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Abstract 

Background  When evaluating the impact of environmental exposures on human health, study designs often include 
a series of repeated measurements. The goal is to determine whether populations have different trajectories of the 
environmental exposure over time. Power analyses for longitudinal mixed models require multiple inputs, including 
clinically significant differences, standard deviations, and correlations of measurements. Further, methods for power 
analyses of longitudinal mixed models are complex and often challenging for the non-statistician. We discuss meth-
ods for extracting clinically relevant inputs from literature, and explain how to conduct a power analysis that appro-
priately accounts for longitudinal repeated measures. Finally, we provide careful recommendations for describing 
complex power analyses in a concise and clear manner.

Methods  For longitudinal studies of health outcomes from environmental exposures, we show how to [1] conduct 
a power analysis that aligns with the planned mixed model data analysis, [2] gather the inputs required for the power 
analysis, and [3] conduct repeated measures power analysis with a highly-cited, validated, free, point-and-click, web-
based, open source software platform which was developed specifically for scientists.

Results  As an example, we describe the power analysis for a proposed study of repeated measures of per- and poly-
fluoroalkyl substances (PFAS) in human blood. We show how to align data analysis and power analysis plan to account 
for within-participant correlation across repeated measures. We illustrate how to perform a literature review to find 
inputs for the power analysis. We emphasize the need to examine the sensitivity of the power values by considering 
standard deviations and differences in means that are smaller and larger than the speculated, literature-based values. 
Finally, we provide an example power calculation and a summary checklist for describing power and sample size 
analysis.

Conclusions  This paper provides a detailed roadmap for conducting and describing power analyses for longitudinal 
studies of environmental exposures. It provides a template and checklist for those seeking to write power analyses for 
grant applications.
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Background
Longitudinal epidemiology studies are often conducted in 
settings where elevated levels of environmental contami-
nation have been detected [1–3]. When an environmen-
tal contamination event is discovered and remediated, 
ideally the exposure is terminated or greatly reduced for 
the impacted population [4]. However, despite exposure 
reduction, some contaminants, such as per- and poly-
fluoroalkyl substances (PFAS), persist for a long time in 
the bodies of exposed individuals. Health effects may 
depend not only on the current level of contamination 
in blood, but also the peak level of contamination expe-
rienced, the length of time the internal exposure persists, 
and the trajectory of the exposure over time. Studies of 
blood concentrations of persistent environmental con-
taminants are important first steps toward understanding 
the health effects of these substances.

To study the amount of time a chemical remains in 
blood after exposure ceases, scientists often plan a series 
of measurements from repeated blood samples. Blood 
levels of chemicals are continuous variables, which can 
often be transformed to have normal distributions. Such 
data are often analyzed using general linear mixed mod-
els [5], which account for correlation across repeated 
measurements of blood for each person and can handle 
missing data. A key part of such a study is conducting a 
power and sample size analysis.

Accurate selection of the sample size is required to 
ensure adequate power for detecting associations of clini-
cal relevance or public health significance. The sample 
size must provide enough power to assess differences in 
repeated measures of a contaminant, either in people or 
in the environment. The sample size calculation should 
also be conducted to match the data analytic approach 
chosen for the study. This produces an aligned data and 
power analysis [6]. In addition, the scientist must accom-
modate other restrictions on design. Exposed popula-
tions may be small, and repeated testing of biomarkers 
can be both difficult and expensive. People living with 
elevated chemical body burden may be reluctant to par-
ticipate in repeated sampling, and accurate assessment of 
biomarker concentrations for many substances of health 
relevance can cost hundreds of dollars per sample. Envi-
ronmental health research may also be constrained by 
the size of the exposed population.

Once a design is proposed, scientists need to assess the 
statistical power. Power is the probability of rejecting the 
null hypothesis when the alternative hypothesis is true. 

Studying power for each study design of interest can help 
investigators weigh the costs and benefits of enrolling 
additional participants. Although there are a number of 
tutorials available that describe the process of selecting 
sample sizes for longitudinal studies with repeated meas-
ures [7–9], the examples are from scientific areas other 
than environmental health sciences. We give a detailed 
description of how power and sample size should be cal-
culated, using a planned study of the persistence of PFAS 
in blood as an example. This work is designed to provide 
a tutorial on power and sample size, using an example 
drawn from environmental health sciences.

This manuscript is intended for environmental health 
scientists. We describe the general methodology for a 
power or sample size analysis for a study with longitu-
dinal repeated measures which will be analyzed with a 
general linear mixed model. We illustrate how to map 
study aims to testable statistical hypotheses. We discuss 
how to match a power and sample size analysis to a data 
analysis plan, and how to use published inputs to inform 
power analysis. We recommend methods and soft-
ware for power and sample size analysis for longitudinal 
repeated measures. We provide a power analysis check-
list for proposal submissions (Fig. 1). We give an example 
of a power and sample size analysis performed for a grant 
proposal submission to the National Institutes of Health.

