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Abstract 

Background:  Prognostic information for patients with hypertension is largely based on population averages. The 
purpose of this study was to compare the performance of four machine learning approaches for personalized predic-
tion of incident hospitalization for cardiovascular disease among newly diagnosed hypertensive patients.

Methods:  Using province-wide linked administrative health data in Alberta, we analyzed a cohort of 259,873 newly-
diagnosed hypertensive patients from 2009 to 2015 who collectively had 11,863 incident hospitalizations for heart 
failure, myocardial infarction, and stroke. Linear multi-task logistic regression, neural multi-task logistic regression, ran-
dom survival forest and Cox proportional hazard models were used to determine the number of event-free survivors 
at each time-point and to construct individual event-free survival probability curves. The predictive performance was 
evaluated by root mean squared error, mean absolute error, concordance index, and the Brier score.

Results:  The random survival forest model has the lowest root mean squared error value at 33.94 and lowest mean 
absolute error value at 28.37. Machine learning methods provide similar discrimination and calibration in the person-
alized survival prediction of hospitalizations for cardiovascular events in patients with hypertension. Neural multi-task 
logistic regression model has the highest concordance index at 0.8149 and lowest Brier score at 0.0242 for the person-
alized survival prediction.

Conclusions:  This is the first personalized survival prediction for cardiovascular diseases among hypertensive 
patients using administrative data. The four models tested in this analysis exhibited a similar discrimination and cali-
bration ability in predicting personalized survival prediction of hypertension patients.

Keywords:  Administrative health data, Machine learning, Personalized prediction, Hypertension patients, 
Cardiovascular disease

Background
Hypertension is the leading risk factor for preventable 
cardiovascular morbidity and premature death from 
cardiovascular disease (CVD) [1]. Accurate prediction 
of CVD can help to [2, 3], identify high-risk patients 
and therefore support clinical decision-making. Prog-
nostic prediction has traditionally been based on the 
average event-free survival time in a population which 
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is then projected onto an individual [4]. There is little 
research focusing on individual-level prediction.

In this study, we consider several important machine 
learning (ML) methods that produce the entire sur-
vival probability curve for individual patients. Recently, 
research has reported the risk analysis and survival pre-
diction for cancer patients by machine learning tech-
niques as well as on different input features and data 
samples. Weng el at. report using machine learning to 
improve accuracy of cardiovascular risk  [5]. Results 
found that machine learning method improves accu-
racy of cardiovascular risk prediction, increasing the 
number of patients identified who could benefit from 
preventive treatment, while avoiding unnecessary treat-
ment. Bharath  et al.  also found similar results in that 
machine learning improve prediction accuracy in CVD 
prediction model in an initially asymptomatic popu-
lation  [6]. Although machine learning methods have 
shown encouraging success on predicting some medical 
conditions, it has not been applied to individually CVD 
survival prediction in patients with hypertension by 
using routinely collected large digital electronic admin-
istrative health data. If the large administrative data 
set can be exploited using machine learning algorithm, 
it may open the way to optimise the use of collected 
administrative data to assist in predicting patents’ out-
come, planning individualised patient care, monitoring 
resource utilization and improving institutional per-
formance. Including comorbidity status, demographic 
data, lab test results and medication would improve 
assessment of prognosis and guide treatment decisions 
for hypertension patients.

Use of machine learning methods in clinical oncol-
ogy has shown success [7, 8], but this methodology has 
not been more broadly applied to other clinical areas. 
Addressing this, the purpose of this study was to com-
pare evaluate four ML approaches for personalized pre-
diction of incident hospitalization for heart failure (HF), 
myocardial infarction (MI), and stroke among newly 
diagnosed hypertensive patients using routinely collected 
administrative health data. To our knowledge, this the 
first study to develop and validate different state-of-the-
art ML models for individual CVD outcome prediction in 
hypertensive patients.

Methods
Data sources and study population
A retrospective cohort was assembled using linked 
administrative health databases from Alberta Health with 
information including demographic and vital statistics, 
physician billing claims, medication dispensations, hospi-
tal separation data, and laboratory services (Fig. 1). These 
data have been used in previous studies and shown to be 
high-quality and comprehensive [9, 10].

