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Abstract 

Background  Numerous clinical trials have been initiated to find effective treatments for COVID-19. These trials have 
often been initiated in regions where the pandemic has already peaked. Consequently, achieving full enrollment 
in a single trial might require additional COVID-19 surges in the same location over several years. This has inspired 
us to pool individual patient data (IPD) from ongoing, paused, prematurely-terminated, or completed randomized 
controlled trials (RCTs) in real-time, to find an effective treatment as quickly as possible in light of the pandemic crisis. 
However, pooling across trials introduces enormous uncertainties in study design (e.g., the number of RCTs and 
sample sizes might be unknown in advance). We sought to develop a versatile treatment efficacy assessment model 
that accounts for these uncertainties while allowing for continuous monitoring throughout the study using Bayesian 
monitoring techniques.

Methods  We provide a detailed look at the challenges and solutions for model development, describing the process 
that used extensive simulations to enable us to finalize the analysis plan. This includes establishing prior distribution 
assumptions, assessing and improving model convergence under different study composition scenarios, and assess-
ing whether we can extend the model to accommodate multi-site RCTs and evaluate heterogeneous treatment 
effects. In addition, we recognized that we would need to assess our model for goodness-of-fit, so we explored an 
approach that used posterior predictive checking. Lastly, given the urgency of the research in the context of evolving 
pandemic, we were committed to frequent monitoring of the data to assess efficacy, and we set Bayesian monitoring 
rules calibrated for type 1 error rate and power.

Results  The primary outcome is an 11-point ordinal scale. We present the operating characteristics of the proposed 
cumulative proportional odds model for estimating treatment effectiveness. The model can estimate the treatment’s 
effect under enormous uncertainties in study design. We investigate to what degree the proportional odds assump-
tion has to be violated to render the model inaccurate. We demonstrate the flexibility of a Bayesian monitoring 
approach by performing frequent interim analyses without increasing the probability of erroneous conclusions.

Conclusion  This paper describes a translatable framework using simulation to support the design of prospective IPD 
meta-analyses.
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Background
With its rapid spread, mutation, and unpredictable local 
outbreaks, COVID-19 continues to pose a global threat 
[1, 2]. Since early 2020, COVID-19 has led to over six 
hundred million cases and over six million deaths [3]. To 
date, there are still only a few reliable treatments, espe-
cially for the new viral variants, for which some existing 
medications are less or not effective at all [4]. To allevi-
ate this emergency, researchers have initiated numerous 
clinical trials to find treatments. To date, over 8,000 trials 
have been launched worldwide for COVID-19, includ-
ing over 4,000 interventional studies and randomized 
controlled trials (RCTs) [5]. As the pandemic surged 
and waned in various parts of the world, these trials 
were often launched in local settings after the pandemic 
had peaked in those regions [6]. As a consequence of a 
decline in new COVID-19 cases, some RCTs were termi-
nated early [7–10], and with a lack of sufficient numbers 
of patients, many reported inconclusive findings. Other 
trials opted to pause and wait for the second and third 
COVID-19 surge in their regions, thus delaying conclu-
sive findings [11]. Without a steady enrollment of trial 
patients, determining the efficacy and safety of treat-
ments could require additional COVID-19 surges at the 
same location over several years [6].

Pooling data from ongoing and terminated RCTs holds 
promise for identifying effective treatments quickly [6, 
12]. While conventional meta-analyses pool data from 
completed RCTs [13, 14], another productive approach 
involves synthesizing evidence from a collection of both 
ongoing and completed RCTs [15]. Researchers at New 
York University (NYU) initiated the COntinuous Moni-
toring of Pooled International Trials of ConvaLEscent 
Plasma for COVID-19 Hospitalized Patients (COM-
PILE) project [16]. The COMPILE study aimed to pool 
individual patient data (IPD) from ongoing, paused, 
prematurely-terminated, or completed RCTs assessing 
the efficacy of COVID-19 convalescent plasma (CCP) in 
hospitalized patients not on mechanical ventilation at 
the time of randomization. The goal was to engage RCTs 
from around the world and to monitor the continuously 
accumulating data for compelling evidence of CCP’s 
effect in order to obtain answers as soon as possible [17]. 
Unlike more traditional meta-analyses [18], COMPILE 
was designed in the presence of considerable uncertain-
ties. The number of RCTs, number of sites within each 
RCT, number of RCTs within different control condi-
tions, number of patients, the COMPILE study duration, 
frequency, and timing of interim looks were all unknown. 
These uncertainties made it difficult to use off-the-shelf 
statistical methods for analysis and monitoring.

Goldfeld et al. [19] proposed a statistical analysis and 
interim monitoring plan specifically for the COMPILE 

study, which included the analytic models and the rules 
for stopping the study. The actual data analysis of the 
COMPILE study was published in [17]. In addition, we 
used patient data from the COMPILE study to study 
the heterogeneous treatment effects of CCP in [20]. 
The current paper describes the development process 
of the analytic models and stopping rules presented in 
[19] and applied in the COMPILE study. In doing so, we 
provide a general, translatable framework for develop-
ing analytic models and monitoring plans for prospec-
tive IPD meta-analyses under uncertainty, which, we 
believe might become a common practice at least in the 
face of new pandemics.

Our framework is based on a Bayesian clinical trial 
paradigm [21, 22]. We use Bayesian hierarchical mod-
eling [23] that explicitly accounts for patient heteroge-
neity and allows for “borrowing of information” across 
the trials [24]. This approach enables the implemen-
tation of complex statistical models with a variety of 
hierarchical assumptions (e.g., the number of RCTs, 
sites, and control conditions) and the reduction of 
the uncertainty of parameter estimates. Additionally, 
properly designed Bayesian monitoring allows con-
tinuous monitoring without the penalties for multiple 
interim looks and alpha-spending associated with the 
frequentist monitoring approach, making it an attrac-
tive and efficient strategy [24–27]. The proposed 
framework is not limited to the COMPILE study but 
is a translatable tool to guide the design of prospective 
IPD meta-analyses.