Methods
Aligning power and data analysis
Choosing a testable hypothesis and the form of the mixed 
model is beyond the scope of this paper. Cheng et al. [10] 
provided a brief and practical set of guidelines for form-
ing a testable hypothesis and selecting model parameters 
for the longitudinal general linear mixed model. For the 
purpose of this tutorial, we assume that the statistical 
analysis plan has specified the hypothesis and the form of 
the mixed model.

Power analyses cannot be considered until the study 
design, statistical models and hypotheses are chosen. 
Without alignment among all three aspects, conclu-
sions drawn from a power analysis are unreliable [6, 11]. 
Muller et  al. 2 (see page 1223, Table  11) gave an exam-
ple in which computing power for a t-test (column 1, 
labeled as “Last time”), rather than the more compli-
cated planned analysis with repeated measurements, 
yielded power which was higher than the true power. If 
an analyst computes power which is too high, the analyst 
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may mistakenly choose a sample size that is too small. A 
misaligned power analysis provides the right answer to 
the wrong question. The sample size may be either too 
large or too small. Too large a sample size wastes time 
and money, while too small a sample size increases the 
chance of missing an important association. While exact 
alignment may be unattainable, a key goal is to obtain 
the closest alignment possible. Accurately accounting for 
correlation across repeated measurements is an impor-
tant consideration. Good alignment requires the power 
and sample size analysis to use the same statistical test, 
model, and assumptions about the correlation and vari-
ance patterns as the planned analysis of the data. Equally 
importantly, the assumptions of the planned analysis 
must properly align with the actual data.

Methodology for computing power for longitudinal 
models
Approaches to computing power for the longitudinal 
general linear mixed model fall into four clusters [12]. 

Power and sample size methods can be characterized as 
1) approximations only guaranteed to be accurate in large 
samples [13–18], 2) exemplary data approaches [19, 20], 
3) simulation methods [21–24], or 4) approximate (or 
exact) methods that are accurate in both small and large 
sample sizes.

We recommend using approximate or exact methods 
that are accurate in both small and large samples sizes 
[6]. Our rationale is based on arguments from Chi et al. 
[12]. Chi et  al. [12] noted that large sample approxima-
tions may give misleading high or low power values 
for the relatively small sample sizes of many studies of 
environmental contamination. The problem with large 
sample approximations for power is that the accuracy 
depends on the sample size, the hypothesis, and the 
study design in a complex way. It is better to use a power 
approximation method which is accurate across a broad 
swath of designs [6]. Chi et al. [12] demonstrated that the 
exemplary data approach may not apply for missing and 
mistimed data, which is common among environmen-
tal epidemiology studies with repeated measurements 
and longitudinal designs. Finally, Chi et  al. [12] pointed 
out that simulation-based approaches for power analysis 
should meet software-industry standards, including test-
ing and documentation.

Power analysis software
Computing power or sample size for the longitudinal 
general linear mixed model requires software to handle 
the multiple inputs and complex approximations. Given 
the rapid changes in software, it is impractical to list all 
software packages that offer power and sample size com-
putations for studies of correlated longitudinal repeated 
measures.

There are three software packages that implement the 
methods preferred by Chi et  al. [12] Two commercial 
software products, PASS [25], and SAS PROC POWER 
[26], implement the preferred methods, but require 
license fees. We recommend GLIMMPSE [27, 28], which 
is free, open-source, point-and-click, and requires only a 
web-browser to use.

The description of GLIMMPSE [27] in the Journal of 
Statistical Software includes extensive validation studies, 
which compare the accuracy of the software to Monte 
Carlo simulations. The web site hosting GLIMMPSE 
also links to related power and sample size publica-
tions, tutorials, a manual, and citation information. In 
addition, the site links to material from a short course 
funded by R01GM121081 and taught at five universities 
to over 240 learners. GLIMMPSE was developed with 
funding from five National Institute of Health (NIH) 
grants. GLIMMPSE allows the user to input either LEAR 
or unstructured covariance structures to account for 

Fig. 1  A power analysis check-list
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correlation between repeated measurements, supports 
interaction hypothesis tests, and supports a wide variety 
of statistical tests such as the Wald test. GLIMMPSE also 
allows the user to assess sensitivity by calculating power 
over different scales of the mean difference and standard 
deviation. The GLIMMPSE software will also compute 
confidence intervals for power calculations based on esti-
mated variances and correlations.

Obtaining inputs for power analysis
Validated software products will produce reasonable 
power and sample size numbers, given the appropriate 
inputs. But finding such inputs is often the most diffi-
cult part of power and sample size analysis. For a power 
analysis of a longitudinal study with continuous repeated 
measures, one needs multiple inputs. Required inputs 
include 1) the predictors in the model, 2) the Type I error 
rate, 3) a clinically significant difference or minimally 
detectable difference in the outcome, 4) the variances and 
correlations of the outcome variables, given the predic-
tors, and 5) the choice of the hypothesis test. If sample 
size is fixed, investigators are seeking to predict power or 
confidence interval width. Otherwise, investigators must 
specify the power desired for a study, and choose a sam-
ple size large enough to attain that power.