The study population included all newly diagnosed 
cases of hypertension aged 18 to 99 years who were resi-
dents of Alberta. We identified hypertension cases using 
a validated case definition of two physician claims within 
two years or one hospitalization with hypertension 
related diagnosis codes (ICD-9-CM: 401.x, 402.x, 403.x, 
404.x or 405.x; ICD-10-CA: I10.x, I11.x, I12.x, I13.x or 
I15.x) [11]. The first date of the hypertension diagno-
sis (index date) was assigned to patients for case defini-
tions with more than one hypertension diagnosis. We 

Fig. 1  Linkage of six administrative health dataset to determine the study cohort. Note: DAD = Discharge Abstract Database, eGFR = Estimated 
glomerular filtration rate, HbA1C = Glycated haemoglobin (A1c), HF = heart failure, LDL = Low-density lipoproteins, MI = myocardial infarction, 
PIN = Pharmaceutical Information Network
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included patients who were identified to have hyperten-
sion between April 1, 2009, to March 31, 2014 (excluding 
those who had any code for hypertension between April 
1, 2006, to March 31, 2009, thus allowing for a 3-year 
washout period, and thereby limiting the cohort to only 
newly diagnosed cases). Patients with prior CVD were 
also excluded. Cohort assembly is summarized in Fig. 2.

Outcome
The outcome of interest was incident hospitalization for 
any CVD, including HF, MI or stroke, identified using 
validated case definitions: HF (ICD-10-CA: I09.9, I11.0, 
I13.0, I13.2, I25.5, I42.0, I42.5-I42.9, I43.x, I50.x, P29.0), 
MI (ICD-10-CA: I21.x, I22.x, I25.2), and stroke (ICD-
10-CA: H34.1, I60.x, I61.x, I63.x, I64.x, G45.x) [12]. The 
time of event was defined as the first occurrence of hos-
pitalization for HF, MI or stroke. We followed patients 
from initial hypertension diagnosis until the time of the 
outcome event, death, emigration out of the province, or 
the end of the study, up to March 31, 2015. If a patient 
experienced more than one event only the first event was 
counted as the incident event. Outcome event rates were 
calculated per 1000 person-years based on a maximum 
6-year follow-up period.

Predictors
Potential predictors were selected a priori based on pre-
vious studies and clinical reasoning [13]. Age was catego-
rized into four age groups as the predictor in this study. 
Patients’ demographic information, such as sex, region 
of residence was also used as predictors. The number 
of Charlson comorbidities present in each patient was 
categorized into “0, 1-2, or ≥ 3.” Fasting blood glucose, 
estimated glomerular filtration rate (eGFR), choles-
terol levels and Glycated haemoglobin (A1c) (HbA1c) 
was determined between hypertension index date and 
outcome date [14, 15]. Test results outside the stand-
ardized reference intervals were used (Blood glucose 
> = 7.0 mmol/L, eGFR < 60 mL/min/1.73m2, Cholesterol 
levels > 3.5 mmol/L, HbA1c > =6.5%) [16].

The following categories of antihypertensive medications 
have been shown to reduce cardiovascular risk and were 
identified using the anatomical therapeutic chemical (ATC) 
classification system: beta blockers (ATC codes in cate-
gory C07, excluding C07AA07, C07AA12 and C07AG02); 
agents acting on the renin-angiotensin system (ATC codes 
in category C09); thiazide diuretics (ATC codes in cat-
egory C03, excluding C03BA08 and C03CA01); calcium 
channel antagonists (ATC codes in category C08); and 

Fig. 2  The flow for hypertension cohort identification. Note: 1H2P = 1 hospitalization or 2 physician claims within 2 years, CVD = Cardiovascular 
disease, HF = heart failure, MI = myocardial infarction
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miscellaneous antihypertensives (ATC codes in category 
C02, excluding C02KX01) [17]. Respondents were catego-
rized as using antihypertensive medication if an ATC code 
corresponded to the above list between the hypertension 
index date and outcome index date.

