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Abstract 

Background:  Modern configurational comparative methods (CCMs) of causal inference, such as Qualitative Compar-
ative Analysis (QCA) and Coincidence Analysis (CNA), have started to make inroads into medical and health research 
over the last decade. At the same time, these methods remain unable to process data on multi-morbidity, a situation 
in which at least two chronic conditions are simultaneously present. Such data require the capability to analyze com-
plex effects. Against a background of fast-growing numbers of patients with multi-morbid diagnoses, we present a 
new member of the family of CCMs with which multiple conditions and their complex conjunctions can be analyzed: 
Combinational Regularity Analysis (CORA).

Methods:  The technical heart of CORA consists of algorithms that have originally been developed in electrical engi-
neering for the analysis of multi-output switching circuits. We have adapted these algorithms for purposes of con-
figurational data analysis. To demonstrate CORA, we provide several example applications, both with simulated and 
empirical data, by means of the eponymous software package CORA. Also included in CORA is the possibility to mine 
configurational data and to visualize results via logic diagrams.

Results:  For simple single-condition analyses, CORA’s solution is identical with that of QCA or CNA. However, analyses 
of multiple conditions with CORA differ in important respects from analyses with QCA or CNA. Most importantly, 
CORA is presently the only configurational method able to simultaneously explain individual conditions as well as 
complex conjunctions of conditions.

Conclusions:  Through CORA, problems of multi-morbidity in particular, and configurational analyses of complex 
effects in general, come into the analytical reach of CCMs. Future research aims to further broaden and enhance 
CORA’s capabilities for refining such analyses.

Keywords:  Boolean algebra, Coincidence Analysis (CNA), Combinational Regularity Analysis (CORA), Configurational 
comparative methods (CCMs), Multi-output optimization, Qualitative Comparative Analysis (QCA), Switching circuit 
theory

Background
Configurational comparative methods (CCMs), the cur-
rently most sophisticated of which are Qualitative Com-
parative Analysis (QCA; [1–3]) and Coincidence Analysis 
(CNA; [4, 5]), have begun to evolve during the 1980s in 
sociology and political science for inferring about cause-
effect relations from configurational data. The structure 
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of these relations is defined by the so-called INUS Theory 
[6–8], which enjoys a long intellectual pedigree in the 
philosophy of causation [9, 10] (an “INUS condition” is 
an insufficient but non-redundant part of an unnecessary 
but sufficient condition). For identifying INUS structures, 
which are represented in the formal language of proposi-
tional logic, CCMs employ optimization algorithms that 
operate on Boolean-algebraic functions [11–14].

Since the late 2010s, CCMs have also started to make 
inroads into medical and health research. For example, 
QCA has been used in pediatrics to analyze the effect of 
social networks on lice infestation among Mexican chil-
dren [15], in ophthalmology to investigate the association 
between dietary patterns and macular degeneration [16], 
and in obstetrics for studying the effect of family policies 
and public health initiatives on breastfeeding initiation 
[17]. According to a recent review, QCA has been used 
so far in at least 26 studies to analyze public health inter-
ventions [18]. CNA has been employed, for instance, to 
examine the strategies that Veteran Affairs sites use for 
implementing new hepatitis C treatments [19]. In addi-
tion, the method has recently been introduced in imple-
mentation science [20].

Another development that set in about 25 years ago 
in medical and health research concerns the increas-
ing relevance of the concept of multi-morbidity, which 
is generally defined as the co-occurrence of at least 
two chronic or acute conditions in patients [21]. Many 
numerical indicators attest to the growing need of devot-
ing attention to problems of multi-morbidity. According 
to one study, 65 percent of aged Medicaid beneficiaries 
in the United States had suffered from multiple chronic 
conditions towards the end of the 1990s already [22]. 
By the early 2010s, adults with multiple chronic condi-
tions became the major users of health care services at 
all adult ages and accounted for more than two-thirds 
of health care spending [23], a trend that has been pro-
jected to persist [24]. Reflective of these developments, 
journals such as Health Psychology have also published 
special issues on topics around multi-morbidity [25]. In 
short, multi-morbidity represents a problem of growing 
concern in medical and health research. Consequentially, 
the need for analytical methods suitable for the scientific 
study of data from contexts of multi-morbidity continues 
to increase.

Existing CCMs still face limitations in this connection. 
Neither QCA nor CNA offer the possibility to analyze 
complex effects, and neither method is thus able to cor-
rectly analyze multiple conditions and their possible con-
junctions simultaneously. On the one hand, this should 
come as no surprise because the INUS Theory has so far 
focused on the complexity of causes, but not the com-
plexity of effects. On the other hand, some prominent 

clinical psychologists had already pointed out the close 
connection between configurational thinking in terms of 
INUS causation and the intensifying problem of multi-
morbidity about twenty years ago [26]. An initiation 
of efforts to incorporate the notion of complex effects 
into current configurational methodology and the INUS 
Theory thus appears a long overdue and worthwhile 
undertaking.

Against the background of fast-growing numbers of 
patients with multi-morbid diagnoses and the acknowl-
edged yet untapped analytical potential of CCMs in this 
regard, the present article introduces a new method 
with which data from contexts of multi-morbidity can 
be modelled configurationally. We call this new method 
Combinational Regularity Analysis (CORA). In addition 
to its technical innovations that allow the simultaneous 
analysis of multiple conditions and their conjunctions 
under a coherent inferential framework, CORA intro-
duces the possibility to mine configurational data and to 
visualize results by means of logic diagrams. The epony-
mous software package CORA [27] brings all these proce-
dures together and makes them available for application 
by the scientific community.

Methods
In the first subsection, we briefly revisit the state of the 
art in configurational data analysis with QCA and CNA, 
with an emphasis on the type of causal structures these 
methods are able to identify. Furthermore, we recapitu-
late basic inference requirements for CCMs. In this con-
nection, we also discuss problems that currently arise 
when working with multiple effects. In the second sub-
section, we introduce the notion of the multi-output 
switching circuit and define all relevant concepts. For 
bridging the gap to configurational causal inference 
under the INUS Theory, we also translate these concepts 
into CCMs’ language of propositional logic. This can be 
done with ease as propositional logic and switching cir-
cuit theory (and also set theory) are equivalent branches 
of the same underlying Boolean algebra (see [28] for a 
concise overview). In the third subsection, we present 
logic diagrams as a useful device for visualizing complex 
configurational cause-effect relations. In the fourth sec-
tion, we briefly explain the data-mining feature of CORA. 
In the fifth and final section, the software package CORA 
is introduced.

