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Abstract 

Background:  Estimating the average effect of a treatment, exposure, or intervention on health outcomes is a pri-
mary aim of many medical studies. However, unbalanced covariates between groups can lead to confounding bias 
when using observational data to estimate the average treatment effect (ATE). In this study, we proposed an estimator 
to correct confounding bias and provide multiple protection for estimation consistency.

Methods:  With reference to the kernel function-based double-index propensity score (Ker.DiPS) estimator, we pro-
posed the artificial neural network-based multi-index propensity score (ANN.MiPS) estimator. The ANN.MiPS estimator 
employed the artificial neural network to estimate the MiPS that combines the information from multiple candidate 
models for propensity score and outcome regression. A Monte Carlo simulation study was designed to evaluate the 
performance of the proposed ANN.MiPS estimator. Furthermore, we applied our estimator to real data to discuss its 
practicability.

Results:  The simulation study showed the bias of the ANN.MiPS estimators is very small and the standard error is 
similar if any one of the candidate models is correctly specified under all evaluated sample sizes, treatment rates, 
and covariate types. Compared to the kernel function-based estimator, the ANN.MiPS estimator usually yields 
smaller standard error when the correct model is incorporated in the estimator. The empirical study indicated the 
point estimation for ATE and its bootstrap standard error of the ANN.MiPS estimator is stable under different model 
specifications.

Conclusions:  The proposed estimator extended the combination of information from two models to multiple 
models and achieved multiply robust estimation for ATE. Extra efficiency was gained by our estimator compared to 
the kernel-based estimator. The proposed estimator provided a novel approach for estimating the causal effects in 
observational studies.

Keywords:  Average treatment effect, Multiply robust, Multi-index propensity score, Artificial neural network

Background
Estimating the average treatment effect (ATE) is essen-
tial for assessing causal effects of treatments or interven-
tions in biometrics, epidemiology, econometrics, and 
sociology. The ATE can be estimated by directly com-
paring mean outcomes between treated and controlled 
groups in randomized controlled trials [1]. However, ran-
domized controlled trials are usually difficult to imple-
ment because of budget restrictions, ethics, and subjects’ 
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noncompliance. Therefore, observational studies are 
increasingly used for estimating ATE. However, the 
baseline covariates are commonly unbalanced between 
treated and controlled groups in observational studies, 
and simply comparing mean outcomes may induce con-
founding bias [2].

Inverse probability weighting (IPW) under potential 
outcome framework is a popular approach for correct-
ing confounding bias [3–5]. The IPW approach specifies 
a propensity score (PS) model to estimate subjects’ PS 
and uses the inverse of PS to balance baseline covariates 
between groups [6, 7]. For binary treatment, the mostly 
used PS model is the logistic regression. Some machine 
learning models, such as decision tree[8] and artificial 
neural network [9–12] are also used to estimate the PS. 
Another widely used approach is outcome regression 
(OR) [13]. The OR approach specifies an OR model, such 
as generalized linear model [14] to model the outcome as 
a function of the treatment and covariates to correct con-
founding bias directly. Some machine learning models, 
such as random forest [15] and artificial neural network 
[16] are also used as the OR model. Both IPW and OR 
approaches yield consistent estimation only if the corre-
sponding model is correctly specified, but neither can be 
verified by the data alone.

Doubly robust approach, combining the models of PS 
and OR, can yield consistent estimation when any one of 
these two models is correctly specified (not necessarily 
both). Recently, a variety of doubly robust estimators for 
ATE have been proposed, such as augmented estimating 
equations estimator [17] and target maximum likelihood 
estimator [18]. The kernel function-based double-index 
propensity score (Ker.DiPS) estimator proposed by 
Cheng et  al. [19] is one of the weighting-based doubly 
robust estimators. They used the Nadaraya-Watson-
type kernel function to combine the information from 
one PS model and one OR model to obtain an integrated 
PS, which they named as double-index propensity score 
(DiPS). Using IPW approach based on the DiPS, the Ker.
DiPS estimator achieved doubly robust estimation for 
ATE. However, the integrated PS estimated by Nadaraya-
Watson-type kernel may be out of range between 0 to 
1. The unreasonable PS violates the causal inference 
assumption and may yield uncertain estimation. Moreo-
ver, the Ker.DiPS estimator allows only two opportunities 
for estimation consistency.

To provide more protection on estimation consistency, 
we would like to develop an estimator allowing specifying 
multiple candidate models and can achieve estimation 
consistency when any one model is correctly specified. 
Such type of estimator is defined as multiply robust esti-
mator [20, 21]. When combining the information from 
multiple candidate models to obtain the multi-index 

propensity score (MiPS), the Nadaraya-Watson-type 
kernel function may yield unstable estimation as it suf-
fers from the “curse of dimensionality” [22–24]. With the 
development of scalable computing and optimization 
techniques [25, 26], the use of machine learning, such 
as artificial neural network (ANN) has been one of the 
most promising approaches in connection with applica-
tions related to approximation and estimation of multi-
variate functions [27, 28]. The ANN has the potential of 
overcoming the curse of dimensionality [29, 30] and has 
been used as a universal approximators for various func-
tional representations [31–33]. Therefore, we replaced 
the kernel function with ANN to conduct nonparamet-
ric regression to estimate the MiPS. We aim to achieve 
multiply robust estimation for ATE using the ANN-based 
MiPS.

The rest of the article is organized as follows. In the 
Notations and assumptions section, we introduce neces-
sary notations and causal inference assumptions. In the 
Some existing approaches section, we introduce some 
existing estimators that leads to the development of our 
estimator. In the Proposed multi-index propensity score 
section, we describe the origin and construction of the 
proposed estimator in detail. In the Simulation studies 
section, we perform simulations to evaluate the perfor-
mance of the proposed estimator. A real data analysis was 
conducted in the Application to NHEFS data section. We 
make further discussion in the Discussion section and 
conclude the paper in the Conclusions section.

Methods
Notations and assumptions
Suppose that Zi =

(
Yi,Ai,X

⊤
i

)⊤
, i = 1, . . . , n be the 

observed data for ith subject from independent and iden-
tically distributed copies of Z = Y ,A,X⊤ ⊤ , where Y  
is the outcome, A is the binary indicator of treatment 
( A = 1 if treated and A = 0 if controlled), and X is the 
p-dimensional vector of pretreatment covariates. Let Y 1 
and Y 0 represent the potential outcomes if a subject was 
assigned to treated or controlled group, respectively. The 
formula for average treatment effect (ATE) is

Under causal inference framework, the identifiability 
assumptions are usually assumed, that is [6],

Assumption 1. Consistency: Y = AY 1 + (1− A)Y 0 
with probability 1;
Assumption 2. Ignorability: (Y1, Y0) ⫫ A | X, ⫫ 
denotes statistical independence; 
Assumption 3. Positivity: 0 < π(X) < 1 , where 
π(X) = P(A = 1|X) denotes the propensity score.