Environmental exposures often affect small popula-
tions, fixing the sample size. The goal shifts to comput-
ing power for a mean difference of interest. The choice 
of a mean difference of interest depends on scientific 
concerns intrinsic and extrinsic to the experiment. One 
approach for calculating power uses a hypothesized dif-
ference that is driven by clinical, environmental, regula-
tory, or public health concerns. In some cases, a current 
regulatory standard may determine a mean difference of 
interest. In other cases, it may be known what differences 
in levels of environmental contaminants are associated 
with clinically important health effects. When no previ-
ous studies have determined a clinically relevant differ-
ence, another approach is to find the smallest difference 
that can be observed at a predetermined power.

Scientists turn to three main sources for finding the 
remaining power inputs. They include separate pilot 
studies, internal pilot designs, and published sources. 
The goal is to find reasonable choices for mean values 
for each predictor group at each time point, and corre-
sponding values for correlations and standard deviations 
of outcomes, adjusted for the predictors.

A pilot study is a small study conducted before the 
main study. Results from the pilot study may be used to 
provide inputs for power and sample size analysis of the 
main study. However, separate pilot studies often require 
separate funding. In addition, for an environmental con-
tamination event, the time required to run a pilot study 

may allow internal contaminant concentrations to drop, 
preventing timely ascertainment of peak exposure.

As an alternative to traditional pilot studies, an “inter-
nal pilot design” may be used. An internal pilot design 
uses data collected from the first few participants to esti-
mate the standard deviations and correlation in order to 
choose a sample size. As an adaptive design, the approach 
requires careful planning to control Type I error rate [29].

If a pilot study is not practical, a systematic literature 
search is the best option to find inputs based on data. The 
search begins by finding studies as closely comparable to 
the planned study as possible. There is often a choice of 
published studies on which to base inputs. Studies can be 
considered comparable if populations, outcomes, study 
time frames and covariates are similar. For a longitudi-
nal repeated measures design, comparability requires 
similarity in the timing of the repeated measures. Ana-
lysts should cite the published studies from which they 
extracted inputs. If there are many published papers, 
and the inputs from the papers differ, the analyst should 
describe their choice and provide the rationale.

Unless the planned study is a replication of a previous 
study, it is unlikely that any study in the literature will 
be an exact match to the planned study. It is important 
to recognize that ethical power analysis is a good-faith 
attempt to do the best one can, an attempt that should be 
reported in detail, including the limitations. Power analy-
sis is often, at best, an informed guess as to what a future 
study will find.

Selecting inputs for power analysis is not exact. When 
using statistical estimates as inputs, there are approaches 
to help account for statistical uncertainty [30–32]. The 
methods give confidence intervals around the power 
values and sample size for the study proposal. Another 
approach is to conduct a sensitivity analysis. A sensitivity 
analysis includes alternate values for mean differences, 
variances and correlations. An analyst may consider val-
ues for means and variances twice as big, or half as big, 
as the original hypothesized value, and examine the effect 
on power. A table of alternative inputs, and the associ-
ated sample sizes, is useful.

The most difficult values to obtain from published 
reports are estimates of correlations among repeated 
measures, and changes in variance across time. Failing 
to account for within-participant correlations can lead 
to incorrect power and sample size calculations (Mul-
ler, LaVange, Ramey and Ramey 1992). A common error 
occurs when analysts assume a simple pattern in cor-
relation, when the true pattern is complex [33]. Fitting 
an unstructured covariance matrix avoids the error of 
oversimplification.

In innovative studies which are first in their field, there 
may not be information about covariance structures 
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available in the literature. In these cases, one possibility 
is to consider using a Linear Exponential Auto Regres-
sive [34], which uses a small number of parameters to 
specify a correlation pattern that decreases over time. 
If the correlation pattern was chosen speculatively, the 
analyst should make this clear when reporting the power 
analysis. If the Linear Exponential Auto Regressive is bio-
logically implausible, there are many other correlation 
structures available which an analyst could specify for 
a power analysis. Littell et  al. [35] provide a nice sum-
mary of options. Some authors suggest that a conserva-
tive approach is to try different covariance structures, 
compute the sample size required for adequate power for 
each covariance structure, and choose the largest sample 
size required [36, 37].

For longitudinal studies, an accurate power analy-
sis should allow for missing data and attrition. Fail-
ing to do so when needed can lead to an unrealistically 
small choice of sample size [38]. The issue is magnified 
in longitudinal studies in which participants are required 
to attend multiple visits. Previous studies in similar 

populations can provide realistic estimates for dropout, 
missing data and attrition [39].

Recommendations for writing a power analysis
In Fig.  1, we summarize recommendations for writ-
ing power analyses [6–8, 27]. As recommended by 
Gawande [40], we provide instructions in the form of 
a checklist. Including all the elements in the check-
list allows the reader to recreate the power analysis 
themselves. The ability to check power calculations 
extends the idea of reproducibility in science [41] to 
study design.