We organize the paper as follows. In  the Meth-
ods section, we discuss methods of building a Bayes-
ian model for quantifying a treatment’s efficacy. We 
describe how we extended the Bayesian model to 
accommodate multi-site RCTs and evaluate heteroge-
neous treatment effects. We outline criteria for select-
ing prior distribution assumptions and solutions to 
improve model stability. We describe the proposed 
goodness-of-fit methodology using posterior predic-
tive checking. We introduce the Bayesian monitor-
ing rules calibrated for type 1 error rate and power. In 
the Results section, we present our process based on 
extensive simulations that enabled us to finalize our 
analysis plan, with an eye towards understanding the 
impact of the prior distribution assumptions on both 
posterior estimations and model stability. In addi-
tion, we show the simulation results of the proposed 
goodness-of-fit methodology and provide details about 
how we set the stopping rules using type 1 error rate 
and power. In the Discussion and conclusion section, 
we conclude with a brief discussion and offer a glimpse 
into the future applications of our work.
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Methods
The first step in developing an analytic plan is to deter-
mine the functional form of the model, which is largely 
determined by the study’s primary outcome (e.g., a 
binary outcome suggests a logistic regression model), but 
also depends on the nature of the intervention as well as 
the hierarchical structure suggested by the study design. 
We started with the simplest assumptions that there 
would be K RCTs in the prospective meta-analysis and 
each RCT would be conducted in a single site. We also 
assumed that each of the K RCTs would have nk subjects, 
k = 1, . . . ,K .

General model for estimating across‑study treatment 
effect
Conceptualizing this project, we started with the most 
general model that would allow us to estimate RCT-
specific treatment effects along with RCT-specific ran-
dom effects or intercepts while adjusting for patient-level 
covariates in case there were substantial differences 
across RCTs. In this model, Yki denotes the outcome for 
the ith patient from the kth RCT. Zki indicates the treat-
ment assignment for the ith subject in the kth RCT; 
Zki = 1 if the patient is randomized to the experimental 
treatment arm, Zki = 0 if the patient is randomized to the 
control treatment arm. Xki denotes a vector of covariates 
of length p. The expected value of the outcome is related 
to the linear combination of covariates and treatment 
assignment via a known link function g(.):

where τk represents the RCT-specific intercept, β is a 
vector of coefficients for the p covariates, and θk is the 
main effect of experimental treatment for the kth RCT. 
To avoid potential estimation problems related to small 
final and/or interim sample sizes in individual partici-
pating RCTs, the covariate effects β were not modelled 
as RCT-specific, unlike the treatment effect θk and the 
study-specific intercept τk . We were agnostic at this point 
as to whether the prior distributions would be Normal, 
Cauchy, or a tstudent distribution with 3 degrees of free-
dom, which is a compromise between the Normal and 
Cauchy distributions. The variance assumptions for the 
prior distributions were also an open-ended target. The 
prior distributions for all parameters and hyperparam-
eters were determined in later models.

(1)

g(E(Yki)) =τk + βXki + θkZki

τk ∼Normal (µ = 0, σ = στ )

β ∼Normal
(

µ = 0,� = σ 2
β Ip×p

)

θk ∼Normal (µ = �, σ = σθ )

� ∼Normal (µ = 0, σ = σ�),

A key feature of the model is that the prior dis-
tribution assumes each RCT-specific “experi-
mental treatment effect” θk is centered around an 
overall effect of the experimental treatment � . � 
represents the treatment-control effect contrast: 
E(g(E(Yki|Xki,Zki = 1))− g(E(Yki|Xki,Zki = 0)))  across 
all RCTs. This treatment-control effect contrast is the 
parameter of interest in clinical trials. In the case that the 
outcome is binary, for example, and g(.) is a logit link func-
tion, � would correspond to the experimental arm’s treat-
ment effect on the outcome as measured by log odds ratio 
(log OR).

General model for comparing single treatment 
against multiple control types
It quickly became apparent that our general approach 
would be inadequate, as we learned that the individual 
trials were likely to have varying control conditions. To 
accommodate this, we adjusted the model so that the 
experimental treatment represented the reference category. 
So, Aki = 0 if the patient is randomized to the experimen-
tal arm, Aki = 1 otherwise and we assumed there would be 
C control types in total ( C > 1).

The updated model was specified as follows:

The parameters τk and β mirror the same param-
eters in model (1). δkc is the main effect of control 
treatment for the kth RCT (i.e., RCT-specific “con-
trol effect”). Since the RCTs have the same experi-
mental treatment but have different control types, 
c denotes the control type for the kth RCT, where 
c ∈ (1, . . . ,C) . The prior distribution assumes each 
RCT-specific “control effect” δkc is centered closely 
around its pooled “control effect” δc . We have intro-
duced a hyperparameter η that represents the study 
variation around the control-type mean; this hyper-
parameter has its own prior distribution, and we 
need to provide an assumed standard deviation ση . 
In turn, the δc ’s are assumed to center around an 
overall effect of control treatment −� . We use −� 
to represent the control-treatment effect contrast: 
E(g(E(Yki|Xki,Aki = 1))− g(E(Yki|Xki,Aki = 0)))  across  

(2)

g(E(Yki)) =τk + βXki + δkcAki

τk ∼Normal (µ = 0, σ = στ )

β ∼Normal µ = 0,� = σ 2
β Ip×p

δkc ∼Normal (µ = δc, σ = η), c ∈ (1, . . . ,C)

η ∼Cauchy µ = 0, σ = ση , η ≥ 0

δc ∼Normal(µ = −�, σ = η0)

η0 ∼Cauchy µ = 0, σ = ση0 , η0 ≥ 0

−� ∼Normal (µ = 0, σ = σ�).
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all RCTs, and � represents the treatment-control effect con-
trast: E(g(E(Yki|Xki,Aki = 0))− g(E(Yki|Xki,Aki = 1)))   
across all RCTs. � is the parameter of interest in clini-
cal trials. The variation around −� introduces a second 
hyperparameter η0 ; we would need to provide an assumed 
standard deviation ση0 . At this point, we set prior  
distributions for η and η0 as they are of paramount 
importance, while στ , σβ , ση and ση0 have point mass 
prior distribution as they are nuisance parameters. In 
evaluating evidence for efficacy, a point-mass prior of σ� 
is often used [28, 29].

Basic model for ordinal outcome
The COMPILE model was ultimately developed to analyze 
an ordinal outcome measure (COVID-19 clinical status) 
proposed by the World Health Organization (WHO) and 
widely adopted by RCTs around the world to evaluate ther-
apies for COVID-19. This clinical status scale helps RCTs 
measure COVID-19 severity, with values ranging from 0 
= uninfected to 10 = dead (see Additional file  1); larger 
values on this scale indicate more severe disease [30]. We 
determined that a cumulative proportional odds (co) model 
would be most appropriate for the ordinal outcome 
measure [31].