Statistical analysis
The study cohort was randomly divided into training 
(70% of total: n = 181,911) and validation (30% of total: 
n = 77,962) sets (Fig.  2). Multicollinearity between pre-
dictor variables was assessed using condition indices 
and variance proportions. Those with significant corre-
lation were removed from the model. The linear multi-
task logistic regression (LMTLR) model is an alternative 
to the Cox’s proportional hazard (CoxPH) model. It can 
be seen as a series of logistic regression models built on 
different time intervals to estimate the probability that 
the event of interest happened within each interval. The 
constructed LMTLR included 25 features and 50 inter-
vals in this study. The neural multi-task logistic regression 
(NMTLR) allows the use of Neural Networks within the 
original multi-task logistic regression (MTLR) design. We 
used the same 25 features, 100 neurons in the first hid-
den layer and 100 neurons in the second hidden layer, and 
one output neuron before input to LMTLR. The random 
survival forest (RSF) is an extension of the Random Forest 
model that can take into account censoring individuals. 
We used 50 trees, the maximum depth of 5 and minimum 
number of samples required to be at a leaf node at 20 for 
the model development. The CoxPH is a semi-parametric 
model that focuses on modeling the hazard function, by 
assuming that its time component and feature component 
are proportional over time. The maximum number of iter-
ations in the Newton optimization in this model was 600.

Model validation
The final survival prediction model was tested within the 
test dataset for those four models (LMTLR, NMTLR, RSF, 
CoxPH) [18]. The actual and predicted number of patients 
that experienced the CVD event at each time t was com-
pared by computing the actual survival function of the 
validation data, which can be obtained using the Kaplan-
Meier estimator and compare it to the average of all pre-
dicted survival functions [18]. Root mean squared error 
(RMSE) and mean absolute error (MAE) was used to pro-
vide the comparison as well as the performance metrics 
between the actual and predicted number of hypertensive 
patients experiencing a CVD event at each time, t. Model 
accuracy was assessed using discrimination (concordance 
index (C-index)) and calibration (Brier score).

Analyses were conducted using SAS version 9.4 [19], R 
software version 3.5.1 [20] and Python version 3.7.6 [21]. 
Descriptive statistics were generated by SAS (Tables  1 

and 2). The package ‘survival’ in R was used to pro-
duce Fig.  1 for survival analysis. ‘PySurvival’ in Python 
was used for ML model analyses. All the methods were 
performed in accordance with relevant guidelines and 
regulations.

Results
Cohort characteristics
We identified 299,826 newly diagnosed hypertensive 
patients between April 1, 2009, and March 31, 2015. 
After applying exclusion criteria, there was a total of 
259,873 patients with 899,393 person-years of follow-up 
and collectively with 11,863 events over a median follow-
up time of 3.5 years (inter-quartile range 2.2 to 4.8 years). 
The incidence rate was 13.4 CVD hospitalizations per 
1000 person-years. Among the study population 9182 
(3.5%) patients died within the study period. The mor-
tality rate during the follow-up period was 10.0 per 1000 
person-years (95% CI: 9.8 to 10.2 per 1000 person-years).

The median age of newly diagnosed hypertension 
patients was 56.1 years (26.7% were older than 65 years).
and 83.6% resided in urban areas. The majority of 
patients had isolated hypertension without other major 
comorbidities, but up to one-third had at least one non-
cardiovascular Charlson comorbidity, with diabetes 
being the most common, being present in around 1 in 10 
people (9.7%). Nearly two-thirds of patients had at least 
one laboratory test of interest completed. An elevated 
LDL-cholesterol (33.7, 95% CI:33.5–33.9), elevated fast-
ing blood glucose (20.5, 95% CI:20.4–20.7), and presence 
of renal dysfunction (24.5, 95%CI: 24.4–24.7) were the 
most common laboratory abnormalities. Most patients 
were dispensed with at least one antihypertensive medi-
cation (80.7, 95% CI: 80.6–80.9). Of these, the majority 
received an angiotensin converting enzyme inhibitor or 
angiotensin II receptor blocker (67.3, 95% CI: 67.1–67.5), 
followed by thiazide diuretics (24.7, 95% CI: 24.6–24.9), 
calcium channel blockers (23.9, 95%CI:23.7–24.1), and 
beta-blockers (18.1, 95%CI:18.0–18.3) (Table 1, locate at 
the end of the document text file).