A power curve, such as that shown in Fig.  2, is often 
helpful. The curve shows the sensitivity of the power 
analysis to changes in the input values. Both changes in 
mean differences and standard deviations affect power.

Results
Overview
We use a power analysis for a longitudinal study of blood 
PFAS concentrations as an example. We describe the 

Fig. 2  Power for time-by-group interaction, as a function of mean difference [(μ T1,A - μ T3,A) -(μ T1,C- μ T3,C)] and standard deviation of PFHxS. 
Data are back-transformed for interpretability. The standard deviation shown is 3.02 ng/mL. This mean difference is scaled by factors of 0.5, 1, 1.5, 
and 2 along the x-axis. The solid line shows how differences in the mean difference may affect power. Additionally, the two dashed lines show how 
the relationship between the mean difference and power changes when the standard deviation is smaller by half (1.51 ng/mL) or doubled in size 
(6.04 ng/mL)
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background, the statistical analysis plan, the hypothesis 
tests, a power analysis that matches the statistical anal-
ysis plan, the inputs for the power analysis, and provide 
an example power analysis. We also provide step-by-step 
screenshots for the power analysis (Additional file 2).

Background for an example longitudinal study
PFAS are a class of chemicals that have been widely used 
for more than 70 years in industrial and commercial 
applications due to their unique surfactant properties 
[42]. PFAS are used in numerous consumer and indus-
trial applications, including stain- and water-resistant 
textiles, non-stick cookware, and fire-fighting foams, as 
well as specialized applications in electronics, photogra-
phy, and hydraulic fluids [43, 44]. Humans are exposed 
to PFAS through a variety of routes, but in the general 
population, exposure is most frequently via ingestion of 
contaminated food and water [45–49].

No national enforceable standards have been set for 
PFAS in drinking water. However, the United States Envi-
ronmental Protection Agency (USEPA) has established 
health advisories (70 ng/L) for two commonly measured 
PFAS, perfluorooctane sulfonate (PFOS) and perfluo-
rooctanoate (PFOA) [50, 51]. The health advisories were 
developed based on results from animal and epidemio-
logic studies which show an association between PFAS 
chemicals and developmental toxicity, carcinogenicity, 
as well as potential adverse effects on liver, immune, and 
endocrine function [52].

Between 2013 and 2015, PFAS concentrations above 
the USEPA health advisory were detected in public water 
systems in the towns of Fountain, Security and Widefield, 
all located in El Paso County, Colorado. Combined, the 
three water systems as well as local private wells serve 
approximately 70,000 people. These water sources were 
likely contaminated years before 2013, although when the 
contamination first reached local water supplies remains 
unclear. The contamination likely occurred as the result 
of the use of aqueous film-forming foams (AFFF) for 
firefighting at Peterson Air Force Base. Studies have 
shown that the concentration of PFAS decreases as the 
groundwater flows away from the air force base [53–55]. 
A preliminary survey (R21 ES029394, PI: Adgate) of 
blood concentrations of PFAS in 213 local adult resi-
dents showed that participants had median blood con-
centrations of perfluorohexane sulfonate (PFHxS) and 
PFOS roughly 12 and two times, respectively, as high as 
the median of the U.S. general population (Barton et al. 
2019). While PFHxS is structurally similar to PFOS, stud-
ies indicate it has a longer elimination half-life in humans 
[56, 57].

Following the discovery of PFAS concentrations above 
the USEPA health advisory, the Water Authorities of 

Fountain, Security and Widefield moved to change 
sources and implement water treatment to reduce the 
concentrations of PFAS reaching consumers. According 
to the Colorado Department of Public Health and Envi-
ronment, the best estimate of when consumers in Foun-
tain were last exposed to high PFAS concentrations in 
drinking water was August of 2015. Security and Wide-
field were exposed to high concentrations, at least spo-
radically, until summer 2016.

Goals of the planned study
The complex mixture of PFAS present in the contami-
nated water has not been fully characterized. The water 
contains both frequently measured and previously 
uncharacterized PFAS. The rate of excretion of some of 
the various components in this mixture is unknown. The 
goal of the proposed study will be to describe the rate of 
decline in blood concentrations over a three-to-five-year 
period in adults and children.

Study design
We describe the study design for which we computed 
power. We proposed a longitudinal repeated measures 
study design. Study participants would be recruited 
from those exposed to PFAS-contaminated drinking 
water in Fountain, Security and Widefield, and would 
give written informed consent. During the three-year 
study, we would collect three, approximately equally 
spaced, repeated blood samples from 500 adults and 
500 children for PFAS quantification. These would 
occur at approximately four, five, and 6 years after 
contamination ended. To avoid clustering within fam-
ily units, we would only allow one study participant to 
enroll per family unit.