Our goal was to develop a co model that reflected the 
structure of the general model (2) that we were interested 
in. As before, we assumed there would be K RCTs, each of 
which would be using one of C possible control conditions. 
All RCTs have the same experimental treatment: CCP. 
The ordinal outcome for the ith patient from the kth RCT 
is denoted by Yki = y , y = 0, . . . , 10 , and the cumulative 
probability is pkiy = P

(

Yki ≥ y
)

 . As before, Aki = 0 if the 
patient is randomized to CCP arm, Aki = 1 otherwise.

The basic version of our co model was specified as 
follows:

The co model differs from the general model (2) in sev-
eral respects. The τyk ’s represent the RCT-specific inter-
cepts, for y = 1, . . . , 10 . For any specific RCT k, the τyk ’s 
satisfy the monotonicity requirements for the intercepts 
of the co model. Since CCP treatment is the reference, 
the log-odds defined from the cumulative probabilities of 
the CCP arm are estimated by  the τyk’s. β is a vector of 

(3)

logit
(

P
(

Yki ≥ y
))

=τyk + βXki + δkcAki

τyk ∼Normal (µ = 0, σ = στ )

β ∼Normal
(

µ = 0,� = σ 2
β Ip×p

)

δkc ∼Normal (µ = δc, σ = η), c ∈ (1, . . . ,C)

η ∼Cauchy
(

µ = 0, σ = ση
)

δc ∼Normal(µ = −�co, σ = η0)

η0 ∼Cauchy
(

µ = 0, σ = ση0
)

−�co ∼Normal
(

µ = 0, σ = σ�co

)

.

coefficients for the p covariates. δkc is the kth RCT-specific 
“control effect”, measured as a log OR . Because the RCTs 
have the same experimental treatment arm of CCP but 
have different control treatment arms, c denotes the con-
trol treatment type: standard of care (SOC) alone with-
out any transfusion, c = 1 ; SOC plus non-convalescent 
plasma, c = 2 ; SOC plus saline solution, c = 3 . The prior 
distribution assumes each RCT-specific “control effect” 
δkc is centered closely around a pooled “control effect” δc , 
the corresponding type c control effect against CCP. The 
variation of each RCT effect around the groups’ mean δc 
is η , estimated from the data. In turn, the δc ’s are assumed 
to center around −�co , the negative of the overall study-
wise effect size. �co , the key parameter of interest, repre-
sents the pooled cumulative log OR across all RCTs. We 
use −�co so that �co will correspond to the conventional 
difference of log-odds for CCP minus log-odds for con-
trol, rather than control minus CCP.

Extended models for ordinal outcome
We explored two major extensions of the basic model 
(3). First, we anticipated that some RCTs would be con-
ducted at multiple sites, and we were interested in the 
model that included this added level of variation. Second, 
we expected that heterogeneity of treatment effect might 
be essential, so we explored another extension that incor-
porated an interaction term between the treatment and a 
pre-specified covariate.

Extended model for multi‑site RCTs
We assumed that there would be K RCTs again, but M 
total sites, where M > K  . The outcome for the ith patient 
from the kth RCT and the mth site is denoted by Ykmi = y , 
y = 0, . . . , 10.

The notation largely follows model (3). The extended 
model (4) incorporates new parameters: τykm , and δmk

 . 
The τykm indicates the site-specific intercept and δmk

 is the 
mth site-specific “control effect”. Each δmk

 is normally dis-
tributed around a RCT-specific “control effect” δkc , with 
a standard deviation η1 . More details of this extended 
model are in Additional file 2.

Extended model for assessing heterogeneity of treatment 
effect
To explore the impact of a pre-treatment covariate on the 
CCP effect, we developed another extension to model (3) 
for investigating the interaction between treatment and 

(4)logit
(

P
(

Ykmi ≥ y
))

= τykm + βXkmi + δmk
Akmi.
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a categorical pre-treatment covariate, denoted by  S. �s 
denotes the pooled effect of CCP (measured by log OR ) 
for patients with covariate S = s . More details of this 
extended model are in Additional file 3.

Criteria for selecting prior distribution assumptions
In planning for the COMPILE analysis, it was key to 
establish the values of the standard deviation parameters 
(e.g., στ , σβ , ση , ση0 , σ�co in the co model (3)) as well as the 
prior distribution families to optimize the models with 
respect to bias and model stability. Below is illustrated 
how we identified the most appropriate model param-
eterization, prior distribution assumptions, and coding 
implementation strategies. At each stage of development 
of the statistical analysis plan, we conducted a series of 
simulations to assess the models under different condi-
tions by varying effect sizes, the numbers of RCTs within 
each control condition, and the number of patients.

We considered the following specific criteria for choos-
ing prior distributions:

Prior predictive checking: Prior predictive checking 
is a standard method to determine whether an assumed 
prior distribution is appropriate [23]. In particular, we 
used prior predictive checking described in [32] to ensure 
that all plausible values of the outcome (e.g., WHO 
11-point scale) occurred with some probability. Because 
the WHO clinical status scale is ordinal and not continu-
ous, this criterion was consistently satisfied across all 
assumed prior distributions.

Bias of estimated posterior distributions: If the 
sample size of the simulated study is large enough, an 
appropriate prior distribution should produce an esti-
mated posterior distribution consistent with the data 
generation process. To assess this, we generated data sets 
under different scenarios for the effect size, and for each 
scenario, we generated 2500 studies each with a total of 
900 patients. While the Bayesian analysis can provide 
the full posterior distribution of the parameter of inter-
est based on each simulated study (in this case, �co ), it 
is challenging to compare models based on thousands of 
posterior distributions. Rather, we opted to use a single 
summary statistic, the posterior median, as the basis for 
comparison. For each effect size scenario, we constructed 
the distribution of posterior medians based on the 2500 
simulated studies. An appropriate prior should result in a 
distribution of posterior medians that is centered around 
the true value used for the data generation.

Model stability: The Bayesian models were imple-
mented in Stan software, which provides Bayesian 
inference over the model conditioned on data using 
Hamiltonian Monte Carlo (HMC) sampling. By default, 
the inference engine used is the No-U-Turn sampler 
(NUTS), an adaptive form of HMC sampling [33]. 

Divergent transitions that occur in the context of HMC 
sampling can lead to unreliable estimation of the poste-
rior distributions. This results when the step size in the 
HMC sampling is too large to capture the highly varying 
posterior curvature [34]. Both model implementation 
and poorly conceived prior distribution assumptions can 
lead to undesirable levels of model divergence. The pro-
portion of divergent transitions during HMC sampling 
is a widely used measure of stability and convergence. A 
model with a lower divergence rate is considered more 
reliable [35, 36].