The crude incidence of composite CVD hospitaliza-
tion was 13.2 (95%CI: 13.0–13.4) per 1000 person-years. 
Hospitalization for MI was most common (6.1 (95%CI: 
6.0–6.3) per 1000 events per person-years), followed by 
HF (5.6 (95%CI: 5.4–5.7) events per 1000 person-years), 
and lastly stroke (3.4 (95%CI: 3.3–3.5) events per 1000 
person-years) (Table  2, locate at the end of the docu-
ment text file). The composite CVD hospitalization rate 
was higher for men, and this was driven by an excess risk 
of MI. Hospitalizations were most common in patients 
above the age of 75 years, those residing in rural loca-
tions, and individuals with at least two other Charlson 
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Table 1  Population characteristics

Note: CI confidence interval, IRQ interquartile range, Q1 first quartiles, Q3 third quartiles, SD standard deviation, Number of Charlson comorbidities: excluding CVD 
related comorbidities and HIV/AIDS

Characteristics No. (%), Mean or Median (IQR)

N = 259,873
(899,392.8 person-years)

Percentage (95% CI)

Age in years (Mean ± SD) 56.6 ± 14.0

  Median (Q1, Q3) 56.1 (47.2, 65.8)

Age groups (years)

  20–49 84,032 32.3 (32.2–32.5)

  50–64 106,526 41.0 (40.8–41.2)

  65–74 42,107 16.2 (16.1–16.4)

  75–99 27,208 10.5 (10.4–10.6)

Sex

  Female 122,233 47.0 (46.8–47.2)

  Male 137,640 53.0 (52.8–53.2)

Region of residence

  Rural 42,669 16.4 (16.3–16.6)

  Urban 217,204 83.6 (83.4–83.7)

Number of Charlson Comorbidities

  0 175,227 67.4 (67.3–67.6)

  1–2 69,443 26.7 (26.6–26.9)

   ≥ 3 15,203 5.9 (5.8–5.9)

Charlson comorbidities

  Peripheral vascular disease 4721 1.8 (1.8–1.9)

  Dementia 5008 1.9 (1.9–2.0)

  Chronic pulmonary disease 38,808 14.9 (14.8–15.1)

  Rheumatologic disease 4849 1.9 (1.8–1.9)

  Peptic ulcer disease 4406 1.7 (1.7–1.8)

  Mild liver disease 5010 1.9 (1.9–2.0)

  Diabetes without chronic complications 20,065 7.7 (7.6–7.8)

  Diabetes with chronic complications 5247 2.0 (2.0–2.1)

  Hemiplegia or paraplegia 525 0.2 (0.2–0.2)

  Renal disease 5344 2.1 (2.0–2.1)

  Any malignancy, including leukemia and lymphoma 17,208 6.6 (6.5–6.7)

  Moderate or severe liver disease 583 0.2 (0.2–0.2)

  Metastatic solid tumor 2294 0.9 (0.9–0.9)

Lab test results

  LDL-cholesterol (> 3.5 mmol/L) 87,633 33.7 (33.5–33.9)

  Blood glucose (≥7.0 mmol/L) 53,337 20.5 (20.4–20.7)

  eGFR (< 60 mL/min/1.73m2) 63,697 24.5 (24.4–24.7)

  HbA1c (≥6.5%) 36,016 13.9 (13.7–14.0)

  At least one lab test 157,934 60.8 (60.6–61.0)

Medications

  Thiazide diuretics 64,248 24.7 (24.6–24.9)

  Beta blockers 47,089 18.1 (18.0–18.3)

  Calcium channel antagonists 62,112 23.9 (23.7–24.1)

  Agents acting on the renin-angiotensin system 174,891 67.3 (67.1–67.5)

  Miscellaneous antihypertensives 5245 2.0 (2.0–2.1)

   ≥ 1 of the medications listed above 209,729 80.7 (80.6–80.9)

  Follow-up years (median (Q1, Q3)) 3.6 (2.2, 4.8)
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Table 2  Hospitalization for incident cardiovascular disease (95% CI) among Albertan adults with newly diagnosed hypertension

Fig. 3  Kaplan-Meier estimate for incident hypertensive patients stratified by cardiovascular disease (any one of heart failure, myocardial infarction 
and stroke), MI, HF and stroke. Note: HF = heart failure, MI = myocardial infarction
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comorbidities both for the composite outcome and its 
individual components.