We chose the sample size based on two factors. First, 
the study investigators had conducted a pilot study in 
the population of interest, and so they had an estimate of 
PFAS blood concentration, the size of the eligible popula-
tion, and the recruitment rate they could expect. Second, 
the maximum budget limited the number of samples. 
Because the sample size was fixed by cost constraints, the 
investigators sought to compute power.

Methods for the planned study
In the planned study, all study participants would have 
blood collected three times during the study period. A 
panel of PFAS (PFHxS, PFOS, PFOA) would be measured 
in blood using a High Performance Liquid Chromatogra-
phy Turbo Ion Spray ionization tandem mass spectros-
copy instrument with isotopic dilution [58]. The limits 
of detection for all PFAS are approximately 0.1 ng/mL. 
The precision and accuracy of the estimation ranges from 
5.1–15.4% and 87–108%, respectively [58].
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Translating goals to hypotheses
Study investigators wished to compare blood concen-
trations of PFAS between children and adults. They 
hypothesized that the rate of decline in blood PFAS con-
centration over time would differ between adults and 
children. This hypothesis corresponds to examining the 
strength of the time-by-life stage interaction.

Choosing a modeling approach
The investigators planned to use a linear model, a similar 
approach to that used in Olsen et al. [56]. The rationale 
for using a linear, rather than non-linear model follows. 
Thompson et  al. [59] gave a single compartment phar-
macokinetic equation for modeling blood concentrations 
of PFOA and PFOS. We assume that PFHxS will follow a 
similar model. The water supplies of Fountain, Security, 
and Widefield have remediated to concentrations below 
the USEPA health advisory, so there is assumed to be lit-
tle continued exposure via drinking water. Modifying the 
equation of Thompson et  al. [59] implies that the loga-
rithm of the concentration in blood is linear in time, an 
observation corroborated by the findings of Olsen et al. 
[56] and others. Since the log of blood concentration fol-
lowed a linear model, the investigators chose to use three 
repeated measures of the log of concentration as the out-
comes in the model.

To account for potentially missing and mistimed data, 
and allow for repeated measures in a longitudinal study, 
the investigators planned to use a general linear mixed 
model [5], as opposed to a multivariate model, which 
would not accommodate missing data. A linear expo-
nential autoregressive covariance structure would be 
included to account for repeated measurements within 
participants. The investigators chose a linear exponen-
tial autoregressive covariance structure, because they 
felt that the correlation between measurements would 
decrease slowly across time. The Wald test with Ken-
ward-Roger degrees of freedom would allow for hypoth-
esis testing with an accurate Type I error rate [60, 61].

As predictors in the model, the investigators chose 
to use an indicator variable for stage of life (child or 
adult). They defined adulthood as the onset of puberty 
(menarche for girls and pubic hair for boys) [62]. Why 
use an indicator variable, instead of using age as a con-
tinuous predictor? As children grow during and after a 
contamination event, their body size and blood volume 
increase, diluting the concentrations of the chemical. 
Growth in body volume and hence blood volume in time 
is roughly linear across the age group of children to be 
studied [63]. The linear growth means that the dilution 
factor per year of age is the same, no matter the age of the 
child at the contamination event. Thus, children can be 
considered a homogenous group in terms of their change 

in blood concentrations over time after the contamina-
tion event.

Aligning power and data analysis
The planned data analysis used a linear mixed model that 
accounted for correlation between repeated measures of 
the outcome. The planned hypothesis testing approach 
was to use a Wald test to examine the time-by-life-stage 
interaction. An aligned power analysis needs to assume 
a similar model, hypothesis, and hypothesis testing 
approach. The investigators chose to perform this power 
analysis using GLIMMPSE [27], which computes power 
for the longitudinal studies analyzed with general linear 
mixed models.

Obtaining inputs required for power analysis
A small cross-sectional pilot study was conducted, and 
provided blood measurements of PFOS, PFHxS, and 
PFOA collected in June 2018 [4]. This date was approxi-
mately two-years after the contamination event ceased in 
all three towns. These data provided an estimate of blood 
PFAS concentrations in the exposed population. Because 
the pilot study was cross-sectional, it did not provide 
estimates of correlation between the repeated measures, 
nor did it describe the pattern of decline of PFAS in blood 
over time. Choices for decline over time and correlations 
among repeated measures are needed to conduct a power 
analysis for the proposed longitudinal design.

To select the correlation values and the rate of decline 
over time, we conducted a systematic literature review. 
A search for “perfluorinated compounds” or “perfluoro-
alkyl substances” in PubMed resulted in more than a 
thousand publications. By filtering the collection to find 
highly cited longitudinal studies, we condensed the pub-
lications down to five options [1, 56, 57, 64, 65]. We then 
searched the remaining five publications for repeated 
measurements, a similar length of follow-up as the pro-
posed study, a similar time since the exposure ended, and 
a similar profile of PFAS exposure in each publication.