Configurational State of the Art
US sociologists Kriss Drass and Charles Ragin have 
developed QCA in the mid-1980s [29, 30]. By import-
ing the so-called Quine-McCluskey algorithm (QMC) 
from electrical engineering into the social sciences, their 
major—yet initially unintended—accomplishment was 
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to find a functional procedure that could operationalize 
the central ideas of the INUS Theory. As it turned out, 
the second phase of the two-phase protocol of QMC also 
solved the so-called "Manchester-Factory-Hooters Prob-
lem", which had stood in the way of a broader acceptance 
of the INUS Theory until then [14]. In this way, QCA has 
not only provided a new lease of life to the INUS Theory, 
which by that time had been marginalized in the litera-
ture on the philosophy of causation [31], but it has also 
reverberated more generally throughout the area of social 
research methodology [32, 33].

Regardless of its early achievements in the social sci-
ences, QCA has always remained restricted to the simple 
analysis of exactly one effect, usually called "outcome" in 
configurational parlance [34]. Although some tentative 
attempts at loosening this restriction have been made 
[35], the possibility that data may contain evidence for 
the existence of more than one outcome, not to men-
tion the question of how such data could be adequately 
analyzed, has never been put on QCA’s methodological 
agenda. This stagnation in the development of the meth-
od’s analytical capabilities cannot be due to the fact that 
hardly any set of data features more than one possible 
outcome. In fact, many QCA studies have analyzed sev-
eral distinct yet clearly co-occurring outcomes as part of 
the same set of data (e.g., [36–40]).

CNA has attempted to relax the restriction to single 
outcomes from the beginning by adding an analytical 
step to those performed in QCA: for each outcome that 
the method has identified a possible solution for, called 
atomic solution formula (ASF), CNA seeks to conjunc-
tively combine these formulae into a so-called complex 
solution formula (CSF). CSFs can take on the form of a 
causal-chain structure or a common-cause structure. In 
the former, at least one effect features as a cause to at 
least one other effect. In the latter, at least one cause fea-
tures as a cause to at least two effects. Although its devel-
opers have emphasized that CNA is custom-built for 
analyzing causal structures with multiple outcomes [5], 
the method still operates within the same limits as QCA 
with regard to the complexity of effects. The option to 
analyze multiple outcomes clearly represents an advan-
tage over QCA, but CNA continues to treat outcomes in 
complete isolation from each other. It does not allow for 
the possibility that effects—not only causes—may inter-
act in complex ways.

Besides clarifying the general structure of relations both 
QCA and CNA can identify—complex causes, simple 
effects—it is important to revisit the basic requirements for 
configurational causal inference. Under the INUS Theory, 
any potential cause must be a Boolean difference-maker to 
its effect: a cause must, at the very least and ceteris paribus, 
be a consistent concomitant of its effect while the absence 

of that cause must be a consistent concomitant of the 
absence of its effect [6]. If a candidate for a cause occurs, 
ceteris paribus, in conjunction with the analyzed effect as 
well as the absence of that effect, it can never be a differ-
ence-maker to that effect. If it is no difference-maker, it is 
redundant. Any causal explanation of an effect must there-
fore be functionally minimal, in the sense that all redun-
dancies must have been eliminated beforehand. More 
specifically, every QCA solution and every ASF in CNA 
must be a Boolean expression representing a minimally 
necessary disjunction of minimally sufficient conjunc-
tions in order to be causally interpretable [41, 42]. Such a 
disjunction is then usually called a model. The process of 
Boolean optimization, which can be carried out in very dif-
ferent algorithmic ways [13], seeks to ensure the generation 
of such models.

After having summarized the structure of causal relations 
QCA and CNA can identify and the general foundations of 
configurational causal inference, we next need to sensitize 
readers to a relatively unknown problem in multi-outcome 
analyses with CNA: the so-called "causal-chain problem" 
[43]. Although it has received virtually no shrift so far in 
the literature, a closer look turns out to be a perfect didac-
tic stage setter for CORA. The gist of the problem is that 
no causal chain is ever strictly identifiable because every 
chain-type CSF can be transformed, by simple syntacti-
cal substitution, into an equivalent common-cause-type 
CSF that does not feature chain-type elements any longer. 
Put differently, it is impossible for CNA to ever unambigu-
ously identify a causal chain. While disadvantageous, the 
non-identifiability of causal chains per se does not seem to 
create any deeper problems. Yet, what seems to be a minor 
inferential downside at first turns out, at closer inspection, 
to create major first-order disturbances for the requirement 
of functional minimality.

As an example of this problem, consider the causal chain 
identified by CNA in [44] in Expression 1 (for simplicity but 
without loss of generality, all complications which are of no 
relevance for the ensuing argument have been dropped):

where the italicized letters l, t, s, x and m (and all itali-
cized letters in the remainder of this article) stand for 
propositional variables taking on specific values (the 
substantive meaning of l, t, s, x and m is irrelevant), “ ′  ” 
symbolizes the logical concept “not”, formally called 
negation, “ · ” stands for the logical concept “and”, formally 
called conjunction, “ + ” for the logical concept “or”, for-
mally called disjunction, and “ ⇔ ” for the logical concept 
“if, and only if,”, formally called equivalence. A literal is an 
occurrence of a propositional variable, either negated or 
not negated. As usual, in the remainder, we will drop the 

(1)l′ · t ′ + s ⇔ x · (x + t ⇔ m),
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and-operator, “ · ”, if no risk of confusion exists. In both 
QCA and CNA, a wide variety of other syntactical sym-
bols and conventions is often used. In the remainder of 
this article, we stick to the above nomenclature in rela-
tion with the use of CCMs because of its compactness.

As x features not only as an effect, but also as a cause of 
m in Expression 1, we can transform, by direct substitu-
tion of x in the ASF of m, the causal-chain CSF into the 
common-cause CSF shown in Expression 2:

Both CSFs are also presented graphically in Fig. 1, the 
causal-chain CSF in panel (a), the equivalent common-
cause CSF in panel (b). Black dots at the outgoing end of 
a line indicate negation, joining lines conjunction, and 
arrows (minimal) sufficiency. This substitution process, 
however, brings to light an obvious redundancy in the 
ASF of m in Expression 2, in consequence of which the 
CSF loses its causal interpretability. More precisely, lit-
eral t ′ is redundant, as proven in Expressions 3a to 3c: 

Instead of a formal demonstration of redundancy, one 
could also approach the problem from the perspective 
of configurational causal inference under the INUS The-
ory: in order to assign t ′ the status of a Boolean differ-
ence-maker in conjunction with l′ , m must not occur in 

(2)
(

l′t ′ + s ⇔ x
)(

l′t ′ + s + t ⇔ m
)

.