� = µ1 − µ0 = E
(
Y 1

)
− E

(
Y 0

)
.
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Some existing approaches
The IPW estimator is usually used for correcting confound-
ing bias. The propensity score (PS) π(X) = P(A = 1|X) 
can be modeled as π(X;α) = gπ

(
α0 + αT

1X
)
 , where 

gπ (·) is a specified link function, for example, the inverse 
of the logit function for the logistic regression, and 
α =

(
α0,α

T
1

)T are the unknown parameters and can be 
estimated from maximum likelihood estimation. Under 
causal inference assumptions, the ATE can be estimated by 
the IPW estimator

where α̂ is the estimated value of α . If π(X;α) is cor-
rectly specified, �̂IPW  is a consistent estimator of �.

The OR estimator is another commonly used 
approach for correcting confounding bias. Let 
µA(X) = E(Y |X,A) denote outcome regression (OR), 
where A ∈ {0, 1} . It can be modeled as 
µA(X;β) = gµ

(
β0 + βT

1 X + β2A
)
 , where gµ(·) is a 

specified link function, for example, the identity func-
tion for the linear regression, β =

(
β0,β

⊤
1 ,β2

)⊤ are the 
unknown parameters and can be estimated from maxi-
mum likelihood estimation. Interactions between A and 
X in OR model can also be accommodated by estimat-
ing the OR separately by treated and controlled groups 
[19]. Under causal inference assumptions, the ATE also 
can be estimated by the OR estimator

where β̂ is the estimated value of β . If µ(X,A;β) is cor-
rectly specified, �̂OR is a consistent estimator of �.

If the PS model for IPW estimator or the OR model for 
OR estimator is incorrectly specified, the estimation 
consistency of �̂IPW  or �̂OR with � can not be guaran-
teed. To provide protection against model misspecifica-
tion, Cheng et  al. [19] considered integrating the 
information of PS π(X;α) and OR µa(X;β) to construct 
double-index propensity score (DiPS), which is denoted 
by π

(
X;α1,β1

)
= E

[
A|αT

1X,β
T
1X

]
 . In order to estimate 

this conditional expectation, Cheng et al. [19] firstly got 
the estimated value α̂1 of PS model and the estimated 
value β̂1 of OR model, then used the Nadaraya-Watson 
kernel estimator [34] to conduct nonparametric regres-
sion of A on α̂T

1X and β̂
T

1X , to get the estimated value of 
DiPS as

(1)
�̂IPW =

(
n∑

i=1

Ai

π(Xi;α̂)

)−1 n∑
i=1

Ai

π(Xi;α̂)
Yi−

(
n∑

i=1

1−Ai

1−π(Xi;α̂)

)−1 n∑
i=1

1−Ai

1−π(Xi;α̂)
Yi,

(2)�̂OR =
1

n

n∑

i=1

µ1

(
Xi; β̂

)
−

1

n

n∑

i=1

µ0

(
Xi; β̂

)
,

where Ŝi =
(
α̂
T
1Xi, β̂

T

1Xi

)
 and Ŝ =

(
α̂
T
1X, β̂

T

1X

)
 are 

bivariate regressors, which is named double-index. KH(•) 
is a kernel function with a bandwidth H of 2× 2 matrix. 
Using the estimated DiPS π̂

(
X; α̂1, β̂1

)
 , the ATE can be 

estimated by

Cheng et  al. [19] demonstrated that �̂DiPS is a doubly 
robust estimator: it is consistent when π(X;α) is cor-
rectly specified, or µA(X;β) is correctly specified, but not 
necessarily both.

Proposed multi‑index propensity score
Although �̂DiPS in (3) can achieve doubly robust esti-
mation for ATE, the DiPS estimated by the Nadaraya-
Watson kernel estimator in (2), which may make the 
estimated probability outside the range of 0 to1, then the 
above Assumption 3 is violated. Furthermore, �̂DiPS in 
(3) only allows a single model for PS and a single model 
for OR, the estimation consistency cannot be guaranteed 
when both models are incorrect. To provide more protec-
tion on estimation consistency, we would like to develop 
an approach that allows multiple candidate models for PS 
and/or OR, to achieve multiple robustness: the estimator 
is consistent when any model for PS or any model for OR 
is correctly specified.

Specifically, we consider multiple candidate models for PS 
{�k

(

�;�k
)

= g
�

(

�
k
0
+ �

kT
1
�
)

, k = 1,… ,K} and multiple candi-
date models for OR 
{

�
l
A

(

�;�
l
)

= g
�

(

�
l
1
+ �

lT
1
� + �

l
2
A
)

, l = 1,… , L
} , probably with 

different choices or functional forms of covariates. Then we 
integrate the information from multiple PS models and multi-
ple OR models to construct multi-index propensity score 
(MiPS), which is denoted by 
�

(

�;�1

1
, ...,�K

1
,�

1

1
, ...,�

L

1

)

= E
[

A|�
1T

1
�, ...�KT

1
�,�

1T

1
�, ...,�

LT

1
�
] . In 

order to estimate this conditional expectation, we firstly get 
the estimated values α̂1

1,…, α̂K
1  of multiple PS models and the 

estimated values β̂
1

1,…, β̂
L

1 of multiple OR models, then a 
naive idea is to use the multivariate Nadaraya-Watson kernel 
estimator to conduct nonparametric regression of A on α̂1T

1 X

,…, α̂KT
1 X and β̂

1T

1 X,…, β̂
LT

1 X to get the estimated value of 
MiPS as

(3)π̂

(
X; α̂1, β̂1

)
=

∑n
j=1KH

{(
Ŝj − Ŝ

)}
Aj

∑n
j=1KH

{(
Ŝj − Ŝ

)}

(4)
�̂DiPS =

(
n∑

i=1

Ai

π̂

(
Xi;α̂1,β̂1

)

)−1
n∑

i=1

Ai

π̂

(
Xi;α̂1,β̂1

)Yi−

(
n∑

i=1

1−Ai

1−π̂

(
Xi;α̂1,β̂1

)

)−1
n∑

i=1

1−Ai

1−π̂

(
Xi;α̂1,β̂1

)Yi.
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where Ŝj =
(
α̂
1T
1 Xj , . . . , α̂

KT
1 Xj , β̂

1T

1 Xj , . . . , β̂
LT

1 Xj

)
 and 

̂� =

(

�̂
1T

1
�,… , �̂

KT

1
�, ̂�

1T

1
�,… , ̂�

LT

1
�

)

 are multivariate regres-
sors, which is named multi-index. KH(•) is a kernel func-
tion with a bandwidth H of (K + L)× (K + L) matrix. 
Using the estimated kernel-based MiPS 
�̂
Ker