Figure  3 shows Kaplan-Meier plots of the cumulative 
probability of being free of hospitalization for any CVD, 
HF, MI, and stroke as a function of survival time among 
newly diagnosed hypertension patients. MI had the low-
est cumulative probability in the entire survival period 
when compared with HF and stroke.

Model performance
Table  3 shows a comparison of the actual and pre-
dicted number of hypertension patients experiencing 
CVD events at each time point for all four models. The 
RSF model had the lowest RMSE at 33.94 and the low-
est MAE at 28.37, indicating the best fit. By plotting the 
individual’s survival function over time, we compared the 
survival probability of developing CVD events among 
individual hypertensive patients. Table  4 shows the 
results when applying all four models in our hyperten-
sion cohort. Overall, all the models had a C-index > 0.70 
and Brier score < 0.25 [22], representing a strong predic-
tive ability in the validation set. Adding two layers of neu-
ral network before LMTLR, the NMTLR model had the 
highest C-index (0.82) and lowest Brier score (0.02); the 
best discrimination and calibration of all the models for 
event-free survival prediction. This suggests the NMTLR 
is most accurate and outperformed the other models 

in predicting CVD outcomes for incident hypertensive 
patients.

Personalized prediction
Figure  4 visualizes the LMTLR, NMTLR, RSF and 
CoxPH models for two representative patients from the 
validation set. Patient one (red line) had a short event-
free survival of 4.0 years from diagnosis of hypertension 
until being hospitalized for CVD, while patient two (blue 
line) had a comparatively longer event-free survival of at 
least 4.9 years before being censored. Patient one devel-
oped CVD after 4.0 years diagnosed as hypertension, 
however, patient two may have been lost to follow-up 
or did not develop CVD at the end of the study or death 
until 4.6 years after diagnosed as a hypertensive patient. 
The median survival time (50% survival probability) as a 
point estimation for survival time predication was used 
in the study for personalized survival prediction per-
formance evaluation. If the 50% survival probability is 
close to the survival time, the model has more accurate 
prediction performance. All four models performed 
well in predicting the prognosis for patient one whose 
50% survival probability corresponded with the actual 
observed 4.0 years of event-free survival. However, only 
the NMTLR model provided accurate prediction of 50% 
survival probability for patient two who was lost survival 
information at 4.9 years in this study. For other models, 
take the LMTLR for example, in fig.  4(a), the survival 
probability for patient 2 at 4.9 years survival time is near 
90%, and this patient’s 50% survival probability is nearby 
6.6 years. Although patient 2 passed the 50% survival 
probability after the 4.9 years in image (a), this patient’s 
50% survival probability does not close to the 4.9 sur-
vival years, which indicate the model could not well pre-
dict this patient’s survival information in this model. The 
NMTLR was able to handle the presence of censoring 
better than the other models. Moreover, the individual 
survival curves for these two patients intercrossed at the 
beginning of the observation period. This may reflect the 
real situation that patient two has worse health condition 
or perhaps the patient is treated and controlled one year 
after being diagnosed with hypertension. Patient two 
have a pretty flat curve in the following period, however 
patient one became worse in the whole follow up period. 
The CoxPH model was unable to properly handle censor-
ing, as represented by a horizontal survival probability 
line for patient two.