Stable model estimation in Stan depends on two key 
tuning parameters: adapt_delta and max_treedepth. 
adapt_delta is the target average proposal accept-
ance rate applied during the model adaptation period; 
increasing this value results in a smaller step size for 
this gradient-based simulation of the Hamiltonian algo-
rithm, allowing better exploration of the sample space 
[34]. The downsides are two-fold: (i) sampling tends to 
be slower because a smaller step size means that more 
steps are required to explore the posterior distribution 
thoroughly, and (ii) when the step size is too small, the 
sampler becomes inefficient, and the NUTS may stop 
before making a U-turn. But, we were able to mitigate 
these issues by increasing the second tuning parameter, 
max_treedepth [34].

Goodness‑of‑fit using posterior predictive checking
Any consumer of a statistical model likely will ask if the 
applied model is a good representation of the observed 
data. This is particularly important when the model in 
question, like a co model, makes a strong assumption. 
In this case, the model makes an assumption of propor-
tional cumulative odds. In anticipation of potential devia-
tions from the assumptions, researchers can simulate 
data under a range of possible violations of the model’s 
assumptions and use posterior predictive checking to 
examine each model’s goodness-of-fit.

Posterior predictive checking is a powerful method to 
assess a model’s goodness-of-fit [37, 38]. The idea behind 
this technique is simple: if a model is a good fit, we 
should be able to use the model to generate replicated 
data ( Drep ) that resemble our observed data ( Doriginal ) 
[39]. The lack of fit can be measured by the Bayesian 
p-value, which is the probability that the test statistic 
(e.g., P(Y ≤ y), y = 0, . . . , 9 ) for Drep is equal to or greater 
than the test statistic for Doriginal [23]. A Bayesian p-value 
very close to zero or one is a cause for concern that 
the model is not fitting the data well, while a Bayesian 
p-value close to 0.5 means the model captures the data 
well [23, 33]. The procedure for checking whether the co 
model fits the observed data well and for calculating the 
Bayesian p-value can be found in Additional file 4.
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Interim monitoring for efficacy
COMPILE pre-specified co-primary endpoints, both 
based on the WHO 11-point scale: the WHO 11-point 
ordinal scale, and a binary indicator of WHO ≥ 7. These 
two outcomes accommodate two essential functions: effi-
ciency and interpretability. This section introduces the 
stopping rule based on the two outcomes.

Basic model for binary outcome
The second primary outcome selected with the goal of 
ease of clinical interpretation, is derived from the WHO 
11-point clinical status scale and indicates that the 
patient is on mechanical ventilation or worse, i.e., WHO 
≥ 7. We determined that a logistic (l) model would be 
most appropriate for the binary outcome. The l model 
was included for ease of communication and acceptabil-
ity by the clinical community.

In model (5), W is an indicator variable for a WHO 
score ≥ 7 , W = 1 if the patient has a WHO score ≥ 7, and 
W = 0 otherwise.

The parameters of model (5) mirror the parameters in 
model (3). The primary parameter of interest is �l , the 
overall effect of CCP compared to any control.

Interim monitoring
In discussions with experts in the fields of RCTs, Bayes-
ian analysis and monitoring of RCTs, conditions for stop-
ping the COMPILE study were identified. The stopping 
rules were based on the following posterior probabilities 
for the ORs ( ORco = e�co and ORl = e�l):

When ORco < 1 and ORl < 1 , CCP is at least minimally 
more effective than control; we required a high level of 
certainty that this be the case. When ORco < 0.8 and 
ORl < 0.8 , it is considered that the beneficial effect of 
CCP is more than trivial; we required a moderate level of 
certainty that this be the case.

The stopping rules pertained to the monitoring of 
COMPILE study and the execution of the COMPILE 
meta-analysis itself, and had no direct bearing on the 
conduct of the individual studies. During the pandemic, 
the rapid dissemination of high-quality information was 
viewed as paramount, so once the criteria were met for 
stopping the prospective meta-analysis study, COMPILE 
data collection ceased, the final analyses were conducted, 

(5)logit(P(Wki = 1)) = τk + βXki + δkcAki

(6)

P(ORco < 1) ≥ 0.95 & P(ORco < 0.8) ≥ 0.50

and

P(ORl < 1) ≥ 0.95 & P(ORl < 0.8) ≥ 0.50

and results were published; the individual studies could 
have chosen to continue to enroll patients or suspend 
enrollment and continue only to follow up patients 
already enrolled.

The goal of the COMPILE was to provide answers 
regarding the efficacy of CCP treatment as soon as pos-
sible. Since neither the number of interim looks nor the 
number of RCTs and number of patients at each interim 
look could be predicted when we were planning the 
study, extensive simulations were required to calibrate 
the Bayesian criteria against the frequentist standards for 
type 1 error rates and statistical power.

Results
In order to finalize our analysis plan, we used extensive 
simulations to evaluate and choose prior distribution 
assumptions for both the basic and the extended mod-
els. We also used simulation to validate our proposed 
method of assessing goodness-of-fit using posterior pre-
dictive checking as well as assess the operating character-
istics of the proposed Bayesian stopping rules for efficacy.

Evaluating and choosing prior distribution assumptions 
for the basic model
We started with an initial set of prior distribution 
assumptions (labeled as Version 1) for the parameters 
in the basic model (3). Using simulations, we evaluated 
the suitability of this version of assumptions with respect 
to the criteria described in the section titled Criteria for 
selecting prior distribution assumptions. Based on the 
findings from these simulations, we updated and reeval-
uated a new set of prior distribution assumptions. We 
iterated through this process a number of times until we 
were satisfied that the criteria were reasonably met. The 
sequential versions are shown in Table 1.