(

�;�̂
1

1
, ..., �̂

K

1
, ̂�

1

1
, ..., ̂�

L

1

)

 , the ATE can be estimated by

However, if there are no additional assumptions about 
the regression structure, the performance of Nadaraya-
Watson kernel estimator in (5) degrades as the number of 
regressors increases. This degradation in performance is 
often referred to as the “curse of dimensionality” [22–24]. 
Our following simulation results also show that �̂Ker

MiPS 
has obvious bias when multiple candidate models are 
included in π̂Ker

(
X; α̂

1
1, ..., α̂

K
1 , β̂

1

1, ..., β̂
L

1

)
 , even if the cor-

rect PS and/or OR model is covered.
With the development of scalable computing and opti-

mization techniques [25, 26], the use of machine learn-
ing has been one of the most promising approaches in 
connection with applications related to approximation 
and estimation of multivariate functions [27, 28]. Arti-

ficial neural network (ANN) is one of machine learning 
approaches. Benefiting from its flexible structure, the 
ANN becomes a universal approximator of a variety of 
functions [31–33]. The ANN comprises an input layer, a 
researcher-specified number of hidden layer(s), and an 
output layer. The hidden layer(s) and output layer con-
sist of a number of neurons (also specified by research-
ers) with activation functions [35]. The operation of ANN 
includes following steps: 1) Information is input from 
the input layer, which passes it to the hidden layer; 2) In 
the hidden layer(s), the information is multiplied by the 
weight and a bias is added, and then passed to the next 

(5)�̂
Ker

�

�;�̂
1

1
, ..., �̂

K

1
, ̂�

1

1
, ..., ̂�

L

1

�

=

∑n

j=1
K

�

��

̂�j −
̂�

��

Aj

∑n

j=1
K

�

��

̂�j −
̂�

�� ,

(6)

�̂Ker

MiPS
=

(
n∑

i=1

Ai

π̂Ker

(
Xi;α̂

1
1,...,α̂

K

1 ,β̂
1
1 ,...,β̂

L
1

)

)−1
n∑

i=1

Ai

π̂Ker

(
Xi;α̂

1
1,...,α̂

K

1 ,β̂
1
1 ,...,β̂

L
1

)Yi−

(
n∑

i=1

1−Ai

1−π̂Ker

(
Xi;α̂

1
1,...,α̂

K

1 ,β̂
1
1 ,...,β̂

L
1

)

)−1
n∑

i=1

1−Ai

1−π̂Ker

(
Xi;α̂

1
1,...,α̂

K

1 ,β̂
1
1 ,...,β̂

L
1

)Yi.

layer after transforming by the activation function; 3) The 
information is passed layer by layer until the last layer, 
where it is multiplied by the weight and then transformed 
by the activation function to provide the output; and 4) 
Calculate the error between the output and the actual 
value, and minimize the error by optimizing the weight 
parameters and bias parameters through the backpropa-
gation algorithm [36]. In addition to having the poten-
tial of overcoming the “curse of dimensionality” [29, 30], 
the ANN is capable of automatically capturing complex 

relationships between variables [27]. It may be suited for 
modeling the relationship between treatment and multi-
index because interactions commonly exist between 
indexes due to shared covariates in candidate PS and/
or OR models. Therefore, we replaced the kernel func-
tion by ANN and proposed our ANN-based MiPS (ANN.
MiPS) estimator.

Now we propose the ANN-based MiPS. We firstly get 
the estimated values α̂1

1,…, α̂K
1  of multiple PS models and 

the estimated values β̂
1

1,…, β̂
L

1 of multiple OR models, 
then use the ANN to conduct nonparametric regression 
of A on multiple indexes α̂1T

1 X,…, α̂KT
1 X and β̂

1T

1 X,…, 
β̂
LT

1 X to get the estimated value of MiPS as 
�̂
Ann

(

�;�̂
1

1
, ..., �̂

K

1
, ̂�

1

1
, ..., ̂�

L

1

)

 . Then the ATE can be estimated 
by

Our following simulations indicate the multiple robust-
ness of �̂Ann

MiPS : its bias is ignorable when any model for PS 
or any model for OR is correctly specified.

We implemented the ANN that contains 2 hidden lay-
ers with 4 neurons in each hidden layer using AMORE 
package [37] for ANN.MiPS estimator. Therefore, the 
total number of parameters to be estimated in the ANN 
is 4 ∗ (K + L)+ 32 , including 4 ∗ (K + L)+ 24 weight 
parameters and 8 bias parameters. The learning rate is 
set as 0.001 [10, 12]. The momentum is set as 0.5, the 
default value in the AMORE package. The hyperbolic 
tangent function was specified as the activation function 

(7)
�̂Ann

MiPS
=

(
n∑

i=1

Ai

π̂Ann

(
Xi;α̂

1
1,...,α̂

K

1 ,β̂
1
1 ,...,β̂

L
1

)

)−1
n∑

i=1

Ai

π̂Ann

(
Xi;α̂

1
1,...,α̂

K

1 ,β̂
1
1 ,...,β̂

L
1

)Yi−

(
n∑

i=1

1−Ai

1−π̂Ann

(
Xi;α̂

1
1,...,α̂

K

1 ,β̂
1
1 ,...,β̂

L
1

)

)−1
n∑

i=1

1−Ai

1−π̂Ann

(
Xi;α̂

1
1,...,α̂

K

1 ,β̂
1
1 ,...,β̂

L
1

)Yi.
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for hidden layer. The sigmoid function was specified as 
the activation function for output layer to ensure the 
estimated ANN-based MiPS is between 0 to 1 [38]. To 
examine the performance stability of the estimator, we 
performed a sensitivity analysis using different hyperpa-
rameter selections. The simulations, real data analysis, 
and all statistical tests were conducted using R software 
(Version 4.1.0) [39]. A zip file of AMORE package and an 
example code for implementing the ANN.MiPS approach 
can be found in the attachment.

Simulation studies
We conducted simulation studies to evaluate the perfor-
mance of (i) single model-based estimators: IPW esti-
mator in (1) and OR estimator in (2); (ii) doubly robust 
estimators: augmented inverse probability weighting 
(AIPW) [17] and target maximum likelihood estimator 
(TMLE) [18], which allows a single model for PS and a 
single model for OR; (iii) multiple models-based estima-
tors: kernel-based estimator in (6) and ANN-based esti-
mator in (7), which allows multiple candidate models for 
PS and/or OR.