In this case, we chose a study from Olsen et al. [56] on 
which to base the inputs for the power calculation. The 
paper was chosen for two reasons. First, the paper has 
been cited 752 times (Web of Science, 9/25/2020). Sec-
ond, the USEPA used the paper to develop the current 
health advisories [66, 67]. Olsen et al. [56] followed their 
cohort for an average of 5 years, a similar length of fol-
low-up to the proposed study. In addition, the cohort in 
the Olsen et al. [56] paper had a similar profile of PFAS 
exposure to the proposed study, in that the highest blood 
concentrations were detected for PFOA, PFOS, and 
PFHxS. The contamination in the Olsen et al. [56] paper 
ended within a similar time frame as the proposed study, 
about 0.4–11.5 years before the study began. Finally, 
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Olsen et al. [56] collected up to eight blood samples for 
each participant, and published enough detail to allow 
readers to infer the correlation structure of the log PFAS 
blood concentrations.

There were some differences between the study 
described in Olsen et  al. [56] and the proposed study 
design. Olsen et  al. [56] had an occupational cohort, so 
nearly all study subjects had initial PFAS blood concen-
trations higher than expected in the proposed study pop-
ulation. It is possible that the differences in populations 
may lead to a difference in the rate of elimination of PFAS 
from the blood. Further, the study from Olsen et al. [56] 
only reported data for an adult cohort of mostly males. 
There are clear biological differences between adults and 
children, such as growth, which meant that the investiga-
tors of the proposed study had to decide how to extrapo-
late power inputs for children.

Selecting inputs: decline in PFAS over time
In Fig.  1 (pages 1302–1303), Olsen et  al. [56] showed 
that there was a log-linear relationship between time and 
PFAS concentrations in blood, during the 5 years the par-
ticipants were studied. Although Olson does not report 
the slope of the lines, they do provide enough data to cal-
culate them. The rate of change in PFAS concentration 
over time can be computed using log transformations 
of the reported PFAS concentrations, and the num-
ber of days between the initial and final measurements, 
excerpted from Olsen et al.’s [56] Table 2.

Values for adults at approximately two-years post con-
tamination in the Fountain, Security and Widefield popu-
lation were obtained from Barton et al. (2019). Projected 
values for the Fountain, Security and Widefield population 
at four, five, and 6 years post-contamination were pro-
jected from log transformations of the observed starting 
values, assuming that the decline in concentration was the 
same as that observed, on average, in Olsen et al. (2007). 
The interpolated values for PFHxS are shown in Table 1.

Estimating inputs: standard deviation of PFAS from pilot
Multivariate linear models were used to estimate the 
standard deviation of each PFAS. The outcome was esti-
mated log transformed PFAS blood concentration at 

years 4, 5, and 6. The predictor was the model intercept. 
The standard deviations were estimated using residuals 
from the model.

Extrapolation of response variables for children
With the assumption that adults and children excrete 
PFAS at the same rate each year, we developed the 
following plan to predict PFAS concentrations for 
children on a year-to-year basis. Children consist-
ently grow in weight (and thus volume), so we needed 
to account for the dilution effect that growth would 
have on each estimate of blood PFAS concentra-
tion. Between 3 and 11 years of age, children gain 
weight in an approximately linear fashion [68, 69]. 
Children have an average 15% increase in weight per 
year, meaning that we needed to adjust for a 60%, 
75% and 90% increase in weight at four, five and 
6 years post-contamination, respectively. Assum-
ing that 1 kg of growth in weight is roughly equal to 
1 L growth in volume, we estimated PFAS concentra-
tions for children while accounting for growth in vol-
ume. The computations used an equation for dilution 
(concentration1*volume1 = concentration2*volume2). 
Results may be seen in Table 1.

Estimating inputs: correlations
Longitudinal correlations were calculated for PFAS using 
initial, day 730, and final measurements from Olsen 
et  al. [56]. The observed correlation coefficients best fit 
a LEAR model [34], with a base correlation of 0.9 and a 
decay rate of 1.0. Coefficients for the LEAR model are 
shown in Table  2. An advantage of fitting a correlation 
pattern model is that it provides estimates of correlations 
for all measurements for the proposed study.

Table 1  Speculated means and standard deviations of PFHxS blood concentrations (ng/mL), and the associated log transformed 
inputs for power analysis

Untransformed (ng/mL) Log-transformed (log ng/mL)

Life-stage Standard 
deviation

4 years 5 years 6 years Standard 
deviation

4 years 5 years 6 years

Children 3.02 4.57 3.80 3.24 0.48 0.66 0.56 0.51

Adults 3.02 11.22 10.23 9.12 0.48 1.05 1.01 0.96

Table 2  Speculated within participant LEAR correlation matrix 
(base correlation = 0.9, decay rate = 1)