Simulation setup ‑ basic model
The evaluation was conducted using the R package sim-
study [40] to generate simulated data sets with the fol-
lowing parameters:

•	 We assumed different effect sizes for the three differ-
ent control types. The overall effect �co was set at the 
simple negative average of the three δc ’s :

–	 δ1 = 0.3

–	 δ2 = 0.4

–	 δ3 = 0.5

–	 �co = −0.4
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•	 The between study and within control type variation 
was set at σ = 0.1

•	 We assumed three RCTs within each control type, 
with the size of the RCTs being

–	 1 large RCT with n = 150

–	 2 small RCTs, each with n = 75

•	 We started with a total sample size 900 as this was 
our initial aspiration for the COMPILE study

For each simulated individual, we generated a set of 
covariates: age (a categorical variable with 1 indicating < 
50 years old, 2 indicating [50,65), and 3 indicating ≥ 65 
years old), gender (a binary variable defined as female 
and male), WHO score at baseline (an ordinal variable 
with possible values of 4, 5, and 6) and duration of symp-
toms before randomization (a categorical variable with 1 
for 0-3 days, 2 for 4-6 days, 3 for 7-10 days, 4 for 11-14 
days, and 5 for 14+ days). We generated the distributions 
of these baseline covariates based on data available from 
the first  RCT that joined the COMPILE consortium. In 
the simulation, we assumed the following distribution 

of baseline covariates: age < 50 years old : [50, 65) : ≥ 65 
years old = 1 : 1 : 2; sex = female : male: = 1 : 1; baseline 
WHO score = 4 : 5 : 6 = 1 : 1 : 1; duration of symptoms 
before randomization = 0-3 days : 4-6 days : 7-10 days : 
11-14 days : 14+ days = 1 : 1 : 1 : 1 : 1. The ordinal WHO 
outcome was generated as a function of the RCT-specific 
intercept, the individual-level covariates, and a random 
treatment assignment. We selected the coefficients from 
both the available COMPILE RCT  data  and from the 
literature describing outcomes of COVID-19 — male, 
older, and patients with higher severity of symptoms at 
baseline and patients with longer duration of symptoms 
were at higher risk for worse outcome. We present the 
coefficients of the covariates as “true values” in Addi-
tional file 5.

We simulated 2500 trials (each trial included 9 RCTs) 
for model fitting. For each simulated trial, we used 2000 
HMC iterations for warm-up and retained 10000 itera-
tions for inference (all simulations in this paper used the 
same number of HMC iterations. See code for simula-
tions in Additional file 6.).

Figure  1 shows the bias of the posterior estimations 
as well as the divergences resulting from each set of 

Table 1  Prior distributions for different versions of cumulative proportional odds model

Versions 1 2 3 final

α 0 0 0 Normal ( µ = 0, σ = 0.1)

τyk Normal ( µ = 0, σ = 100) Normal ( µ = 0, σ = 100) Normal ( µ = 0, σ = 100) tstudent(df = 3, µ = 0, σ = 8)

β   Normal ( µ = 0,� = 1002Ip×p) Normal ( µ = 0,� = 1002Ip×p) Normal ( µ = 0,� = 1002Ip×p) Normal ( µ = 0,� = 2.52Ip×p)

δkc Normal ( µ = δc , σ = η) Normal ( µ = δc , σ = η) Normal ( µ = δc , σ = η) Normal ( µ = δc , σ = η)

η   Cauchy ( µ = 0, σ = 100) tstudent(µ = 0, σ = 100) tstudent(µ = 0, σ = 100) tstudent(df = 3,µ = 0, σ = 0.25)

δc Normal ( µ = −△co , σ = η0) Normal ( µ = −△co , σ = η0) Normal ( µ = −△co , σ = η0) Normal ( µ = −△co , σ = η0)

η0   Cauchy ( µ = 0, σ = 100) tstudent(µ = 0, σ = 100) tstudent(µ = 0, σ = 100) 0.1

−△co Normal ( µ = 0, σ = 100) Normal ( µ = 0, σ = 100) Normal ( µ = 0, σ = 0.354) Normal ( µ = 0, σ = 0.354)
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Fig. 1  The performance of the five versions of the basic co model: a the distribution of posterior medians of the pooled CCP treatment effect 
�co and the true value used to generate the data (true value); b boxplots show the median, lower quartile, upper quartile, minimum, and 
maximum of the number of divergent transitions ( % ). The proportion of divergent transitions was calculated by (the number of divergent 
transitions/10,000)×100% in each simulated trial using the five versions of model
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modelling assumptions based on our simulating assump-
tions. The bias is based on a comparison of the center 
of the distribution of posterior medians with the “true 
value” of �co = −0.4 ; the greater the difference, the 
greater the bias.

Models Version 1 and 1(a)
Version 1 was based largely on non-informative prior dis-
tribution assumptions [41]. The proportion of divergent 
transitions from the simulations was unacceptably high, 
indicating that the posterior estimation from this model 
was unlikely to be reliable (see Fig. 1(b)).

Version 1(a) was unchanged from Version 1, except that 
we used non-centered parameterization to implement 
the model in Stan. Non-centered parameterization is an 
additional tool to improve model fitting, and the Normal 
distribution is the best candidate for reparameterization 
[33]. Based on this, we applied the non-centered parame-
terization for all Normal prior distributions in the model. 
While the proportion of divergent transitions decreased 
relative to Version 1, the reduction was not sufficient to 
ensure model stability (see Fig. 1(b)).

Model Version 2
In the second version of the model, we replaced the 
Cauchy distributions with tstudent distributions, which 
are more suitable as prior distributions of the scale 
parameters [42]. The tstudent distribution with 3 degrees 
of freedom ( σ = 100 ) has tails that present a compro-
mise between the Normal distribution ( σ = 100 ) and the 
Cauchy distribution ( σ = 100 ). This change resulted in 
fewer divergent transitions compared to Version 1(a), but 
again the reduction was insufficient (see Fig. 1(b)).

Model Version 3
In the third iteration, we imposed a skeptical prior on 
−�co to reflect a very conservative belief in the efficacy 
of the treatment. A  skeptical prior distribution assumes 
that the probability of large benefit or harm from the 
experimental treatment is low and that the probability of 
equivalence between the treatments is high. The standard 
deviation of the prior (σ�co) was set at 0.354, which cor-
responds to a prior for an OR with 95% density between 
0.5 and 2. With this prior distribution, the effect of CCP 
is assumed to be close to zero, and only strong evidence 
from the data can alter this prior belief. When assessing 
evidence of efficacy, such a  skeptical prior for the  treat-
ment effect is considered appropriate [24, 28, 29]. How-
ever, the distribution of posterior medians from posterior 
estimates of the overall effect did not adequately reflect 
the “true” underlying data generation process (see 
Fig. 1(a)).

