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Abstract 

Background  Accurately estimating elderly patients’ rehospitalisation risk benefits clinical decisions and service plan‑
ning. However, research in rehospitalisation and repeated hospitalisation yielded only models with modest perfor‑
mance, and the model performance deteriorates rapidly as the prediction timeframe expands beyond 28 days and for 
older participants.

Methods  A temporal zero-inflated Poisson (tZIP) regression model was developed and validated retrospectively 
and prospectively. The data of the electronic health records (EHRs) contain cohorts (aged 60+) in a major public 
hospital in Hong Kong. Two temporal offset functions accounted for the associations between exposure time and 
parameters corresponding to the zero-inflated logistic component and the Poisson distribution’s expected count. tZIP 
was externally validated with a retrospective cohort’s rehospitalisation events up to 12 months after the discharge 
date. Subsequently, tZIP was validated prospectively after piloting its implementation at the study hospital. Patients 
discharged within the pilot period were tagged, and the proposed model’s prediction of their rehospitalisation was 
verified monthly. Using a hybrid machine learning (ML) approach, the tZIP-based risk estimator’s marginal effect on 
28-day rehospitalisation was further validated, competing with other factors representing different post-acute and 
clinical statuses.

Results  The tZIP prediction of rehospitalisation from 28 days to 365 days was achieved at above 80% discrimination 
accuracy retrospectively and prospectively in two out-of-sample cohorts. With a large margin, it outperformed the 
Cox proportional and linear models built with the same predictors. The hybrid ML revealed that the risk estimator’s 
contribution to 28-day rehospitalisation outweighed other features relevant to service utilisation and clinical status.

Conclusions  A novel rehospitalisation risk model was introduced, and its risk estimators, whose importance out‑
weighed all other factors of diverse post-acute care and clinical conditions, were derived. The proposed approach 
relies on four easily accessible variables easily extracted from EHR. Thus, clinicians could visualise patients’ rehospitali‑
sation risk from 28 days to 365 days after discharge and screen high-risk older patients for follow-up care at the proper 
time.
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Introduction
Hospitalisation amongst older adults is common [1], 
prolonged [2], avoidable [3] and often results in rehospi-
talisation [4] compared with that of their younger coun-
terparts. As the global population ages rapidly [5], the 
disease burden that an ageing population imposes on the 
healthcare system also exacerbates [6]. Predicting older 
patients’ rehospitalisation risk could benefit clinical deci-
sions and service planning. However, studies predicting 
probability of rehospitalisation focus primarily on the 
post-discharge timeframe of 28 or 30 days, and predic-
tors such as patients’ diagnostic and clinical profiles and 
the care quality received prior to discharge [7]. Moreover, 
the performance of the published models of 28-day (or 
sometimes 30-day) rehospitalisation is generally modest, 
with only a few notable exceptions [7]. No statistical dif-
ference has been observed between the performance of 
regression-based models and applied machine learning 
(ML, mean c-statistics of 0.74 vs. 0.71) [7] even though 
ML generally outperforms traditional statistical models 
[8–14].

The modest performance of models that use patients’ 
acute diagnoses and clinic profiles as predictors dete-
riorates quickly when the timeframe of rehospitalisation 
prediction goes beyond 28 days post-discharge. Similarly, 
poorer model performance is found in studies with older 
adults as participants than with only younger ones [15]. 
In particular, the prediction performance is even poorer 
when modelling older adults’ rehospitalisation over an 
extended timeframe (e.g. 1 year) by using only the clini-
cal characteristics of patients in an acute care setting as 
the predictors [16, 17]. Meanwhile, some studies con-
sidered older adults’ rehospitalisation over an extended 
timeframe by using predictors related to functionality 
and dependency [18–22]. Frequent hospitalisations were 
often defined as having two or more episodes of hospi-
talisations within a year [21–25]. The predictors based on 
which rehospitalisation over an extended timeframe is 
modelled are momentous measures of one’s level of dete-
rioration rather than patients’ clinical and diagnostic sta-
tuses; the performance of these models was also modest, 
with an average c-statistics of 0.69 [26–39].