Figure  5 shows the prediction results for two patients 
who had CVD outcome at 1.1 years and 2.3 years, 
respectively. Patient one had a hospitalization for CVD 
at 2.3 survival years while patient two was had hospi-
talization for CVD at 1.1 survival years. All of those 
four models can discriminate the two patients’ survival 

Table 3  Comparison of predicting the number of incident 
hypertensive patients diagnosed with cardiovascular disease(s) 
using predicted survival functions in multiple models (LMTLR, 
NMTLR, RSF and CoxPH)

Note: CoxPH Cox’s proportional hazard, LMTL linear multi-task logistic regression, 
NMTLR neural multi-task logistic regression, RSF random survival forest, RMSE 
root mean squared error, MAE mean absolute error

Model 
performance

Models

LMTLR NMTLR RSF CoxPH

RMSE 508.92 143.49 33.94 58.55

MAE 383.63 132.54 28.37 49.80

Table 4  Summary of the results that measured by C-index and 
Brier score

Note: CoxPH Cox’s proportional hazard, LMTL linear multi-task logistic regression, 
NMTLR neural multi-task logistic regression, RSF random survival forest, C-index 
concordance index

Model performance Models

LMTLR NMTLR RSF Cox PH

C-index 0.7792 0.8202 0.8146 0.8165

Brier score 0.0350 0.0243 0.0343 0.0340
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time versus survival probability. Patient two’s survival 
curve was always lower than patient one and reached 
50% survival probability faster than patient one. For 
NMTLR, the actual survival time corresponded closely 
to the estimated survival probability for both patients. 
For patients two, the survival curve was consistently 
lower than patient one, and the 50% survival probabil-
ity occurred earlier for the first patient. Only NMTLR 
correctly predicted the survival time for patient one at 
2.3 years and patient two at 1.1 years, based on the pro-
jected 50% survival probability. Moreover, NMTLR also 
had the smoothest survival curves with distinct shapes 
predicted for the two patients, while the CoxPH model 
predicted survival curves with similar shapes because of 
the proportional hazard assumption. For RSF model, we 
observed that the survival function was monotonically 
decreasing and parallel. This is likely due to both patients 
being in the same tree branch node in the model develop-
ment process.

Discussion
In this study, we explored the performance of ML 
models on predicting incident hospitalization for 
CVD distribution in patients newly diagnosed with 

hypertension using administrative data. All models 
were developed and validated using the same train-
ing dataset. All the four models had high discrimina-
tion with C-index > 0.70 and good calibration with 
Brier score < 0.25. We showed how ML models can be 
applied to accurately predict the occurrence of hospi-
talization for CVD on both population and individual 
levels.

For population use, the ML models can predict the 
number of patients with events at each time point 
using survival functions, similar to traditional regres-
sion methods. The RSF model had the best perfor-
mance for population-based prediction compared to 
the other three models. Moreover, the RMSE and MAE 
were quite small in the RSF model, indicating that the 
prediction results were relatively constant during the 
6-year follow-up period. As we did not force the use of 
any particular variables, the RSF algorithm was allowed 
to include any variables available in the administrative 
dataset that were associated with risk of hospitalization 
for CVD, which likely made the model more accurate 
than other models based on linear regression (LMTLR, 
NMTLR and CoxPH) for the population-based predic-
tion [23, 24].

Fig. 4  Personalized survival prediction by using (a) LMTLR model, (b) NMTLR model, (c) RSF model and (d) CoxPH model when randomly 
identifying two patients as an example. X axis is survival time in years, Y axis is survival probability. Patient one (red line) is a short survivor who 
lives for 4.0 years from diagnosis of hypertension to CVD, while patient two (blue line) is a long survivor whose survival time is censored at 
4.9 years. Patient one developed CVD after 4.0 years diagnosed as hypertension, however, patient two was censored at 4.9 years after diagnosed 
as hypertension patient. The bottom position of survival time text (4.0 and 4.9) on the pictures correspond to 50% survival probability horizontal 
location line. Note: CoxPH = Cox’s proportional hazard, LMTL = linear multi-task logistic regression, NMTLR = neural multi-task logistic regression, 
RSF = random survival forest
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In terms of individual-level prediction, the NMTLR 
model had the highest C-index and lowest Brier score 
which means it had the best discrimination and calibra-
tion for individual survival prediction [25]. This may be 
because of the unique properties of using a neural net-
work [26]. Neural networks require initialization and 
adjustment of many individual parameter to optimize 
the performance of the classification [27]. The NMTLR 
model that combines the neural network and multi-task 
logistic regression together was developed empirically 
and can be best fit for the training data in our study. 
NMTLR models the survival function by combining 
multiple local logistic regression modes in a dependent 
manner followed by a two layers neural networking pro-
cedure. This allows it to handle censored observations 
and the time-varying effects of features naturally to pro-
vide better results compared to the model which will only 
use fully observed (uncensored) instances (like CoxPH) 
[23]. The combination of neural network and multiple 
task logistic regression in NMTLR allows the model to 
build a nonlinear statistical data modeling tool to deal 
with complex relationships and has shown better predic-
tive performance than the other three models [28].