Final Version
We settled on this final version of the co model after the 
sequence of simulation experiments:

The following updates were made to Version 3.
Global intercept α : α is a nuisance parameter that we 

expected to be very close to or at 0. Since we modelled 
each RCT-specific intercept directly, α was effectively 
fixed to 0 in Version 3. However, model fitting improved 
when α was freely estimated. In the final version of the 
model, we used a highly informative prior where most of 
the probability mass was set close to zero.

RCT-specific intercepts τyk : We initially assumed that the 
prior distribution for each τyk was Normal(µ = 0, σ = 100) . 
The domain experts participating in the study suggested 
that we use a weakly-informative prior distribution 
with scale parameter = 8 to act as somewhat of a con-
straint. However, we used a tstudent distribution with 3 
degrees of freedom ( σ = 8 ). This tstudent distribution has 
heavier tails than the Normal distribution ( σ = 8 ), so we 
ensured that the HMC simulation would have enough 
flexibility to explore the sample space.

Covariate coefficients β : We had little prior informa-
tion for β and expected the observed data to determine 
the shape of the posterior distribution, so we assumed a 
diffuse prior distribution.

Standard deviation of RCT-specific “control effect” 
η : The prior distribution of δkc is normally distributed 
around its own “control effect”: δc , with a standard devia-
tion η . In the final version, η had an informative prior dis-
tribution tstudent(df = 3,µ = 0, σ = 0.25) . This tstudent 
distribution has heavier tails than the Normal distribu-
tion with equivalent scale parameters(σ = 0.25).

Standard deviation of control-type effect η0 : We con-
sulted the domain experts involved in the study, who sug-
gested that the three types of control conditions should 
not differ greatly; in particular, they believed 95% of the 
possible values ( log OR ) should be within 0.2 of the mean, 
implying a standard deviation of 0.1. Thus, the solution 
was to use a more informative prior with narrow tails.

The simulation results shown in Fig.  1 indicate that 
the position with the highest probability is very close 
to the “true” value for data generation. Because of the 

(7)
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postulated skeptical prior, the posterior estimation was 
pulled very slightly (rightwards) towards 0, despite the 
relatively large sample size. The number of divergent 
transitions was close to or at zero for nearly all simulated 
trials, indicating that model fitting converged almost 
every time.

We also assessed the models under different scenarios 
for the effect sizes. The results were consistent at differ-
ent effect sizes ( δ1, δ2, δ3 ). See Additional file 7 for the bias 
in posterior estimates and divergent transitions resulting 
from each version of the co model under a different sce-
nario for effect sizes ( δ1, δ2, δ3 ) = (0.05, 0.1, 0.15).

With the final model in hand, we were able to look 
at extended models, explore goodness-of-fit methods, 
evaluate operating characteristics of stopping rules, and 
examine the influence of the sample size we had assumed 
(see Additional file  8 for model fitting results of the co 
model using various sample sizes).

Evaluating and choosing priors for the extended model
After finalizing the basic co model (3) as in model (7), we 
turned our attention to the extended models.

Extended model for multi‑site RCTs
In the simulation setup, we assumed that there would be 
K RCTs again, but M total sites, where M > K  . The out-
come for the ith patient from the kth RCT and the mth site 
is denoted by Ykmi = y , y = 0, . . . , 10.

•	 3 control types with effect sizes: δ1 = 0.3 , δ2 = 0.4, 
δ3 = 0.5

•	 Between study (within control type) variation 
σ = 0.1

•	 3 RCTs within each control type

–	 1 large RCT with  n = 150 : 1 large site with  n = 110 
and 2 small sites with  n = 20

–	 2 small RCTs, each with    n = 75 : 1 large site 
with  n = 55 and 2 small sites with  n = 10

•	 Between sites (within RCT) variation σ = 0.1

For each simulated individual, we also generated a 
set of covariates: age, gender, WHO score at baseline, 
and duration of symptoms before randomization. The 
randomization to CCP and control is within sites. The 
prior distributions for the extended model for multi-
site RCTs are in Additional file  9. We conducted 3000 
simulations to compare the performance of model (7) 

and the model for multi-site RCTs. and found that 
both performed well in recovering the “true value” (see 
Fig.  2; the estimations of all parameters can be found 
in Additional file 10). The posterior distributions from 
both models were virtually identical. Given the simi-
larities of the model estimates, we opted for the simpler 
model (7) that has fewer hierarchical assumptions and 
less complexity.

Extended model for assessing heterogeneity of treatment 
effect
Next, we focused on selecting the prior distributions 
for the extended model for studying the heterogeneity 
of the treatment effect (model (A2) in Additional file 3), 
which includes a term for the interaction between 
treatment indicators and a categorical pre-treatment 
variable S.

In the simulation setup, the data were simulated as 
described  in  the Simulation setup -  basic model sec-
tion with adjustment for the same set of covariates and 
a categorical covariate S with three levels (30% patients 
with S = 1, 30% patients with S = 2, and 40% patients 
with S = 3), as well as the interaction between covari-
ate S and treatment. The covariate S was not associated 
with the other covariates. We conducted a series of 
simulations to assess the models under different condi-
tions by varying treatment’s effect sizes for the overall 
and for the subgroups. The prior distributions of the 
model with the interaction between treatment and a 
pre-specified covariate S are specified in model (A4) in 
Additional file 11.
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Fig. 2  The distribution of posterior medians of pooled CCP treatment 
effect �co using the final version of basic co model and the extended 
co model for multi-site RCTs. The black dashed line represents the 
true value of parameter used to generate the data
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Figure  3 shows the performance of the extended 
model for assessing the heterogeneity of treatment 
effect. Figure 3(a) shows the prior distribution and 100 
posterior distributions of �s . Figure 3(b) shows the dis-
tributions of the posterior medians of �s from 4500 
simulated trials. The Bayesian model estimations had a 
very high probability of recovering “true values”.

Simulation results for goodness‑of‑fit
In the case of  the co model, there is an assumption 
of proportional cumulative odds. We investigated to 

what degree the proportional odds assumption has 
to be violated to render the model inaccurate. We 
considered two data-generating mechanisms: the 
observed data generated under (i) a proportional 
cumulative odds assumption or (ii) a non-propor-
tional cumulative odds assumption. In addition to 
the case satisfying the proportionality assumptions, 
in Fig.  4 and Table  2 we report two cases where the 
proportionality assumptions were violated: one with 
small and one with large deviation from proportion-
ality of the odds.