(3a)l
�
t
�
+ t =

(

t + l
�
)(

t + t
�
)

by commutativity and distribution,

(3b)=

(

t + l
�
)

(1) by complementarity,

(3c)= t + l
� by identity.

conjunction with l′t . However, if t alone is already suffi-
cient for m, by extension, so must be l′t . Put differently, 
if t alone is inferred to be a cause of m, it is impossible to 
ever infer at the same time that t ′ is a cause of m in con-
junction with l′.

To ensure redundancy-freeness, CNA therefore elimi-
nates t ′ from the ASF of m in the common-cause CSF in 
Expression  2, but does not further manipulate the cor-
responding chain CSF. Thus, the question arises whether 
such unwanted redundancies are an exclusive problem 
of common-cause CSFs. After all, it seems as if the prob-
lematic redundancy has been induced by the very pro-
cess of substitution. That, however, is a false impression. 
In fact, the redundancy has already been present, albeit 
less obviously so, in the chain CSF. To prove this, there 
are several routes. One is to demonstrate that the original 
chain CSF in Expression 1 and the redundancy-affected 
common-cause CSF in Expression 2 are, in fact, strictly 
identical. We provide such a proof of identity in Addi-
tional file 1: Appendix.

Over the following subsections, we argue that the indis-
criminate elimination of all redundancies, as currently 
demanded in CNA, does not provide an adequate solu-
tion for restoring causal interpretability once configura-
tional analyses move beyond the study of single effects. 
Instead, the current approach to configurational data 
analysis must be generalized to consistently absorb them. 
What we show is that such a generalization has already 
been proposed in concept more than 50 years ago in a 
field that has not had any place in CNA’s development, 
and whose contribution has never received due recogni-
tion in QCA despite QCA’s heavy reliance on QMC. The 
field we allude to is that of electrical engineering.

Fig. 1  A causal-chain CSF [Expression 1] and its equivalent common-cause CSF [Expression 2]
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In the remainder of this article, we will demonstrate 
that the relevance of electrical engineering extends far 
beyond the use of QMC in QCA. In fact, we have chosen 
the name Combinational Regularity Analysis (CORA) for 
our new method because that subfield of electrical engi-
neering from which we import most of our procedures 
is called "combinational circuit design". “Regularity”, on 
the other hand, indicates CORA’s firm anchoring in the 
group of regularity accounts of causation, to which also 
the INUS Theory belongs [9].

Multi‑Output Switching Circuits
Electrical engineering is centrally concerned with build-
ing switching circuits for operating digital devices. At the 
most basic level, these circuits consist of switches work-
ing in parallel, switches working in series, and invert-
ers that open a closed switch and close an open switch, 
respectively. Parallel switches are implemented through 
so-called OR-gates: it is sufficient to activate at least 
one of the switches to close the circuit. Serial switches, 
in contrast, are implemented through AND-gates: all 
switches need to be activated to close the circuit. For 
instance, every domestic appliance with an on-off-
switch and a safety switch to protect children from acci-
dents contains, in one form or another, a serial circuit 
component.

The mathematical framework for analyzing the conver-
sion of a given set of input signals to a desired set of out-
put signals in order to make a circuit perform according 
to a prespecified behavior is provided by the algebra of 
switching circuits, a branch of the same Boolean algebra 
of which also propositional logic and set theory are vari-
eties [45, 46]. As propositional logic and switching cir-
cuit theory (and set theory) are so intimately linked, it is 
straightforward to translate concepts from one language 
to the other(s): OR-gates correspond to propositional 
disjunctions (and to set-theoretic unions), AND-gates to 
propositional conjunctions (and to set-theoretic intersec-
tions), and inversions to propositional negations (and to 
set-theoretic complements).

In devising more complex electrical devices, it is fre-
quently necessary to simultaneously specify several 
switching functions that share the same inputs (because 
there is no risk of confusion, we will drop the addition 
“switching” in “switching function” from now on). Such 
a set of functions is called a system of functions. As 
more than one possible circuit layout usually fulfills the 
desired specification, the optimization of multi-output 
circuits is an important stage in the design process of 
a switching circuit [47, 48]. Encoders and decoders, for 
example, are generic applications.

One of the most crucial questions electrical engineers 
have to address in the process of designing a circuit 
concerns the optimization of its hardware infrastruc-
ture. More specifically, given two different circuits that 
produce the same outputs when provided with the 
same set of inputs, the circuit demanding less costly 
infrastructure is preferred. More formally and gener-
ally, this problem can be phrased as follows:

Central Problem of Multi-Output Opti‑
mization: Given a system of functions 
F = {f1(x), f2(x), . . . , fm(x)} and an objective func-
tion O defined on the set of F-equivalent systems 
SF , what is the set S∗

F
∈ SF for which O reaches an 

optimum?

Potentially, there are many ways in which O could be 
defined. It can relate to the number of gates, gate con-
tacts, or a multi-dimensional requirement of the form 
aP + bQ + cR , where P, Q, and R represent the number 
of gates of a certain type and a, b and c are weighting 
coefficients on unit price, reliability or other economi-
cal or technical criteria [49].

A very common specification of O is called sum irre-
dundancy, which, at least up to the late 1950s, also pro-
vided the objective function for QMC in optimizing 
switching circuits with single outputs. With sum irre-
dundancy set as the objective function, the purpose of 
the optimization algorithm, whether QMC or else, is to 
find all possibilities for a circuit infrastructure that does 
not contain any unnecessary AND-gates [46], that is, 
AND-gates that are redundant in ensuring that the out-
put of a circuit given a certain combination of inputs 
corresponds to the desired specification. A possible 
circuit layout that results from this process is corre-
spondingly called an "irredundant sum"; “sum” because 
AND-gates—the first level of  two-level circuits—can 
more generally be called Boolean products, while OR-
gates—the second level—can more generally be called 
Boolean sums. An AND-gate that could, but not neces-
sarily is, a component of an irredundant sum is called a 
prime implicant (PI).

In contrast to single-output optimization problems, sit-
uations involving two or more outputs require additional 
considerations. Figure  2 shows two possible approaches 
to the optimization of a system of two functions: under 
Approach 1, the two functions f1 and f2 of inputs x1 , x2 
and x3 can be optimized separately as two quasi-inde-
pendent systems, F1 and F2 , shown in panels (a) and (b), 
respectively. Alternatively, they can be optimized jointly 
as a 2-output system, F3 , as shown under Approach 2 in 
panel (c).
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It may be suspected that the two approaches pro-
duce the same result, simply through different routes. 
However, this conjecture does not hold. The reason is 
that Approach 1 and Approach 2 may not generate the 
same set of PIs. Most importantly, under Approach 2, 
the complexity of a circuit’s infrastructure may regu-
larly be reduced by explicitly searching for PIs that are 
shared between functions. These PIs may not be PIs in 
the separate optimization of each function. Moreover, 
PIs that do not become parts of any irredundant sum 
under Approach 1, called "useless" PIs, may become 
useful, that is, part of at least one irredundant sum, 
under Approach 2.