Ten covariates X1 − X10 were generated from standard 
normal distribution, and the correlation between them 
are shown in Fig. 1. The binary treatment indicator A was 
generated from a Bernoulli distribution according to the 
following propensity score

α0 was set to be 0 or -1.1 to make approximately 50% or 
25% subjects entering the treatment group. The continu-
ous outcome Y  was generated from

logit[π(X;α)] = α0 + 0.16X1 − 0.05X2 + 0.12X3−

0.1X4 − 0.16X5 − 0.1X6 + 0.15X7

where ε follows the standard normal distribution. The 
true ATE was � = E

(
Y 1

)
− E

(
Y 0

)
= −0.4.

In the estimation, two estimation models were specified

for propensity score, and two estimation models were 
specified

for outcome regression. According to the data-generat-
ing mechanism, π1

(
X;α1

)
 and µA

1
(
X;β1

)
 were correct 

PS and correct OR models, whereas π2
(
X;α2

)
 and 

µA
2
(
X;β2

)
 were incorrect PS and incorrect OR models, 

due to the mis-specified functional forms of covariates. 
To distinguish these estimation methods, each estimator 
is denoted as "method-0000". Each of the four numbers, 
from left to right, represents if π1

(
X;α1

)
 , π2

(
X;α2

)
 , 

µA
1
(
X;β1

)
 or µA

2
(
X;β2

)
 is included in the estimator, 

where “1” indicates yes and “0” indicates no.
We investigated sample sizes of n = 300 and n = 1000 

with 1000 replications in all settings. Tables 1 and 2 show 
the estimation results of all estimators, along with five 
evaluation measures including percentage of bias (BIAS, 
in percentage), root mean square error (RMSE), Monte 
Carlo standard error (MC-SE), bootstrapping standard 
error (BS-SE) based on 100 resamples, and coverage rate 
of 95% Wald confidence interval (CI-Cov). Our boot-
strapping procedure resamples from the original sam-
ple set with replacement until the bootstrapping sample 
size reaches the original sample size. Fig. S1 shows the 

Y = −3.85− 0.4A− 0.8X1 − 0.36X2 − 0.73X3−

0.2X4 + 0.71X8 − 0.19X9 + 0.26X10 + ε,

� =

{

logit
[

�
1
(

�;�1
)]

=
(

1,X1,X2,X3,X4 ,X5,X6,X7

)

�
1

logit
[

�
2
(

�;�2
)]

=
(

1,X2

1
,X2

2
,X2

3
,X2

4
,X2

5
,X2

6
,X2

7

)

�
2

}

� =

{

�A
1
(

�;�
1
)

=
(

1,A,X1,X2,X3,X4,X8,X9,X10

)

�
1

�A
2
(

�;�
2
)

=
(

1,A,X
2

1
,X2

2
,X2

3
,X2

4
,X2

8
,X2

9
,X2

10

)

�
2

}

Fig. 1  The simulation data structure in our simulation studies
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Table 1  Estimation results under 50% treated based on 1000 replications

n = 300 n = 1000

Estimator BIAS(%) RMSE MC-SE BS-SE CI-Cov(%) BIAS(%) RMSE MC-SE BS-SE CI-Cov(%)