(b)(a)

prior

posterior

prior

posterior 

true valueprior

posterior

true value 

s=3

s=2

s=1

Posterior medians of �
s

D
is

tr
ib

u
ti

o
n

 o
f 

th
e 

p
o

st
er

io
r 

m
ed

ia
n

s 
(d

en
si

ty
)

P
ri

o
r 

an
d

 p
o

st
er

io
r 

d
is

tr
ib

u
ti

o
n

 o
f 

th
e 

p
o

o
le

d
 e

ff
ec

t 
o

f 
C

C
P

 (
d

en
si

ty
)

�
s

0.0

0.5

1.0

1.5

-1.5 -1.0 -0.5 0.0 0.5

0.0

0.5

1.0

1.5

-1.5 -1.0 -0.5 0.0 0.5

0.0

0.5

-1.5 -1.0 -0.5 0.0 0.5

1.5

1.0

0.00

0.25

0.50

0.75

1.00

-2 0 2

s=1

0.00

0.25

0.50

0.75

1.00

-2 0 2

s=2

0.00

0.25

0.50

0.75

1.00

-2 0 2

s=3

Fig. 3  The performance of the extended model for assessing heterogeneity of treatment effect: a prior and 100 posterior distributions of the 
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b observed data was generated when the proportional cumulative odds assumption was violated only slightly (Case I), c observed data was 
generated when the proportional cumulative odds assumption was violated more extremely (Case II)
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In Fig.  4, the bands represent the 95% credible inter-
val for test statistics based on 10000 replicated datasets 
Drep . The solid lines with markers represent the cumu-
lative probabilities in Doriginal . Table  2 shows posterior 
predictive checking of model (7) using ten test statistics. 
We confirmed that the model fits the data well if the 
data generation process satisfied the proportional odds 
assumption. When the proportional cumulative odds 
assumption was violated only slightly (Case I), only one 
Bayesian p-value [23, 33] was close to one (i.e., 0.95), 

which would still give us confidence that our model was 
a good fit. However, when the proportional cumulative 
odds assumption was violated more extremely (Case II) 
in the data generation process, most Bayesian p-values 
were extreme (i.e., close to zero or one), indicating our 
model might be a poor fit.

Bayesian stopping rules for efficacy
We investigated the probability of stopping early under 
the proposed Bayesian approach (6) using a range of 

Table 2  Summary of posterior predictive checking based on the ten test statistics

Note: Case I: the proportional cumulative odds assumption was violated only slightly. Case II: the proportional cumulative odds assumption was violated more 
extremely

Assumption

Treatment CCP Control

Test quantity: % 
subjects

T (Doriginal) 95% int. for T (Drep) Bayesian P 
value

T (Doriginal) 95% int. for T (Drep) Bayesian 
P value

a Proportional cumulative odds

WHO ≤ 0 5.32 [2.91, 7.99] 0.48 5.35 [2.18, 6.80] 0.14

WHO ≤ 1 14.19 [8.96, 16.95] 0.24 11.36 [7.28, 14.56] 0.34

WHO ≤ 2 21.06 [14.53, 24.21] 0.23 17.15 [11.65, 20.63] 0.32

WHO ≤ 3 27.94 [21.07, 32.20] 0.30 23.83 [17.48, 27.91] 0.29

WHO ≤ 4 35.25 [29.06, 41.16] 0.45 31.40 [24.76, 36.17] 0.34

WHO ≤ 5 46.12 [40.19, 53.03] 0.53 41.87 [34.95, 47.57] 0.42

WHO ≤ 6 58.31 [53.27, 65.86] 0.67 55.23 [48.06, 60.68] 0.40

WHO ≤ 7 66.74 [60.77, 72.64] 0.52 61.02 [55.58, 67.96] 0.61

WHO ≤ 8 82.04 [75.30, 85.23] 0.28 75.50 [71.36, 82.04] 0.68

WHO ≤ 9 92.90 [88.86, 95.16] 0.35 89.31 [86.41, 93.69] 0.74

b Non-proportional cumulative odds (Case I)

WHO ≤ 0 7.57 [2.91, 8.50] 0.07 0.67 [0.24, 2.66] 0.88

WHO ≤ 1 15.37 [8.25, 16.50] 0.07 1.55 [1.45, 5.08] 0.95

WHO ≤ 2 24.05 [16.75, 27.43] 0.21 5.99 [3.63, 8.96] 0.54

WHO ≤ 3 30.96 [24.03, 36.17] 0.37 9.31 [5.81, 12.59] 0.42

WHO ≤ 4 40.98 [35.19, 48.06] 0.55 15.30 [10.17, 18.89] 0.30

WHO ≤ 5 48.55 [41.75, 54.85] 0.44 16.85 [13.32, 22.76] 0.65

WHO ≤ 6 61.25 [53.40, 66.02] 0.32 21.51 [20.10, 31.23] 0.93

WHO ≤ 7 72.61 [69.90, 80.58] 0.84 43.02 [35.35, 47.70] 0.32

WHO ≤ 8 80.18 [76.21, 85.92] 0.65 48.56 [43.34, 55.93] 0.63

WHO ≤ 9 88.86 [84.47, 92.23] 0.42 61.86 [56.90, 69.01] 0.64

c Non-proportional cumulative odds (Case II)

WHO ≤ 0 9.11 [0.49, 3.16] 0.00 0.22 [3.15, 9.20] 1.00

WHO ≤ 1 15.33 [2.43, 7.28] 0.00 10.22 [11.62, 21.07] 1.00

WHO ≤ 2 23.78 [9.95, 18.45] 0.00 38.00 [32.69, 45.04] 0.61

WHO ≤ 3 33.11 [24.03, 36.17] 0.16 69.56 [57.14, 69.25] 0.02

WHO ≤ 4 38.22 [33.01, 46.12] 0.65 80.89 [66.83, 77.97] 0.00

WHO ≤ 5 48.89 [46.84, 59.95] 0.90 90.67 [77.72, 87.17] 0.00

WHO ≤ 6 60.44 [58.50, 71.12] 0.92 95.56 [84.75, 92.25] 0.00

WHO ≤ 7 75.78 [74.03, 84.47] 0.92 98.22 [91.53, 96.85] 0.00

WHO ≤ 8 82.89 [81.80, 90.53] 0.94 99.56 [94.19, 98.31] 0.00

WHO ≤ 9 92.22 [91.26, 97.09] 0.92 99.78 [97.34, 99.76] 0.01
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effect sizes and sample sizes (Scenario (1) was simulated 
as in Simulation setup - basic model  section: n = 900, 
Scenario (2) doubled the sample size and Scenario (3) tri-
pled the sample size).