Consider the example of a system of functions 
f1(x, y, z) =

∑

(1, 3, 7) and f2(x, y, z) =
∑

(3, 6, 7) (as 
usual, functions are most compactly represented with 
decimal numbers; for instance, 1 is the decimal equiva-
lent of x′y′z , 3 of x′yz because in binary-number nota-
tion, 1 is expressed as 001, 3 as 011). Thus, at x′y′z , x′yz 
and xyz it is the case that f1 = 1 , and f1 = 0 otherwise; 
at x′yz , xyz′ and xyz it is the case that f2 = 1 , and f2 = 0 
otherwise. Any optimization algorithm with sum irre-
dundancy set as its objective function reveals the two 
irredundant sums f1 = x′z + yz and f2 = xy+ yz , 
respectively, under Approach 1. If the corresponding 
circuits were built back into one system, four AND-
gates and two OR-gates would thus be required. How-
ever, it is obvious in this case that f1 and f2 share yz as 
a PI. A circuit in which one of the corresponding AND-
gates could be dispensed with would thus represent a 
strictly preferable alternative.

A similar yet far less obvious example involves the 
2-output system of functions f1(x, y, z) =

∑

(1, 3, 7) 
and f2(x, y, z) =

∑

(2, 6, 7) . In this case, the irredun-
dant sums resulting under Approach 1 are f1 = x′z + yz 
and f2 = xy+ yz′ , respectively. If both circuits were 
built, again, four AND-gates and two OR-gates would 
be required. More difficult to see is that the alternative 
single-circuit system f1 = x′z + xyz and f2 = xyz + yz′ 
requires only three AND-gates because one of these 

gates could use x, y and z as joint inputs to f1 and f2 . In 
contrast to the previous example, however, xyz is no PI 
of either function optimized independently because it 
contains redundant elements. For example, with regard 
to f1 , Expressions 4a to 4c provide one way of proving x 
to be redundant in xyz: 

Respecting f2 , Expressions 5a to 5c provide one way of 
doing the same with regard to z in xyz: 

At this stage, obvious similarities between the occur-
rence of redundancies in configurational data analyses 
of multiple outcomes with existing CCMs and the sepa-
rate optimization of one system’s functions in electrical 
engineering already start to become noticeable. Modern 
CCMs search for minimally necessary disjunctions of 
minimally sufficient conjunctions in order to generate 
causally interpretable models. In switching circuit the-
ory, PIs are what minimally sufficient conjunctions are 
in configurational data analysis, minimally necessary dis-
junctions of minimally sufficient conjunctions are what 
irredundant sums are for electrical engineers. As propo-
sitional logic and switching circuit theory are merely two 
branches of the same underlying Boolean algebra, these 
concepts are completely equivalent.

In electrical engineering applications, where the pri-
mary objective of functional optimization is a reduc-
tion in circuit build costs, the inclusion of redundancies 

(4a)x′z + xyz = x′z + xyz + yzz by consensus,

(4b)= x
�
z + xyz + yz by idempotency,

(4c)= x
�
z + yz by absorption.

(5a)xyz + yz′ = xyz + yz′ + xyy by consensus,

(5b)= xyz + yz
�
+ xy by idempotency,

(5c)= xy + yz
� by absorption.

Fig. 2  Two different approaches to optimizing a system of two functions
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results in unnecessarily high build costs because a redun-
dant input to an AND-gate or an OR-gate does not make 
a difference to the required operation of the circuit. In 
configurational data analysis with QCA and CNA, redun-
dancies render models returned by these methods caus-
ally uninterpretable because a redundant element can 
never be a Boolean difference-maker [recall the causal-
chain problem above and the redundancy of literal t ′ in 
Expression 2].

Motivated by the possibility to reduce build costs 
through complete redundancy elimination, electrical 
engineers have already noticed about 60 years ago that 
it is inadequate to optimize each function separately 
when addressing problems that involve multiple outputs 
[46, 50–52]. In order to realize cost savings, all possible 
products of functions must be considered in addition 
to and simultaneously with each individual function. In 
consequence, the concept of the “prime implicant” has 
been generalized from the simple single-output to the 
multi-output framework. A PI resulting under such a 
framework is called a "multi-output prime implicant" 
(MOPI).

Definition 1  A multi-output prime implicant (MOPI) 
of a system of functions F = {f1(x), f2(x), . . . , fm(x)} of 
a set of inputs x = {x1, x2, . . . , xk} is a product of literals 
x
{·}

1;ix
{·}

2;i · · · x
{·}

h;i with h ≤ k and 1 ≤ ij ≤ k , which is either a 
PI of some fj ∈ F with j = 1, 2, . . . ,m or a PI of one of the 
product functions f1(x)f2(x) · · · fm(x).

On the basis of Definition 1, we can now also gener-
alize Approach 2 introduced above in Fig.  2. Diagram-
matically sketched in Fig. 3, any system of functions F can 
potentially have k inputs and m outputs. For m > 1 , PIs 
become MOPIs.

If, for multi-output optimization problems, redun-
dancies must be made room for, the crucial question 
then is how to ensure that the switching circuit is most 

efficient according to the objective function O , that the 
result of Boolean optimization in configurational data 
analysis remains causally interpretable, respectively. 
Above, we have seen that the requirement of absolute 
redundancy elimination can create problems because 
the generation of minimally sufficient conjunctions 
with respect to one outcome may no longer remain 
minimally sufficient beyond that single outcome. Elec-
trical engineers have also solved this problem by ele-
vating the concept of irredundancy from the level of 
simple functions to the level of systems of functions 
[51].

Definition 2  An F-equivalent system of functions 
S ∈ SF is called an irredundant system S∗ ∈ S

∗
F
 if it is 

impossible to cancel any literal in the writing of its 
MOPIs and any MOPI in the writing of its functions fj 
and still be able to ensure F-equivalence.

Definition 2 leaves it open whether a process of 
Boolean optimization results in only one irredundant 
system, two systems, a dozen or hundreds of systems. 
It is well possible—and usually the rule rather than the 
exception—that multiple irredundant systems repre-
sent potential candidates for a circuit’s infrastructure. 
Without any further criteria, none of these systems is 
preferable to another because they all comply with the 
objective function of sum irredundancy.

In configurational data analysis with QCA or CNA, 
the existence of multiple models that fit the data equally 
well has been referred to as "model ambiguity" [14, 53, 
54]. Under the multi-output approach of CORA, we 
will speak of "systems ambiguity" instead because each 
system comprises as many models as there are outputs, 
but these models are not alternatives to each other, 
whereas different systems are. To put this observation 
on a formal footing, we further introduce the concept 
of the solution to CORA in Definition 3.