Single model-based estimator

  IPW.correct -1.476 0.150 0.150 0.150 94.0 1.362 0.082 0.082 0.080 94.8

  IPW.incorrect -12.075 0.201 0.195 0.198 94.2 -10.901 0.120 0.112 0.106 92.4

  IPW.ANN -0.704 0.163 0.163 0.332 100.0 0.952 0.084 0.084 0.103 98.6

  OR.correct -0.079 0.117 0.117 0.118 93.4 1.117 0.069 0.069 0.063 92.4

  OR.incorrect -12.050 0.200 0.194 0.195 94.2 -10.752 0.120 0.112 0.106 92

  OR.ANN -3.985 0.139 0.138 0.163 97.3 -1.861 0.076 0.076 0.082 96

Doubly robust estimator

  AIPW-1010 0.113 0.119 0.119 0.120 92.8 1.128 0.069 0.069 0.064 93.4

  AIPW-1001 0.856 0.154 0.154 0.157 95.4 1.328 0.083 0.083 0.081 94.4

  AIPW-0110 0.022 0.119 0.119 0.121 93.0 1.135 0.069 0.069 0.064 92.4

  AIPW-0101 4.900 0.203 0.197 0.199 93.8 -10.811 0.120 0.112 0.107 92

  TMLE-1010 0.094 0.119 0.120 0.121 93.2 1.147 0.069 0.069 0.064 93.2

  TMLE-1001 0.094 0.119 0.120 0.121 93.2 1.147 0.069 0.069 0.064 93.2

  TMLE-0110 0.094 0.119 0.120 0.121 93.2 1.147 0.069 0.069 0.064 93.2

  TMLE-0101 4.976 0.207 0.201 0.200 93.4 -10.771 0.120 0.113 0.107 92

Kernel regression-based MiPS estimator

  MiPS-1000 -3.698 0.152 0.151 0.196 96.2 0.959 0.083 0.083 0.161 95.8

  MiPS-0100 -12.021 0.360 0.357 0.344 98.4 -8.019 0.338 0.337 0.341 97.6

  MiPS-0010 -0.673 0.123 0.123 0.217 96.0 0.691 0.070 0.070 0.264 96.2

  MiPS-0001 -12.457 0.316 0.313 0.364 97.4 -11.262 0.403 0.401 0.354 96.8

  MiPS-1100 -5.179 0.233 0.232 0.214 96.2 4.846 0.297 0.297 0.329 98.2

  MiPS-1010 -3.916 0.134 0.133 0.148 95.8 -1.373 0.075 0.075 0.135 96

  MiPS-1001 -4.993 0.163 0.162 0.207 96.8 2.696 0.309 0.309 0.303 97.8

  MiPS-0110 -2.545 0.147 0.146 0.168 96.4 -0.928 0.167 0.167 0.251 98

  MiPS-0101 -14.182 0.262 0.256 0.311 96.6 -12.290 0.421 0.419 0.531 96.4

  MiPS-0011 -4.060 0.134 0.133 0.175 96.4 1.384 0.221 0.221 0.269 98

  MiPS-1110 -6.431 0.153 0.151 0.155 95.0 -4.548 0.088 0.086 0.088 91.6

  MiPS-1101 -6.984 0.171 0.169 0.173 94.6 -4.906 0.125 0.123 0.152 95.6

  MiPS-1011 -7.481 0.155 0.153 0.155 94.8 -4.711 0.086 0.084 0.090 94

  MiPS-0111 -7.140 0.153 0.151 0.155 94.2 -4.232 0.093 0.091 0.117 95

  MiPS-1111 -9.644 0.173 0.169 0.172 94.0 -7.586 0.101 0.096 0.091 91.6

Artificial neural network-based MiPS estimator

  MiPS-1000 -4.049 0.156 0.155 0.153 94.2 1.178 0.083 0.082 0.080 94.2

  MiPS-0100 -11.768 0.197 0.191 0.195 94.4 -10.864 0.119 0.111 0.106 92.2

  MiPS-0010 -0.927 0.119 0.119 0.122 93.4 1.156 0.069 0.069 0.064 92.2

  MiPS-0001 -11.689 0.197 0.191 0.193 94.0 -10.877 0.119 0.111 0.106 92.2

  MiPS-1100 -3.359 0.154 0.154 0.160 96.2 1.298 0.083 0.083 0.082 94.6

  MiPS-1010 -0.033 0.123 0.123 0.132 94.8 1.056 0.070 0.070 0.066 94.2

  MiPS-1001 -4.114 0.156 0.156 0.158 95.4 1.236 0.083 0.083 0.082 94.4

  MiPS-0110 0.070 0.118 0.118 0.130 95.8 1.437 0.069 0.069 0.065 93

  MiPS-0101 -11.762 0.198 0.192 0.197 94.8 -10.800 0.119 0.111 0.106 92

  MiPS-0011 -0.663 0.119 0.119 0.123 93.6 1.250 0.069 0.069 0.064 92.4

  MiPS-1110 -0.210 0.126 0.126 0.142 97.2 1.058 0.070 0.070 0.068 93.8

  MiPS-1101 -3.847 0.156 0.155 0.164 95.6 1.268 0.084 0.083 0.082 94.2
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distribution of the estimated ATEs of Ker.MiPS and 
ANN.MiPS estimators. The following conclusions can be 
obtained. For estimation bias,

	(i)	 If specifying one model for PS or one for OR: The 
IPW, Ker.MiPS, and ANN.MiPS estimators all have a 
small bias if the PS model is correctly specified (IPW.
correct, Ker.MiPS-1000, ANN.MiPS-1000). The OR, 
Ker.MiPS, and ANN.MiPS estimators all have a small 
bias if the OR model is correctly specified (IPW.cor-
rect, Ker.MiPS-0010, ANN.MiPS-0010).

	(ii)	 If specifying one model for PS and one model for 
OR: The AIPW, TMLE, Ker.MiPS and ANN.MiPS 
estimators all have a small bias if the PS model is cor-
rectly specified (AIPW-1010, AIPW-1001, Ker.MiPS-
1010, Ker.MiPS-1001, ANN.MiPS-1010, ANN.
MiPS-1001), or if the OR model is correctly speci-
fied (AIPW-1010, AIPW-0110, Ker.MiPS-1010, Ker.
MiPS-0110, ANN.MiPS-1010, ANN.MiPS-0110).

	(iii)	 If specifying multiple candidate models for PS and 
OR: The multiple robustness property of the ANN.
MiPS estimator is well demonstrated by the ignor-
able bias of ANN.MiPS-1110, ANN.MiPS-1101, 
ANN.MiPS-1011, ANN.MiPS-0111, and ANN.
MiPS-1111. On the contrary, the biases of the Ker.
MiPS estimators under all model specifications are 
close to or larger than 5%.

For estimation efficiency,
	(i)	 If models for both PS and OR are correctly speci-

fied: The MC-SE of AIPW-1010, TMLE-1010, and 
ANN.MiPS-1010 estimators are all smaller than 
that of IPW.correct and ANN.MiPS-1000 estima-
tors. The improved efficiency may benefit from the 
information of the correct OR model.

	(ii)	 If multiple candidate models incorporate the cor-
rect PS and OR models: The MC-SE of ANN.MiPS-
1110, ANN.MiPS-1011, and ANN.MiPS-1111 esti-
mators are all close to ANN.MiPS-1010.

To evaluate the performance of the MiPS estimator 
when the number of specified models increases, we 
have considered three additional estimators: MiPS-
1111-2PS, adding two additional incorrect PS models 
{
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the basis of the MiPS-1111; MiPS-1111-2PS-2OR, add-
ing two additional incorrect PS models π3
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X;α4
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 and two additional incorrect OR models 

µ3
A

(
X;β3

)
 and µ4

A

(
X;β4

)
 on the basis of the MiPS-

1111. Table 3 shows the estimation results. The follow-
ing conclusions can be obtained.

	(i)	 The estimation bias of ANN.MiPS-1111-2PS, 
ANN.MiPS-1111-2OR, and ANN.MiPS-1111-
2PS2OR estimators is still ignorable. The esti-
mation efficiency of these estimators is hardly 
degraded compared to ANN.MiPS-1010 estimator.

	(ii)	 The estimation bias of Ker.MiPS-1111-2PS, Ker.
MiPS-1111-2OR, and Ker-1111-2PS2OR estima-
tors is close to or larger than 10%. The MC-SE of 
these estimators is obviously larger than that of 
Ker.MiPS-1010 estimator.

We also evaluated the performance of ANN.MiPS 
estimator under the simulation scenario with both con-
tinuous and discrete covariates. The simulation setting 
was described in Supplementary Document. Similar 
conclusions can be obtained as the above scenario with 
all continuous covariates (Table S1, S2). The sensitivity 
analysis of hyperparameters selection in ANN revealed 
the performance stability of ANN.MiPS estimator 
(Table S3).

Application to NHEFS data
To illustrate our proposed method, we analyzed a sub-
set of real data from the National Health and Nutrition 

Table 1  (continued)

The estimator which contains correct and/or incorrect models for propensity score and/or outcome regression is denoted as “method-0000”, where each digit of the 
four numbers, from left to right, indicates if π1

(
X;α1

)
, π2

(
X;α2

)
,µA

1
(
X;β1

)
orµA

2
(
X;β2

)
 is included in the estimator (“1” indicates yes and “0” indicates no)

BIAS bias, RMSE root mean square error, MC-SE Monte Carlo standard error, BS-SE bootstrapping standard error, CI-Cov coverage rate of 95% Wald confidence interval

AIPW augmented inverse probability weighting, TMLE target maximum likelihood estimator, IPW.ANN artificial neural network-based inverse probability weighting 
estimator, OR.ANN artificial neural network-based outcome regression estimator, MiPS multi-index propensity score, IPW inverse probability weighting, OR outcome 
regression

n = 300 n = 1000

Estimator BIAS(%) RMSE MC-SE BS-SE CI-Cov(%) BIAS(%) RMSE MC-SE BS-SE CI-Cov(%)

