduce and demonstrate 
the flexible parametric survival models that can cap-
ture complex shapes of the baseline hazard function 
with multiple time-scales given other time-scale(s) 
is(are) expressed in terms of the reference time-scale 
and offsets or times of origin. With the FPM, users 
avoid time-splitting of the dataset as well as making an 
assumption of piecewise constant hazard rates. This 
assumption can be relaxed in a Poisson model by the 
use of splines or other smoothing techniques, but that 
requires splitting the data in more intervals for the 
time-scales to be treated as continuous variables. We 
compared the FPM and the Poisson models with time-
splitting in two-day intervals in both case-studies and 
using splines for modelling the time-scales, showing 
that the estimates from the fitted models were nearly 

identical. However, in the figures we displayed the pre-
dicted hazard rates and survival proportions from the 
FPM only, as there was a complete overlap with the 
Poisson method. We also compared the results from 
the Poisson models with time-splitting in one-month 
intervals (results not shown). The estimated coef-
ficients were close to the coefficients from the FPM 
method but not as close as from the model with data 
split in two-day intervals. Also the estimated mor-
tality rates did not always overlap within given time-
frames. However, the survival proportions were seen 
to overlap.

We also demonstrated different ways of presenting 
the results graphically, that can help users understand 
the disease better. Plotting the hazard rates and survival 
probabilities with respect to each time-scale separately 
for different time-points from the other time-scale can 
be also helpful to answer different research questions in 
regards to the disease of interest. The implementation 
of all the analyses in Stata for the model with time-var-
ying covariate is shown in the Supplementary material.

There are limitations in this study. The confidence 
intervals for survival proportions were obtained 
using the bias-corrected percentile bootstrap as esti-
mation of survival with confidence intervals has not 
been implemented as part of the software package. 
Future work should implement easier estimation of 
confidence intervals with the use of the delta method 
[30]. Another limitation that is inherent to the FPM, 
is choosing knots for the spline functions. However, 
according to Syriopoulou et  al. (2019) [31], as long 
as there are not too few knots, the results are robust 
to different choices of knots. We also did not address 
the question of model fitting in this study. This is the 
most challenging part of fitting models with multiple 
time-scales as there are so many aspects to consider in 
addition to choosing covariates, such as determining 
which time-dependent effects on which time-scales to 
include, or whether there are interactions between the 
time-scales. With each time-scale comes an additional 
dimension of all the challenges that users face with 
one-time-scale models.

In conclusion, by using the FPM, users can avoid 
splitting the survival data into intervals and avoid mak-
ing an assumption of piecewise constant hazard rates 
within the time-intervals, while obtaining all the neces-
sary estimates for inference and the graphical represen-
tation of the estimated hazard rates and probabilities. 
The examples shown were used to highlight the impor-
tance of fitting models with multiple time-scales, and 
how results from these complex models can be graphi-
cally presented.
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