Fig. 3  General k-input m-output system
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Definition 3  A solution S is the set of all irredundant 
systems S∗

F
.

At this stage, we have all necessary theoretical concepts 
in place. In the following subsection, we introduce a core 
feature of CORA that has also been imported from elec-
trical engineering: logic diagrams.

Logic Diagrams
Irrespective of how carefully a research design has been 
constructed and of how sophisticated the employed 
method is, if results cannot be communicated effectively, 
the impact of a study may be reduced considerably. Thus, 
graphics and visualization have played an increasing role 
in conveying the results of scientific work. So far, neither 
QCA nor CNA have offered consistent means of visuali-
zation. Depending on software, academic discipline, and 
personal preferences, researchers have used Venn dia-
grams, bivariate scatter plots, Tosmana maps and numer-
ous other means for communicating their findings [55].

In contrast to QCA and CNA, CORA offers an estab-
lished and standardized means for communicating its 
results graphically: logic diagrams. Initially, these dia-
grams have been developed by electrical engineers 

to visualize the architecture of switching circuits, but 
according to Judea Pearl, these diagrams also capture “in 
my opinion, the very essence of causation” [56]. Despite 
their apparent usefulness, however, only very few scien-
tific disciplines in which causal inference plays a central 
role have so far adopted logic diagrams [57, 58].

A common standard for the production of logic dia-
grams is provided by MIL-STD-806B, a document that 
establishes uniform engineering and technical require-
ments for military or commercial processes, procedures, 
practices, and methods [59]. For two-level circuits, 
three core elements of this standard suffice: one for the 
and-operator / conjunction, one for the or-operator / 
disjunction, and one for the not-operator / negation. If 
multivalent inputs and outputs, that is, factors having 
more than two levels, should be allowed as well, level 
indicators must be added. These four elements, which 
together make up the graphical repertoire of logic dia-
grams in CORA, are shown in Fig. 4.

For example, consider the case of the 2-out-
put system of functions f1(x, y, z) =

∑

(1, 3, 7) and 
f2(x, y, z) =

∑

(2, 6, 7) discussed above in relation to 
Expressions 4a to 4c and 5a to 5c. Under an approach of 
separate optimization, f1 = x′z + yz and f2 = xy+ yz′ 

Fig. 4  Basic logic symbols used in CORA

Fig. 5  Two examples of a logic diagram
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result as the two corresponding irredundant sums. 
Their respective circuits are visualized in the logic dia-
grams in panel (a) of Fig.  5. In contrast, the alternative 
single-circuit system of functions f1 = x′z + xyz and 
f2 = xyz + yz′ that results under joint optimization is 
visualized in panel (b).

Data Mining
Besides the possibility to analyze configurational multi-
output problems and to visualize results by means of 
logic diagrams, a third advantage of CORA over QCA 
and CNA is the option to mine data. The basic idea 
behind this approach is that any system that is found 
with a given number of inputs, must, ceteris paribus, also 
always be found in an analysis with only those inputs pre-
sent in the system. For example, if a solution includes a 
system that consists only of inputs x1, x3, x5 , in whatever 
constellation, following an optimization process involv-
ing the input set xa = {x1, x2, x3, x4, x5} , then this system 
should also be found following an optimization process 
involving the reduced input sets xb = {x1, x2, x3, x5} or 
xc = {x1, x3, x4, x5} or xd = {x1, x3, x5}.

Although the basic idea behind this approach to input 
selection has first been tested in the context of QCA [60, 
61], CORA is the first CCM to offer an in-built and sys-
tematic possibility to apply a tuple selection procedure. 
If, for example, a researcher has four potential inputs 
x = {x1, x2, x3, x4} available for inclusion, CORA can be 
asked to test whether the inclusion of x = {x1} alone or 
x = {x2} alone or x = {x3} alone or x = {x4} alone suffices 
to generate a solution that meets the researcher’s crite-
ria. If unsuccessful, CORA proceeds to tuples of two, i.e. 
x = {x1, x2} , x = {x1, x3} , and so on. From this perspec-
tive, CORA’s data-mining approach represents a type of 
Occam’s Razor, which says that explanations that involve 
fewer variables are, ceteris paribus, to be preferred over 
explanations that are more complex. Note that this is not 
tantamount to setting the objective function in Boolean 
optimization to what is called "sum minimality". A mini-
mal sum is that irredundant sum which has the smallest 
number of PIs, but not necessarily the smallest number 
of inputs.

Not least of all, there are additional practical consid-
erations that motivate the option of data mining. Often, 
researchers have more variables available than can rea-
sonably be included in a configurational analysis. For 
example, in one study on the effectiveness of health pro-
motion networks, the authors have identified no fewer 
than 42 potential determinants of effectiveness while 
having only 13 cases of health promotion networks [62].

Moreover, the more inputs researchers feed into the 
optimization process given a fixed number of cases, the 

higher their measure of fit statistics tend to become, but 
the higher the degree of model ambiguity also becomes. 
The relationship between the number of inputs and the 
number of models in a QCA or CNA solution has not 
yet been systematically studied, but existing data experi-
ments suggests that beyond four inputs, model ambigu-
ity starts to become the rule rather than the exception 
and tends to increase in severity with every additional 
input [53]. For instance, a recent meta analysis of 215 
peer-reviewed QCA articles from across 109 manage-
ment, political science and sociology journals found that 
one in three QCA studies was affected by (unreported) 
model ambiguity, one in ten severely so [14]. Absent 
other means of ranking multiple and equally well-fitting 
systems, the option of data mining provides researchers 
with a practical way to achieve a reduction in systems 
ambiguity.

Software
Methods and algorithms can be theoretically developed 
and also methodologically evaluated, but without appro-
priate software, they have no value to applied research-
ers. All procedures described above, plus additional ones, 
have thus been made available to the scientific commu-
nity in the open-source Python/C++ package CORA [27], 
a screenshot of whose interface is shown in Fig. 6.

The workflow in CORA is pre-determined to guide 
users through the analysis. It comprises nine steps, the 
last two of which are optional: (1) the initialization of the 
framework and (2) default settings, (3) the choice and (4) 
import of data, (5) the specification of the inputs and out-
puts, (6) the setting of search parameters and thresholds 
for data fit statistics, (7) the computation of the solution, 
(8) the initialization of CORA’s visualization module and 
finally (9) the drawing and export of logic diagrams. In 
CORA, logic diagrams are integrated via a stand-alone vis-
ualization module called LOGIGRAM [63]. Accordingly, 
the particular form of logic diagram generated in CORA 
is called a “logigram”. For reasons of space, we cannot 
introduce CORA in detail here. This will be done in a sep-
arate software tutorial.