  MiPS-1011 0.290 0.125 0.125 0.134 95.2 1.088 0.070 0.070 0.067 94

  MiPS-0111 -0.414 0.119 0.119 0.131 95.0 1.521 0.069 0.069 0.065 92.6

  MiPS-1111 -0.418 0.129 0.129 0.145 96.4 1.105 0.070 0.070 0.068 94.2
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Table 2  Estimation results under 25% treated based on 1000 replications

n = 300 n = 1000

Estimator BIAS(%) RMSE MC-SE BS-SE CI-Cov(%) BIAS(%) RMSE MC-SE BS-SE CI-Cov(%)

Single model-based estimator

  IPW.correct -0.733 0.175 0.176 0.187 95.2 -0.111 0.098 0.098 0.095 93.0

  IPW.incorrect -12.516 0.226 0.221 0.239 96.4 -10.289 0.129 0.123 0.122 94.2

  IPW.ANN 1.043 0.192 0.192 0.357 100.0 0.441 0.103 0.103 0.166 98.6

  OR.correct 0.679 0.129 0.129 0.136 97.4 -0.271 0.074 0.075 0.073 94.0

  OR.incorrect -12.186 0.220 0.214 0.222 96.0 -10.228 0.130 0.123 0.121 94.0

  OR.ANN -3.761 0.164 0.164 0.164 98.4 -3.943 0.083 0.082 0.091 96.4

Doubly robust estimator

  AIPW-1010 0.432 0.137 0.137 0.143 96.4 -0.055 0.077 0.077 0.075 94.2

  AIPW-1001 -0.638 0.182 0.182 0.196 96.4 -0.208 0.099 0.099 0.097 93.2

  AIPW-0110 0.565 0.134 0.134 0.148 97.0 -0.304 0.075 0.075 0.074 93.6

  AIPW-0101 -12.674 0.230 0.224 0.251 96.0 -10.294 0.130 0.123 0.122 93.8

  TMLE-1010 -0.004 0.139 0.139 0.142 95.2 -0.029 0.077 0.077 0.075 94.2

  TMLE-1001 -0.004 0.139 0.139 0.142 95.2 -0.029 0.077 0.077 0.075 94.2

  TMLE-0110 -0.004 0.139 0.139 0.142 95.2 -0.029 0.077 0.077 0.075 94.2

  TMLE-0101 -12.970 0.227 0.221 0.234 95.6 -10.371 0.130 0.124 0.122 93.8

Kernel regression-based MiPS estimator

  MiPS-1000 -2.459 0.179 0.179 0.226 97.8 -0.777 0.100 0.100 0.168 95.6

  MiPS-0100 -6.505 0.343 0.342 0.360 97.4 -8.850 0.279 0.277 0.308 96.6

  MiPS-0010 -1.988 0.140 0.140 0.226 97.8 -0.668 0.078 0.078 0.240 97

  MiPS-0001 -9.204 0.328 0.326 0.347 97.0 -9.893 0.203 0.199 0.340 99.4

  MiPS-1100 -4.781 0.195 0.195 0.247 96.8 -9.621 0.341 0.339 0.297 97.6

  MiPS-1010 -5.620 0.166 0.165 0.176 95.2 -1.783 0.085 0.085 0.142 95.2

  MiPS-1001 -3.588 0.193 0.193 0.234 96.8 -2.569 0.230 0.230 0.290 99

  MiPS-0110 -3.367 0.159 0.159 0.192 97.0 1.633 0.215 0.215 0.233 96.8

  MiPS-0101 -11.129 0.263 0.260 0.331 96.8 -1.934 0.467 0.468 0.480 96.6

  MiPS-0011 -4.889 0.165 0.164 0.197 96.8 -2.331 0.181 0.181 0.254 98.4

  MiPS-1110 -7.593 0.182 0.180 0.180 95.6 -5.415 0.099 0.097 0.101 94.6

  MiPS-1101 -6.965 0.208 0.206 0.204 94.6 -5.376 0.125 0.123 0.170 94.6

  MiPS-1011 -8.427 0.182 0.179 0.181 95.8 -4.716 0.101 0.099 0.104 94.4

  MiPS-0111 -6.214 0.177 0.175 0.180 95.0 -5.420 0.115 0.113 0.125 95

  MiPS-1111 -10.303 0.198 0.193 0.197 96.0 -7.518 0.114 0.111 0.105 92.8

Artificial neural network-based MiPS estimator

  MiPS-1000 -2.397 0.177 0.176 0.186 96.2 -0.566 0.098 0.098 0.095 93

  MiPS-0100 -12.446 0.218 0.212 0.225 96.6 -10.300 0.129 0.122 0.121 94.4

  MiPS-0010 0.059 0.133 0.133 0.150 98.4 -0.525 0.075 0.075 0.076 94.8

  MiPS-0001 -12.252 0.216 0.211 0.221 96.0 -10.235 0.129 0.123 0.121 94

  MiPS-1100 -2.543 0.184 0.184 0.200 97.6 -0.593 0.099 0.099 0.098 94

  MiPS-1010 0.529 0.162 0.162 0.189 98.0 -0.395 0.083 0.084 0.087 95.2

  MiPS-1001 -2.461 0.179 0.179 0.195 97.8 -0.608 0.099 0.099 0.097 93.8

  MiPS-0110 0.015 0.145 0.145 0.178 99.2 -0.585 0.076 0.076 0.083 96

  MiPS-0101 -12.496 0.219 0.214 0.227 96.4 -10.305 0.129 0.123 0.121 94.4

  MiPS-0011 -0.014 0.134 0.134 0.155 98.4 -0.349 0.076 0.076 0.077 94.6

  MiPS-1110 -1.144 0.168 0.168 0.206 98.8 -1.015 0.084 0.084 0.090 95.8

  MiPS-1101 -2.636 0.188 0.188 0.206 97.2 -0.626 0.100 0.100 0.099 94
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Examination Survey Data | Epidemiologic Follow-up 
Study (NHEFS) (wwwn.cdc.gov/nchs/nhanes/nhefs/). 
The dataset consists of 1,507 participants aged 25–74 
who smoked at the first survey and were followed for 
approximately 10  years. The empirical study aimed to 
estimate the ATE of smoking cessation (coded as quit-
ting and non-quitting, with non-quitting as the reference 
group) on weight gain. Participants were categorized as 
treated if they quit smoking during follow-up, otherwise 
controlled. Weight gain for each individual was measured 

as weight at the end of follow-up minus weight at base-
line survey (in kilograms). During the 10-year follow-
up, 379 (25.15%) participants quit smoking. The average 
weight gain was greater for those who quit smoking with 
an unadjusted difference of 2.4 kg.