Time 1 Time 2 Time3

Time 1 1.00 0.90 0.81

Time 2 0.90 1.00 0.90

Time 3 0.81 0.90 1.00
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Demonstrating the effect of uncertainty on power
Power curves summarize the dependence of power on 
inputs. The example discussed in the paper is a test of 
interaction. Interaction can be conceptualized as a test of 
two differences of differences: A) [(μT1,A – μ T2,A) – (μT1,C 
– μT2,C)], and B) [(μ T1,A – μ T3,A) – (μ T1,C – μ T3,C)]. Here, 
μT1,A – μT2,A represents the difference in mean response 
for adults between time 1 and time 2. Similarly, μT1,C – 
μT2,C represents the difference in mean response for chil-
dren between time 1 and time 2. T3 is used to indicate 
the third time point. It is convenient to parameterize 
the test so that the first term, [(μT1,A – μT2,A) – (μT1,C – 
μT2,C)], is zero, and the second term is non-zero. This can 
be done because the adult versus child comparison only 
involves two groups. The reparameterization allows plot-
ting the power curve as a function of the second non-zero 
term only. Fig. 2 shows [(μT1,A – μT3,A) – (μT1,C – μT3,C)] 
on the x-axis, and the power on the y-axis. Figure 2 also 
shows how changes in standard deviation may impact 
power. The three lines shown are the power if we observe 
the standard deviation we expect (in the middle), and if 
we see half or twice that standard deviation (on top, and 
bottom, respectively).

An example power analysis
A power or sample size analysis should contain all the 
information needed for a reviewer to recreate the results. 
We give an example of power analysis in the next para-
graph. The power analysis follows the checklist given in 
Fig. 1.

The power computations assumed a longitudinal study 
analyzed with the general linear mixed model. Out-
come variables were three repeated measurements of 
log PFHxS concentrations over time. The predictor was 
a categorical variable that distinguished adults from 
children. Investigators planned to test for time-by-life-
stage interaction using a Wald test with Kenward-Roger 
degrees of freedom [60, 61], and a Type I error rate of 
0.05. Power was computed for the same hypothesis and 
model as planned for data analysis, using GLIMMPSE 
[27] version 3.0.0. The GLIMMPSE platform utilizes the 
Hotelling Lawley Trace test instead of the usual mixed 
model Wald test. Under many conditions, the Wald 
test coincides with the Hotelling Lawley Trace test, and 
therefore the power computations are equivalent [12]. 
Power computations assumed a sample size of 500 adults 
and 500 children, with no more than 10% loss to follow-
up. The recruitment feasibility and the loss-to-follow up 
rate for this population were previously studied by our 
team [4]. Means, standard deviations, and correlations 
were assumed to be as shown in Tables 1 and 2, and were 
obtained from data published by Olsen et  al. [56], and 
from a study by the investigators in the same population 

[4]. The sensitivity of the power calculations to mis-
specification of means and standard deviations is shown 
in Fig. 2. The power appears to be sufficient even if the 
inputs are slightly mis-specified. Under all the assump-
tions made in the paragraph, the proposed study is pre-
dicted to have power of at least 0.82.

We have included a step-by-step guide (Addi-
tional  files  1 & 2) for performing the power analysis 
shown in the manuscript in GLIMMPSE [27]. The power 
analysis can be completely replicated using Additional 
file  1. In addition, we’ve included step-by-step screen 
shots for the software (Additional file 2), showing how to 
provide the inputs, and how to describe the design and 
the hypothesis.

Discussion
Power analysis is an important component of designing 
a replicable study. However, well-defined approaches to 
power analysis are seldom taught to scientists. The envi-
ronmental health sciences literature has few descriptions 
of approaches for power and sample size analysis for lon-
gitudinal mixed models. Further, power and sample soft-
ware can be challenging to use. This manuscript attempts 
to fill the gap.

Even when approaches for power and sample size anal-
ysis are well-understood, choosing reasonable inputs can 
be difficult. Power analysis may be challenging because 
it requires speculation about unknowns. Before a study 
starts, a researcher will not know what means, variances 
and correlations to expect, although they may under-
stand what differences in health outcomes will be impor-
tant to peoples’ wellbeing. Even with pilot studies, it is 
not possible to predict the means or standard deviations 
that will be observed in a planned longitudinal study. This 
leaves the researcher in a position where they must guess 
at the optimal inputs, and then justify reasoning to them-
selves and their peers. A particular challenge is finding 
an appropriate covariance matrix. In data analysis, Gurka 
et  al. [33] suggested that using an unstructured covari-
ance matrix is the approach least likely to inflate Type I 
error rate. For power analysis, specifying an appropriate 
unstructured matrix may be challenging without prelimi-
nary data. The important thing is to clearly state which 
inputs are guesses and which inputs are derived from 
published or unpublished data.

This manuscript seeks to demystify the choice of inputs 
for power analysis. We offer suggestions for how to 
choose the best inputs, and how to document the limi-
tations of the chosen inputs. We show how inputs for 
longitudinal studies may be inferred from pilot data or 
extracted from a systematic literature search. We show 
how to account for the complexities that arise with power 
and sample size analysis for longitudinal studies. With 
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a step-by-step check list and the appropriate software 
tools, power analysis should not be overwhelming.