Results
In this section, we provide four basic example applica-
tions of CORA. The first example uses a relatively sim-
ple set of artificial data, the second example provides a 
showcase analysis of data from a typical context of multi-
morbidity, the third example uses a more complex set 
of artificial data, and the fourth example is taken from 
a multi-outcome QCA study that analyses the impact of 
structural factors on the injury rate in 12 European coun-
tries [64].
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Example 1: Artificial data; simple structure
In this first example, we use artificial data on a simple 
multi-output problem, to which numerous basic appli-
cations could potentially fit. The main objective is not 
to generate any substantive insights, but to demonstrate 
the generic workings of CORA and to describe how the 
method’s output has to be interpreted.

To the three inputs x, y, and z, consider the following 
system of two functions f1 and f2 given in Expressions 6a 
to 6b: 

Under a certain combination of inputs, namely xyz 
(term 7), both outputs are present. Under all other com-
binations, either only one output is present or none. 
From an applied perspective, data of this structure may 
signal that the simultaneous presence of some com-
bination of the risk factors x, y and z is responsible for 
the simultaneous presence of medical conditions f1 and 
f2 . If these data were analyzed with QCA or CNA, each 
would find output f1 to be caused by x′z or yz and output 

(6a)fl
(

x, y, z
)

=
∑

m(1, 3, 7)

(6b)f2
(

x, y, z
)

=
∑

m(2, 6, 7)

f2 by xy or yz′ . They would not find any commonalities 
between these two outputs.

With CORA, an analysis of complex effects is straight-
forward. For the given data, CORA’s solution consists 
of two irredundant systems, as shown in Expression 7: 
S∗1 reveals the complex cause xyz of the complex effect 
f1f2 . Once this complex effect is explained, individual 
causes of f1 alone, f2 alone, respectively, remain. Under 
S∗1 , CORA identifies x′z for f1 alone, yz′ for f2 alone, 
respectively. Alternatively, there may not be any com-
mon cause, but each effect is brought about by distinct 
causes. S∗2 reveals this alternative possibility, which is 
identical with the result QCA and CNA generate.

This simple example illustrates in a direct way why 
CORA’s inferential capabilities extend beyond those of 
QCA and CNA. If there are indeed no complex effects 
to be explained, CORA will detect this possibility in the 
same way as QCA or CNA will. However, if common 

(7)S =

⎧

⎪

⎨

⎪

⎩

S∗
1

=

�

xyz + x�z ⇔ f
1

xyz + yz� ⇔ f
2

S∗
2

=

�

yz + x�z ⇔ f
1

xy + yz� ⇔ f
2

Fig. 6  Interface of Software CORA 
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causes to complex effects exist, CORA will be the only 
method that can reveal this possibility because it oper-
ates under a system-level conception of irredundancy, 
whereas both QCA and CNA are restricted to an output-
level conception of irredundancy.

Example 2: Applied example on multi‑morbidity
In this example, we illustrate the potential of CORA for 
problems related to the study of multi-morbidity. Table 1 
shows data on eleven patient groups p1 to p11 . The first 
four columns contain information on four socio-demo-
graphic and economic characteristics, namely gender, 
income (level), family history (of depression or diabetes) 
and marital status. The last two columns show data on 
two health conditions, namely diabetes and depression.

Although the data in Table  1 have been purpose-
fully chosen for demonstration purposes, several stud-
ies point towards strong relationships within such data. 
For instance, it has been argued that “depression comor-
bid with other chronic diseases produced significantly 
greater decrements in health than from one or more 
chronic diseases, and that this additive effect is substan-
tially amplified in the case of depression comorbid with 
diabetes” [65]. Other studies have shown striking associa-
tions between socio-economic and socio-demographic 
factors, and chronic diseases such as depression and dia-
betes [66, 67]. Last, but not least, a significant body of 
epidemiologic studies emphasizes that a positive family 
history increases the risk among first-degree relatives for 
diabetes [68].

CORA’s solution to these data is given in Expression 8. 
It says that a co-morbid condition of diabetes and depres-
sion has at least two (complex) causes, the first of which 
contains low income and the status of being married, and 

the second of which contains a family history of diabetes 
or depression. For depression without diabetes, the sta-
tus of being married is by itself part of the explanation. 
Again, we do not seek to interpret these findings sub-
stantively. Our primary goal here is only to explain how 
CORA’s findings are to be read.

In this connection, it is important to add two further 
notes. First, there is no empirical evidence for the causal 
relevance of gender for diabetes or depression, or a co-
morbid condition. More generally, it must be emphasized 
that only because some input is not contained within 
CORA’s solution, this does not mean that the respec-
tive input is generally causally irrelevant to the analyzed 
output(s). It just means that either the input is indeed 
irrelevant or the data do not contain sufficient informa-
tion to reveal the input as causally relevant when it is 
truly relevant.

Second, the data in Table  1 are such that every dia-
betic patient has also depression, but the opposite does 
not hold. There are patients who have depression but 
are not diagnosed with diabetes. This association of the 
two outputs is correctly reflected only through CORA’s 
generalized process of multi-output optimization. If the 
analyst had used QCA or CNA, the two outputs would 
have had only one cause in common, namely a family his-
tory of depression or diabetes. However, since the set of 
patient groups with diabetes is a proper subset of the set 
of patient groups with depression, every complex cause 
of diabetes must also be a part of a potential causal expla-
nation of depression. Under the restricted notion of irre-
dundancy in QCA or CNA, input m could never appear 

(8)S =

{

i′m+ f ⇔ a
i′m+ f +m ⇔ e

Table 1  Socio-demographic factors of eleven patient groups for two health conditions: diabetes and depressiona

a  g = gender (1: male / 0: female); i = income (1: high / 0: low); f = family history (1: yes / 0: no); m = marital status (1: married / 0: single); a = diabetes (1: yes / 0: no); e 
= depression (1: yes / 0: no)

Patient Group Inputs Outputs

g i f m a e

p1 1 0 1 1 1 1

p2 1 0 1 0 1 1

p3 0 1 0 0 0 0

p4 0 0 1 1 1 1

p5 1 1 1 0 1 1

p6 1 1 1 1 1 1

p7 1 0 0 1 0 1

p8 0 1 1 0 1 1

p9 0 0 0 0 1 1

p10 0 0 0 1 0 1

p11 0 1 0 1 0 1
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alongside i′ in an explanation of depression because 
under the Boolean theorem of absorption i′m+m = m.