Table  4 summarized the baseline characteristics, 
including age, gender, race, baseline weight, active life 
level, education level, exercise, smoking intensity, smok-
ing years, and ever use of weight loss medication between 
the smoking quitters and non-quitters. As shown in the 

Table 3  Estimation results for multi-index propensity score estimator incorporating extra incorrect models based on 1000 replications

MiPS-1111-2PS indicates the estimator with two additional incorrect propensity score models on the basis of MiPS-1111 estimator

MiPS-1111-2OR indicates the estimator with two additional incorrect outcome regression models on the basis of MiPS-1111 estimator

MiPS-1111-2PS2OR indicates the estimator with two additional two incorrect propensity score and 2 incorrect outcome regression models on the basis of MiPS-1111 
estimator

BIAS bias, RMSE root mean square error, MC-SE Monte Carlo standard error, BS-SE bootstrapping standard error, CI-Cov coverage rate of 95% Wald confidence interval, 
MiPS multi-index propensity score

n = 300 n = 1000

Estimator BIAS(%) RMSE MC-SE BS-SE CI-Cov(%) BIAS(%) RMSE MC-SE BS-SE CI-Cov(%)

Under 25% treated

  Kernel regression-based MiPS estimator

    MiPS-1111-2PS -11.969 0.207 0.202 0.212 96.4 -9.355 0.123 0.118 0.115 93.4

    MiPS-1111-2OR -11.959 0.208 0.203 0.212 96.6 -9.304 0.123 0.117 0.115 94.2

    MiPS-1111-2PS2OR -12.417 0.213 0.207 0.217 96.4 -9.966 0.127 0.121 0.119 93.8

  Artificial neural network-based MiPS estimator

    MiPS-1111-2PS -0.391 0.170 0.170 0.217 98.8 -0.842 0.084 0.084 0.092 96

    MiPS-1111-2OR -0.262 0.169 0.169 0.218 98.8 -0.645 0.085 0.085 0.092 96

    MiPS-1111-2PS2OR -0.687 0.173 0.174 0.222 99.2 -0.827 0.084 0.084 0.093 96

Under 50% treated

  Kernel regression-based MiPS estimator

    MiPS-1111-2PS -10.967 0.189 0.184 0.186 94.4 -9.795 0.113 0.106 0.101 91.8

    MiPS-1111-2OR -10.971 0.189 0.184 0.186 94.8 -9.907 0.113 0.106 0.101 92.6

    MiPS-1111-2PS2OR -11.444 0.194 0.189 0.191 94.4 -10.583 0.118 0.110 0.104 92.6

  Artificial neural network-based MiPS estimator

    MiPS-1111-2PS -0.376 0.128 0.129 0.146 97.0 1.034 0.070 0.070 0.068 94

    MiPS-1111-2OR -0.781 0.127 0.127 0.146 97.8 0.993 0.071 0.071 0.069 94.2

    MiPS-1111-2PS2OR -0.480 0.129 0.129 0.147 97.2 0.988 0.070 0.070 0.069 94.4

Table 2  (continued)

The estimator which contains correct and/or incorrect models for propensity score and/or outcome regression is denoted as “method-0000”, where each digit of the 
four numbers, from left to right, indicates ifπ1

(
X;α1

)
, π2

(
X;α2

)
,µA

1
(
X;β1

)
orµA

2
(
X;β2

)
 is included in the estimator (“1” indicates yes and “0” indicates no)

BIAS bias, RMSE root mean square error, MC-SE Monte Carlo standard error, BS-SE bootstrapping standard error, CI-Cov coverage rate of 95% Wald confidence interval

AIPW augmented inverse probability weighting, TMLE target maximum likelihood estimator, IPW.ANN artificial neural network-based inverse probability weighting 
estimator, OR.ANN artificial neural network-based outcome regression estimator, MiPS multi-index propensity score, IPW inverse probability weighting, OR outcome 
regression

n = 300 n = 1000

Estimator BIAS(%) RMSE MC-SE BS-SE CI-Cov(%) BIAS(%) RMSE MC-SE BS-SE CI-Cov(%)

  MiPS-1011 0.916 0.161 0.161 0.196 98.6 -0.446 0.084 0.084 0.089 95.4

  MiPS-0111 0.227 0.143 0.143 0.183 99.4 -0.547 0.076 0.076 0.084 96.6

  MiPS-1111 -0.821 0.168 0.168 0.212 98.4 -0.862 0.084 0.084 0.091 95.8
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table, the distribution of age, gender, race, education 
level, smoking intensity, and smoking years was different 
between quitters and non-quitters. When estimating the 
ATE of smoking cessation on weight gain, these factors 
should be adjusted for if they are confounders.

To identify candidate models for ANN.MiPS estimator, 
we explored the association of smoking cessation with all 
potential risk factors by logistic regression, and explored 
the association of weight gain with all potential risk factors 
by linear regression. The covariates in model 1 and model 
2 for both PS and OR models were identified at significant 
levels of 0.05 and 0.1, respectively. The covariates in PS 
model 1 and model 2 were (i) age, gender, race, smoking 
intensity, and smoking years; (ii) age, gender, race, smok-
ing intensity, smoking years, education level, and exer-
cise situation. The covariates in OR model 1 and model 2 
were (i) age, weight at baseline, smoking intensity, educa-
tion level, and active life level; (ii) age, weight at baseline, 
smoking intensity, education level, active life level, and 
family income level. We applied the single model-based 
IPW estimator, single model-based OR estimator, and our 
proposed ANN.MiPS estimator to estimate the ATE. The 

four numbers in the ANN.MiPS estimator, from left to 
right, represents if PS model 1, PS model 2, OR model 1, 
or OR model 2 is included in the estimator, where “1” indi-
cates yes and “0” indicates no. For example, “ANN.MiPS-
1010” represents that the PS model 1 and OR model 1 are 
included in the estimator. The standard error of estimation 
was estimated based on 500 resampled bootstrapping.

The estimation results in Table 5 indicated that all esti-
mators suggested quitting smoking significantly increased 
participants’ weight gain. Most of the estimated adjusted 
effects based on these estimators were greater than the 
estimated unadjusted effects of 2.4, which seems more 
precise and reliable. The point estimation and its boot-
strap standard error for ATE of the ANN.MiPS estimator 
was stable under different model specifications.