Parameters:

•	 The Bayesian paradigm includes nine data looks at 
20%, 33%, 40%, 50%, 60%, 67%, 80%, 90% and 100% 
of the data. Three sets of control-specific treatment 
effects as measured by log OR (δ1, δ2, δ3) are consid-
ered:

–	 (0,0,0), pooled control effect is 0
–	 (0.1, 0.2, 0.3), pooled control effect is 0.2
–	 (0.4, 0.5, 0.6), pooled control effect is 0.5

•	 No covariate adjustment in both data generation and 
analysis

When the simulated effect is (δ1, δ2, δ3) = (0, 0, 0) , the 
sum of the probabilities of meeting the stopping trig-
ger at all interim looks under the Bayesian monitoring 
approach can be interpreted as the type 1 error rate (see 
Fig.  5(a)). When data are simulated under the assump-
tion of efficacy, the sum of the probabilities of meeting 
the stopping trigger (over all interim looks) can be inter-
preted as statistical power (see Fig. 5(b) and (c)).

The prior distributions in the model for the binary co-
primary outcome WHO≥ 7 (model (5)) were selected 
through a process similar to the process for selecting the 
prior distributions for model (3) for the ordinal outcome. 
The prior distributions for the binary co-primary out-
come are shown in Additional file 12:

Figure  5 shows the results for all three sets of effect 
sizes. The type 1 error rates were considerably below the 
5% threshold. As expected, the type 1 error rate declined 
as the sample size increased. In the cases where CCP was 

assumed to be effective, larger effect sizes and larger sam-
ple sizes both increased power. We can see that the pro-
posed Bayesian stopping rule would achieve acceptable 
type 1 error rates and power.

Continuous monitoring is critical in a pandemic to 
detect early signals of efficacy and make timely decisions. 
One concern with the increasing number of interim looks 
would be inflated type 1 error rate. In our simulation, we 
expected nine data looks so the stopping rules resulted 
in  acceptable type 1 error rates  and power. If research-
ers expect more interim looks, there are three ways to 
control for the inflated type 1 error rate: (i) adopt a more 
skeptical prior distribution for the treatment effect ( ORco 
and ORl ); (ii) increase the sample size; or (iii) set a more 
restrictive threshold for the stopping criteria. For exam-
ple, the current threshold for the second criterion of 
clinically meaningful effect (i.e., P(OR < 0.8) ≥ 0.5 ) in 
the stopping rules is 0.5. We could increase 0.5 to 0.6 to 
reduce the type I error rate while keeping the prior distri-
butions and sample size constant.

Discussion and conclusions
The presented work describes a translatable frame-
work for developing a rigorous plan for monitoring 
and analysis of a study that prospectively pools IPD 
from ongoing, paused, prematurely-terminate, or com-
pleted RCTs with the goal of reaching a  conclusion 
regarding the efficacy of a treatment as quickly as pos-
sible. Such studies were in particularly high demand 
during the initial stages of the COVID-19 pandemic, 
and it is expected that they would be needed not only 
in future pandemics but also for contributing to more 
efficient non-pandemic medical research. While the 
idea of such prospective pooling of data from RCTs at 
different stages of execution is simple and appealing, 
the development of the analytic plan for monitoring 
and analysis is not trivial.

(a) (b) (c)

1

2

3

20 33 40 50 60 67 80 90 100
% of patients enrolled

10

20

30

40

20 33 40 50 60 67 80 90 100

25

50

75

100

20 3340 60 67 80 90 100
% of patients enrolled % of patients enrolled

50C
u

m
u

la
ti

v
e 

%
 o

f 
si

m
u

la
ti

o
n

s 
 

������������������������ ������������������������������ ������������������������������

3.1

2.4
2.0

28.1

40.1

42.5

91.7
99.6
100.0

Sample size 900 1800 2700

Fig. 5  At different sample sizes, the proportion of times (out of 2000) in which the stopping rules were reached under the Bayesian monitoring 
approach. The colored numbers in a can be interpreted as the type 1 error rates at different sample sizes. The colored numbers in b and c can be 
interpreted as the statistical power



Page 13 of 15Wu et al. BMC Medical Research Methodology           (2023) 23:25 	

In this paper, we report on the extensive simulation 
investigations that were needed for selecting models and 
parameters to estimate and for choosing the prior distri-
butions for these parameters. We also show how we can 
study the operating characteristics of guidelines for con-
tinuous monitoring in the absence of information about 
the total sample size, the rate of patient recruitment, 
and the number of interim looks at the time of study 
planning.

Our work should be interpreted in the context of 
three potential limitations. First, our extended model for 
assessing heterogeneity of the treatment effect (model 
(A4)) was designed for the interaction term between a 
categorical covariate and treatment. It would be useful 
to extend the model to incorporate the interaction term 
between a continuous covariate and treatment. While 
this is important methodologically, it may be less so clini-
cally, since patient characteristics that are best measured 
using a continuous scale are routinely considered in cat-
egorical terms; viewed this way, providing interaction 
models only for categorical characteristics may not be 
such a serious limitation. Second, the 95% credible inter-
val for the CCP treatment effect from model for assessing 
heterogeneity of treatment effect (model (A4)) tends to 
be wider than model (7) in subgroup analysis because of 
the diffuse prior in model (A4). Developing more efficient 
approaches for estimating interactions would be a valu-
able contribution. Third, our method focuses on sam-
pling from the posterior distribution of the effect size � 
rather than testing the equality of experimental and con-
trol treatments, an approach that some believe is more 
appropriate for this setting [43]. The testing formula-
tion, however, can require high computational overhead 
compared to the estimation approach we used. Regard-
less of whether one considers testing or estimation to be 
more appropriate at the stage when the prospective IPD 
study is completed and the final data are available, at the 
stage of developing the analytic plan, there may be less 
flexibility. Unless advances in computing make the test-
ing approach more practical, when extensive simulations 
are necessary and must include a range of relatively large 
sample sizes (here 900, 1800 and 2700), we recommend 
the estimation approach described in this paper.

To the best of our knowledge, an initiative like COM-
PILE has not been undertaken previously. In conducting 
this study, we believe we have developed a translatable 
framework that can be used to inform such endeavors 
in the future. This framework can leverage information 
quickly for other types of therapies under simultane-
ous investigations around the world. Not only can this 
framework be a valuable tool for assessing new treatment 
options for COVID-19, but it can also be useful for the 
treatment of other diseases.
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