Power analysis inputs do not need to be perfect. The 
goal is that a researcher chooses inputs that make the 
most sense for the given population and study design. 
With this comes the responsibility of documenting the 
extent to which inputs are from a different population, a 
similar, but not exactly the same exposure, or a related, 
but not identical outcome. For example, cross-sectional 
pilot data might be available for the target study popula-
tion, but might not provide insight about how repeated 
measurements will differ over time. A systematic lit-
erature search may provide information about measure-
ments of health effects over time, but may not include 
the same mixture of chemical exposures observed for the 
planned study.

Given that inputs for power analysis may be imperfect, 
a rigorous scientist may want to see how slight misspeci-
fications in inputs will affect a sample size calculation. 
We show how to use sensitivity analyses to assess the 
effect of inputs on the calculations. Scientists can com-
pare power calculations performed with their best guess 
of inputs to power calculations with smaller mean differ-
ences and/or larger standard deviations. Scientists can 
then argue that even if the means, variance and correla-
tions differ from what was specified in the power anal-
ysis, the resulting sample size will still provide enough 
power. On the other hand, knowing that a study may not 
have enough participants ahead of time can spur rede-
sign, increased recruitment efforts, or expansion of the 
recruitment catchment area.

For many study designs, power and sample size analysis 
may be an iterative process of looking at inputs, check-
ing the sample size required, and redesigning the study. 
Being able to document and archive power analyses is a 
key tenet of reproducible research. The GLIMMPSE plat-
form, used for the power and sample size analyses in this 
paper, provides the ability to save all of the inputs and 
the study design. In this way, researchers can revisit the 
power analysis, and ask the question “What if this input 
changed?”

The GLIMMPSE platform uses a validated point-
and-click approach for power and sample size analysis. 
The software provides guidance for power analysis by 
prompting the user for outcomes, predictors, repeated 
measurements, clustering, covariates, and study hypothe-
ses. Hypothesis test options include tests for main effects, 
linear trends, interactions, nonconstant polynomials, 
and difference scores. Once the structure of the model 
is defined, GLIMMPSE then prompts the user for the 
required inputs. For longitudinal models, the software 
provides assistance in specifying a covariance structure 

that accounts for correlation between repeated measure-
ments across time.

In this manuscript, we present an approach for power 
analysis for predicting declines in blood concentrations 
of persistent environmental chemicals. The approach 
has several strengths. Contributions include a discussion 
of the use of linear models for persistent chemicals, the 
utility of aligning power and data analysis, an explana-
tion about selecting inputs from closely related literature, 
and a demonstration of how to describe a power analysis. 
Researchers may find the screenshots of our power calcu-
lation in GLIMMPSE (Additional file 2) useful as guides 
for their own power analysis.

Our approach also includes several weaknesses. 
This manuscript provides an example power analysis 
for PFAS, a persistent chemical. The same modeling 
approach, and a similar power analysis may not be rea-
sonable for non-persistent chemicals. Linear mixed 
models assume that the outcome is continuous, that 
the errors are normally distributed, and that the con-
centration of the chemical is approximately linear as a 
function of the predictor values across time. The rapid 
metabolism of non-persistent chemicals leads to high 
within-person variability. The problem is further com-
plicated if people have repeated exposure to the chemi-
cals. Rapid metabolism and repeated exposure make it 
difficult to model how internal concentrations change 
between measurements. It is unlikely that concentra-
tions of non-persistent chemicals follow a linear or 
polynomial curve across time. This feature violates the 
assumptions of the linear mixed model, making the 
model an inappropriate choice for repeated measure-
ments of non-persistent chemicals.

New modeling methods for complex outcomes, such 
as non-persistent chemicals, outpace methods for power 
analysis. Better methods for modeling non-persistent 
chemicals are continually appearing in the field of envi-
ronmental science. Each new method presents a new 
challenge for power analysis. Currently, power analysis 
tools are not available for techniques including Bayesian 
kernel machine regression, lasso regression, or weighted 
quantile sum regression.

For analytic approaches which have no power and sam-
ple size methodology, simulation is a common approach 
for aligning the power analysis with the planned analysis. 
Custom simulations require custom-built code, which is 
complicated to write, and difficult to check. For valida-
tion, simulations must undergo unit and overall testing. 
Achieving software industry standards for correctness 
is expensive in terms of time, effort and skill. To meet 
scientific research standards for transparency, one must 
post the code as open source so that others may check it.
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Conclusion
All investigators have an ethical responsibility to appro-
priately power environmental health sciences research. 
Although there are many unknowns, a consistent 
approach to power analysis allows researchers to select 
sample sizes as accurately as possible. A strong power 
analysis approach includes clearly defining a testable 
hypothesis, defining complementary methods for mod-
eling and power analysis, obtaining power analysis inputs 
from pilot data or published resources, and conducting 
the power analysis with validated software. It is our hope 
that this tutorial and checklist will assist environmental 
health scientists in confidently planning and conducting 
power analyses for longitudinal studies of continuous 
outcomes.
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