Example 3: Artificial data; complex structure
In this third example, we increase the complexity of the 
data by adding one more input as well as another output. 
To the four inputs a, b, c and d, consider the following 
system of three functions f1 , f2 and f3 given in Expres-
sions 9a to 9c: 

We have aligned all common input combinations visu-
ally so that it becomes easier to see which outputs have 
which input combinations in common. Outputs f1 and f2 
co-occur for input combinations 2, 3, 5, 7, 10, 11 and 15; 
outputs f2 and f3 co-occur for input combinations 6, 7, 
14 and 15; outputs f1 and f3 co-occur for input combina-
tions 7 to 9, 13 and 15; and for input combinations 7 and 
15, all three outputs co-occur. For these data, CORA’s 
solution consists of five irredundant systems, as shown in 
Expression 10:

With just one more input and one more output than in 
the previous example, we see that the complexity of the 
solution may increase markedly. Instead of two systems 
as in Example 1, we now have five alternative systems 
explaining the data equally well. Each of these systems 
reveals a distinct possibility for a complex causal relation 
between the four inputs and the three outputs.
S∗1 is, functionally speaking, the most complex system. 

It reveals several common causes of several complex 
effects. First, it shows that outputs f1 and f2 have three 

(9a)fl(a, b, c, d) =
∑

m(2, 3, 5, , 7, 8, 9, 10, 11, 13, , 15)

(9b)f
2(a, b, c, d) =

∑

m(2, 3, 5, 6, 7, , 10, 11, , 14, 15)

(9c)f
3(a, b, c, d) =

∑

m( , 6, 7, 8, 9, , 13, 14, 15)

(10)

S =






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
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










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



S∗1 =







ab′c′ + a′bd + bcd + ac′d + b′c ⇔ f1
a′bd + bcd + bc + b′c ⇔ f2
ab′c′ + bcd + ac′d + bc ⇔ f3

S∗2 =







ab′c′ + a′bd + ac′d + b′c + ad ⇔ f1
a′bd + bc + b′c ⇔ f2
ab′c′ + ac′d + bc ⇔ f3

S∗3 =







ab′c′ + a′bd + abd + b′c ⇔ f1
a′bd + bc + b′c ⇔ f2
ab′c′ + abd + bc ⇔ f3

S∗4 =







ab′c′ + a′bd + ac′d + b′c + bd ⇔ f1
a′bd + bc + b′c ⇔ f2
ab′c′ + ac′d + bc ⇔ f3

S∗5 =







ab′c′ + a′bd + ac′d + cd + b′c ⇔ f1
a′bd + bc + cd + b′c ⇔ f2
ab′c′ + ac′d + bc ⇔ f3

complex causes in common, namely a′bd , bcd and b′c . 
Second, it shows that outputs f1 and f3 also have three 
complex causes in common, namely ab′c′ , bcd and a′cd . 
In contrast, outputs f2 and f3 co-occur as a complex 
effect only of bc. Lastly, all three outputs co-occur as a 
complex effect of bcd. As no other causes remain, no 
effect occurs in isolation. In applied terms, S∗1 thus sug-
gests a purely co-morbid explanation of diseases f1 , f2 
and f3.

A purely co-morbid explanation is also offered by S∗3 . 
Unlike S∗1 , however, S∗3 does not suggest any common 
cause of all three outputs. The extent the data can be 
explained through co-morbid causal relations is therefore 
lower than under S∗1 . At the same time, no effect can be 
explained in isolation from another effect. Only systems 
S∗2 and S∗4 include causes of isolated effects, in the former 
for f1 (ad) and in the latter also for f1 (bd). In fact, this is 
the only difference between these two systems. The two 
systems S∗1 and S∗3 are visualized in Fig. 7, the former in 
panel (a) and the latter in panel (b). Note that logigrams 
in CORA (currently only) allow the use of upper-case 
notation for inputs.

Example 4: Empirical data on injury rates in West European 
countries
The aim of the study in [64] is to analyze how socioeco-
nomic factors, such as per capita income, unemployment 
and alcohol consumption (which have been found to 
have an impact on traffic fatalities and suicides in other 
studies) as well as culture-oriented factors such as reli-
gion and education are related to injury mortality in 12 
West European countries. Traffic injuries were chosen as 
the indicator for environment-related injury and suicides 
as that for its socially related counterpart. Table 2 shows 
the data for the two outputs and the five inputs of this 
analysis.

Table  3 presents the joint truth table generated from 
the data in Table 2. Inclusion / consistency scores are also 
provided in this table. Using QCA, two separate optimi-
zation runs are necessary, one for output mvta and one 
for output ssii.

The PI chart in Table 4 shows the list of PIs per output. 
It suggests that the two outputs have nothing in common 
because there is no shared PI. The one essential PI nec-
essary to cover all instances of mvta completely is roca, 
while mys has the same function with respect to ssii.

This analysis with QCA suggests that the death rate 
for motor vehicle traffic accidents and the death rate for 
suicides and self-inflicted injuries have completely inde-
pendent causes. There seems to be evidence of causal rel-
evance only for the percentage of Roman Catholics with 
regard to motor vehicle accidents and only for the years 
of schooling with regard to suicides and self-inflicted 



Page 13 of 17Thiem et al. BMC Medical Research Methodology          (2022) 22:333 	

Fig. 7  Logigrams of CORA’s solution for multi-output data in Expressions 9a to 9c

Table 2  Data on injury rates in 12 West European countries in 1990; source: [64]a

a  gnp = Gross national product per capita (1: above limit / 0: below limit); mys = Mean years of schooling (1: above limit / 0: below limit); apac = Annual pure alcohol 
consumption (1: above limit / 0: below limit); unem = Unemployment rate (1: above limit / 0: below limit); roca = Roman Catholics percentage (1: above limit / 0: 
below limit); mvta = Age-standardized death rate for motor vehicle traffic accidents (1: above limit / 0: below limit); ssii = Age standardized death rate for suicides and 
self-inflicted injuries (1: above limit / 0: below limit)

Country Inputs Outputs

gnp mys apac unem roca mvta ssii

Belgium 1 1 1 1 1 1 1

Denmark 1 1 1 1 0 0 1

Finland 1 1 0 0 0 0 1

France 1 1 1 1 1 1 1

Ireland 0 0 0 1 1 1 0

Italy 1 0 1 1 1 1 0

Netherlands 1 1 0 0 0 0 0

Norway 1 1 0 0 0 0 1

Portugal 0 0 1 0 1 1 0

Spain 0 0 1 1 1 1 0

Sweden 1 1 0 0 0 0 1

UK 1 1 0 0 0 0 0

Table 3  The truth table generated from data in Table 2

gnp mys apac unem roca n Inc(mvta) Inc(ssii) f(mvta) f(ssii)

0 0 0 1 1 1 1.0 0.0 1 0

0 0 1 0 1 1 1.0 0.0 1 0

0 0 1 1 1 1 1.0 0.0 1 0

1 0 1 1 1 1 1.0 0.0 1 0

1 1 0 0 0 5 0.0 0.6 0 1

1 1 1 1 0 1 0.0 1.0 0 1

1 1 1 1 1 2 1.0 1.0 1 1
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injuries. We demonstrate these conclusions to be 
unsatisfactory.