Strengths and limitations
To our knowledge, this is the first study to develop and 
validate models for individual CVD outcomes among 
patients with hypertension using administrative data. 
Utilizing administrative health data provides the 
opportunity to: 1) utilize risk factors that are routinely 
collected; and2) adopt the methods into existing hyper-
tension and cardiovascular care practice and programs 
that are relevant for precision medicine. Further, there is 
considerable potential to use this data to improve clini-
cal care cross a spectrum of chronic diseases. Our study 
results support that large administrative data provides 
sufficient statistical power to develop and validate pre-
dictive algorithms with a larger set of risk factors and 
greater specification of those risks, which in turn gener-
ate distinct survival probability for a wide range of health 
profiles or populations. Importantly, for individual-level 
prediction, our finding suggests that NMTLR has the 
best discrimination and calibration performance when 
compared to the other three models.

There are limitations to this study. Firstly, most patients 
in the study were followed up for 3 years, which may not 
be adequate to capture all CVD outcomes, especially for 
those younger and have a small number of comorbidities. 
Secondly, this study was retrospective and conducted in 

Fig. 5  Personalized survival prediction by using (a) LMTLR model, (b) NMTLR model, (c) RSF model and (d) CoxPH model when randomly 
choosing two patients who have CVD outcome at 1.1 years and 2.3 years as an example. X axis is survival time in years, Y axis is survival probability. 
Hypertension patient one (red line) was diagnosed as CVD outcome at 2.3 survival years while hypertension patient two (blue line) was diagnosed 
as CVD outcome at 1.1 survival years. The bottom position of survival time text (1.1 and 2.3) on the pictures correspond to 50% survival probability 
horizontal location line. Note: CoxPH = Cox’s proportional hazard, LMTL = linear multi-task logistic regression, NMTLR = neural multi-task logistic 
regression, RSF = random survival forest
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a single cohort. Further study is required to demonstrate 
generalizability of our findings. Thirdly, there are many 
important factors, such as blood pressure and other CVD 
medications, that were not included due to the limita-
tions of administrative health data used in this study. 
Lastly, this study did not fully take into account missing 
data. Variables were included in the model even if one 
patient had a single value in the chart. This may have 
some-what diminished our predictive accuracy; how-
ever, a strength of this approach is that it represents the 
true nature of administrative health data with minimal 
transformations and with no data imputations. Another 
consideration is that we elected to define hypertension 
patients using a validated diagnosis codes with a high 
sensitivity and specificity. This methodology that using 
1 hospitalization and 2 physician claims algorithm for 
hypertensive patients’ definition could represents a more 
easily deployable solution to cohort building and model 
development.

Conclusions
This study demonstrated that four ML models utilizing 
administrative health data exhibited similar high discrim-
ination and calibration in predicting incident hospitaliza-
tion for CVD among hypertensive patients. Specifically, 
the NMTLR model had the best individual survival pre-
diction and the RSF model had the best population sur-
vival prediction. Improved prediction of outcome has 
the potential to help clinicians make more meaningful 
decisions about treatment. Importantly, this study makes 
use of administrative health data that is already routinely 
collected but underexploited by clinical health systems. 
While ML methodologies have many advantages, to truly 
improve patient care and outcomes, methods for teasing 
out causal relationships will remain an important part of 
the health care and biomedical armamentarium.
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