Discussion
In this paper, we considered causal inference in observa-
tional studies where effects estimation was susceptible to 
confounding bias due to imbalanced covariates between 
groups. With reference to the Ker.DiPS estimator [19], 
we proposed the ANN.MiPS estimator to provide more 

Table 4  The NHEFS data analysis: baseline characteristics between non-quitters and quitters

The continuous variable is presented as mean (standard deviance) and the difference between non-quitters and quitters is compared by t-test. The categorical 
variable is presented as counts (percentage) and the difference between non-quitters and quitters is compared by Chi-square test

Characteristic Non-quitters Quitters P-value
N = 1128, 74.85% N = 379, 25.15%

Mean (STD) Mean (STD)

Age (years) 42.81 (11.83) 45.92 (12.36)  < 0.001

Weight (kilograms) 70.33 (15.18) 72.09 (15.46) 0.051

Smoking intensity (number/day) 21.27 (11.48) 18.61 (12.47)  < 0.001

Smoking years 24.13 (11.73) 25.88 (12.86) 0.014

Family income level 7.94 (2.70) 8.15 (2.48) 0.173

Number (%) Number (%)

Female 598 (53.0) 176 (46.4) 0.031

Black or other 161 (14.3) 34 (9.0) 0.01

Active life level 0.268

  very active 514 (45.6) 156 (41.2)

  moderately active 515 (45.7) 183 (48.3)

  inactive 99 (8.8) 40 (10.6)

Education level 0.01

  8th grade or less 203 (18.0) 76 (20.1)

  high school dropout 252 (22.3) 72 (19.0)

  high school 471 (41.8) 144 (38.0)

  college dropout 91 (8.1) 26 (6.9)

  college or more 111 (9.8) 61 (16.1)

Exercise situation 0.121

  much exercise 233 (20.7) 60 (15.8)

  moderate exercise 473 (41.9) 168 (44.3)

  little or no exercise 422 (37.4) 151 (39.8)

Ever use of weight loss medication 31 (2.7) 7 (1.8) 0.436
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chances for correcting the confounding bias. We evalu-
ated the performance of our estimator under simula-
tion scenarios with small ( n = 300 ) or large ( n = 1000 ) 
sample size, with treatment rate of 25% or 50%, and 
with covariates consisting of all continuous type or both 
continuous and discrete types. The results indicated the 
multiple robustness property of our estimator: the esti-
mation bias is small if any model for PS or any model for 
OR is correctly specified. In addition to achieving mul-
tiply robust estimation for ATE, the proposed estimator 
showed a higher estimation efficiency than the kernel-
based estimator when any model for PS or OR is cor-
rectly specified, especially when only the OR model is 
correctly specified.

One limitation of our approach is that the multiple 
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1 X . Therefore, the non-
parametric models, such as the kernel function, ANN, 
and random forest are not suitable as candidate models 
for the MiPS estimator because the coefficients of covar-
iates cannot be obtained. When the candidate models  
are constructed by nonparametric models, some other 
multiply robust approaches may be adopted to integrate 
the information from multiple candidate models, such as 
the regression-based estimator under least square’s 
framework [40], the estimator based on empirical likeli-
hood weighting [20], and the estimator based on model 
mixture procedures [41]. At this point, double/debiased 
machine learning approach may be extended to multi-
ple/debiased machine learning for obtaining valid infer-
ence about ATE [42].

Although the performance of ANN.MiPS estimator 
remains stable when specifying eight candidate models, an 
excessive number of models can impose a heavy compu-
tational burden. Therefore, we recommend carefully con-
structing a comprehensive set of reasonable but less similar 
candidate models to control the model number in practical 
applications, using both subject knowledge and reliable data-
driven tools, such as causality diagrams [43], variable selec-
tion techniques [44], and covariate balancing diagnostics [45].

Finally, we give some intuitive discussions about the 
theoretical properties of the proposed estimator. Refer-
ring to proof Chen et al. [19], �̂ANN
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Table 5  The NHEFS data analysis: estimated average treatment 
effect of quitting smoking on weight gain (not quitting smoking 
as reference)

BS-SE bootstrapping standard error based on 500 resamples, 95%-CI 95% 
Wald confidence interval. The artificial neural network-based MiPS estimator 
which contains propensity score model and/or outcome regression model is 
denoted as “method-0000”, where each digit of the four numbers, from left to 
right, indicates if propensity score model 1, propensity score model 2, outcome 
regression model 1, outcome regression model 2 is included in the estimator (“1” 
indicates yes and “0” indicates no)

Estimator Estimates BS-SE 95%-CI P-value

Single model-based estimators

  IPW.model1 3.015 0.522 (1.992, 4.038)  < 0.001

  IPW.model2 3.140 0.515 (2.131, 4.149)  < 0.001

  IPW.ANN 2.404 0.560 (1.306, 3.502)  < 0.001

  OR.model1 3.187 0.471 (2.264, 4.110)  < 0.001

  OR.model2 3.254 0.477 (2.319, 4.189)  < 0.001

  OR.ANN 3.392 0.825 (1.775, 5.009)  < 0.001

Artificial neural network-based MiPS estimator

  MiPS-1000 2.713 0.510 (1.713, 3.713)  < 0.001

  MiPS-0100 2.871 0.510 (1.871, 3.871)  < 0.001

  MiPS-0010 2.584 0.468 (1.667, 3.501)  < 0.001

  MiPS-0001 2.221 0.476 (1.288, 3.154)  < 0.001

  MiPS-1100 2.880 0.505 (1.890, 3.870)  < 0.001

  MiPS-1010 2.764 0.508 (1.768, 3.760)  < 0.001

  MiPS-1001 2.704 0.520 (1.685, 3.723)  < 0.001

  MiPS-0110 2.834 0.513 (1.829, 3.839)  < 0.001

  MiPS-0101 2.868 0.520 (1.849, 3.887)  < 0.001

  MiPS-0011 2.606 0.468 (1.689, 3.523)  < 0.001

  MiPS-1110 2.847 0.515 (1.838, 3.856)  < 0.001

  MiPS-1101 2.890 0.528 (1.855, 3.925)  < 0.001

  MiPS-1011 2.868 0.546 (1.798, 3.938)  < 0.001

  MiPS-0111 2.854 0.536 (1.803, 3.905)  < 0.001

  MiPS-1111 2.873 0.526 (1.842, 3.904)  < 0.001
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For the first variation, if the parameters are estimated by 
maximum likelihood, the asymptotic normality of the 
estimators has been obtained by White [46]. For the 
second variation, the error bound and convergence rate 
have been discussed in some theoretical research [29, 
47]. It will be our future research topic to give and prove 
the theoretical properties of �̂ANN

MiPS estimator strictly and 
systematically.

Conclusions
IN this study, we proposed the ANN.MiPS estimator to 
correct confounding bias when using the observational 
data to estimate the ATE. The proposed estimator allowed 
multiple candidate models for PS and OR, and guaranteed 
the estimated integrated PS is between 0 and 1. The mul-
tiple robustness property of our estimator was illustrated 
through simulation studies. Extra efficiency was gained 
compared to the kernel function-based estimator. The 
proposed estimator provided a new choice for multiply 
robust estimation of ATE in observational studies.
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