Table  5 shows the MOPI chart for the truth table in 
Table  3. MOPI charts can be generated via different 
algorithmic routes in CORA. Currently, users have two 
options, an  on-dc and an on-off algorithm [69–72]. 
On-off algorithms enjoy significant computational 
advantages when the size of the dc-set is large rela-
tive to the size of the off-set, whereas on-dc algorithms 
enjoy significant computational advantages when the 
size of the off-set is large relative to the size of the dc-
set, given a fixed size of the on-set. The possibility to 
choose between distinct yet equivalent algorithms also 
demonstrates that, in contrast to QCA, where research-
ers regularly worry about the use of logical remainders, 
solutions types and contradictory simplifying assump-
tions [73, 74], CORA is completely unaffected by such 
problems. Irrespective of the algorithmic choice, the 
objective function for deriving the complete set of 

irredundant systems that faithfully reflect the empirical 
evidence is hardwired into CORA.

Internally, CORA then applies an enhanced version of 
Petrick’s method to the PI chart for identifying all irre-
dundant systems [75]. In the present replication, this 
process results in four such systems, which are shown 
in Table  6. In Expression 11, these systems are trans-
lated back using the original variable names. System 
S∗1 mirrors the result of separate optimization with no 

Table 4  The PI chart resulting from separate optimization of the truth table in Table 3

mvta ssii

3 5 7 23 31 24 30 31

apac′ · unem x p1

apac · unem′ x p2

roca x x x x x p3

mys′ x x x x p4

gnp′ x x x p5

gnp · apac′ x p6

gnp · unem′ x p7

apac′ · unem′ x p8

mys x x x p9

roca′ x x p10

Table 5  The PI chart resulting from multi-output optimization of the truth table in Table 3

mvta ssii

3 5 7 23 31 24 30 31

apac′ · unem x p1

apac · unem′ x p2

roca x x x x x p3

mys′ x x x x p4

gnp′ x x x p5

mys · roca x x p6

gnp · apac′ x p7

gnp · unem′ x p8

apac′ · unem′ x p9

mys x x x p10

roca′ x x p11

Table 6  Multi-output solution to MOPI chart in Table 5

Systems S∗
1

S∗
2

S∗
3

S∗
4

Output

mvta p3 p3p6 p4p6 p4p6

ssii p10 p6p11 p6p10 p6p11
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shared causes. However, three other possibilities exist, 
all of which share the MOPI mys · roca ( p6 in Table 5).

Comparing the PI chart derived from separate optimi-
zation in Table  4 with the PI chart derived from multi-
output optimization in Table  5, three observations can 
be made. First, while simple single-output optimization 
suggests that the two analyzed outputs have nothing in 
common, multi-output optimization reveals a shared 
complex cause that feeds into three alternative explana-
tions for the analyzed data. Second, multi-output opti-
mization leads to the identification of a (multi-output) PI 
that is not part of any PI chart under separate optimiza-
tion. Third, three PIs (p4, p10 and p11 ) are present in the 
PI charts of both separate and joint optimization. How-
ever, under separate optimization these PIs are useless 
because they are dominated by essential PIs, whereas the 
same PIs become useful under multi-output optimization 
and thus part of CORA’s solution.

Conclusions
Modern CCMs, such as QCA and CNA, have started to 
make inroads into medical and health research over the 
last decade. At the same time, these methods remain 
unable to process data on multi-morbidity because such 
data require the capability to analyze complex effects. In 
this article, we have presented CORA, a new member of 
the family of CCMs with which multiple conditions and 
their complex conjunctions can be analyzed.

CORA takes its inspiration from electrical engineer-
ing, and switching circuit analysis in particular. Leverag-
ing this source of inspiration has allowed redundancies, 
which have prevented a causal interpretation so far 
when analyzing multiple effects, to be straightforwardly 
absorbed into CORA’s more general framework. To dem-
onstrate CORA, we have provided several example appli-
cations, both with simulated and empirical data, in which 
CORA has been shown to be able to simultaneously 
explain individual conditions as well as complex conjunc-
tions of conditions. Through CORA, problems of multi-
morbidity in particular, and configurational analyses of 
complex effects in general, thus come into the analytical 
reach of CCMs.

(11)S =
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
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
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S∗1 =

�

roca ⇔ mvta
mys ⇔ ssii

S∗2 =

�

mys · roca+ roca ⇔ mvta
mys · roca+ roca′ ⇔ ssii

S∗3 =

�

mys · roca+mys′ ⇔ mvta
mys · roca+mys ⇔ ssii

S∗4 =

�

mys · roca+mys′ ⇔ mvta
mys · roca+ roca′ ⇔ ssii

Despite the significant advances offered by CORA, 
important avenues for further refinements in configu-
rational data analysis remain to be explored in future 
work. For example, researchers currently still have to be 
able to determine in advance which of the variables in 
their data belong to the input and which to the output 
side. A fully naive yet completely open approach to con-
figurational data analysis would let the method deter-
mine the assignment. With respect to the more general 
structure of configurational cause-effect relations, 
sequential circuit analysis offers yet another possibility 
to expand the limits of configurational data analysis in 
significant ways. Incorporating a dimension of sequence 
would allow analysts to specify the exact order of occur-
rence of inputs. A third research avenue is provided 
by heuristic procedures for contexts of (very) big data. 
These procedures seek to strike a balance between the 
desire to optimize Boolean functions and the require-
ment to process high-dimensional data. Lastly, switch-
ing circuit theory distinguishes between the analysis 
of deterministic circuits and that of probabilistic cir-
cuits. So far, CCMs have exclusively moved within the 
realms of the former. A shift towards probabilistic cir-
cuits, however, would call for an accompanying change 
in the theory of causation which CCMs currently work 
under. The implications of such a move would have to 
be examined thoroughly.

As varied as the possibilities for advancement are, as 
large are the challenges and questions to be addressed. 
Nonetheless, we believe that CORA has demonstrated 
unequivocally that configurational analysts need not 
reinvent the wheel. With the famous Quine-McCluskey 
algorithm, electrical engineering and logic design have 
developed already in the 1950s the procedures that con-
tinue to represent the technical state-of-the-art of QCA. 
Since the 1950s, however, electrical engineering and 
logic design have progressed considerably. These fields 
thus still hold numerous tools on offer that could help 
researchers to improve their understanding of complex 
medical and health conditions.
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