In sum, the literature showed that the performance of 
modelling older adults’ rehospitalisation is modest for a 
28- to 30- day prediction after discharge, and the model 
performance deteriorates for a longer-range predic-
tion,  after controlling the effect of diagnostic/clinical/
functional profiles of patients and care quality patients 

received prior to discharge. To the authors’ knowledge, 
neither the frequently-used regression-based models nor 
the ML models in the literature have accounted for any 
temporal dimension [7, 40, 41]. To this end, the present 
study aimed to develop a model for estimating elderly 
rehospitalisation risk within any timeframe under 1 year 
by accounting for older adults’ deterioration over time. 
With the model developed here, risk estimators were 
derived, and the proposed approach was validated ret-
rospectively and prospectively. The proposed model’s 
effect was also iteratively compared against the effects of 
any post-acute, ambulatory and residential care received 
after discharge by hybridising the risk estimator with an 
ML model [42, 43]. Notably, it has been shown that post-
acute and ambulatory services received post-discharge 
are less likely to be rehospitalised, and older adults are 
more likely to have received convalescent and ambula-
tory care upon discharge [44, 45]. By contrast, older resi-
dential care recipients are more likely to be hospitalised 
than community -dwelling order adults [46]. However, to 
the authors’ knowledge, none of the published models on 
rehospitalisation prediction accounted for the effects of 
post-acute, ambulatory and residential care that elderly 
patients received post-discharge.

Method
This study is based on data extracted from electronic 
health records (EHRs) of older patients (60+) admitted 
to the medical ward (internal medicine) of the study hos-
pital (a 1900-bed acute tertiary hospital in Hong Kong) 
between 2014 and 2017. For the purpose of model build-
ing, we tracked the rehospitalisation episodes of a cohort 
of community-dwelling patients who were discharged 
in 2014 for at least 1 year, with the last discharge of the 
cohort tracked until Dec 31, 2015. It is of note that com-
munity-dwelling patients, unlike residents of residen-
tial care homes, had no around-the-clock professional 
care provided post-discharge. After having developed 
the model, the model was validated retrospectively and 
prospectively. In retrospective validation, the model was 
tested in an out-of-sample cohort whose outcomes of 
interest were already known at the time of the study. By 
contrast, prospective validation examined the model’s 
accuracy by predicting an outcome that was unknown 
at the time of prediction and only verified the prediction 
when the outcome had become known. Here, for the pur-
pose of prospective validation, data were collected after 
the proposed model was piloted as part of the clinical 
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operations of the study hospital. More specifically, retro-
spective validation was carried out on an out-of-model 
sample of community-dwelling patients discharged in 
2015 (from January to December). Their rehospitalisation 
episodes were tracked for a year, with the last discharge 
of the retrospective validation cohort tracked until Dec 
31, 2016. Prospective validation was conducted monthly 
on 12-month cohorts discharged in 2016 from the study 
hospital.

Cohorts for model validation versus model training 
were split to avoid overlaps in admission records, indi-
vidual patients, or timeframes. For example, models for 
estimating risk should reflect the “intended clinical use” 
[74]. The proposed model’s intended clinical use is to 
enable decision-makers to estimate the future rehospi-
talisation risk of the current cohort of patients about to 
be discharged. Thus, this study has taken the more chal-
lenging task of testing the model with data sampled from 
a subsequent period rather than contemptuous ones.

No statistical difference was found between the model-
building and model-validation datasets concerning the 
following metrics: the 28-day rehospitalisation rates were 
21.6 and 20.5% in the model-building and model-valida-
tion datasets, respectively; the corresponding averages of 
acute length of stay (LOS) were 6.3 and 6.0, respectively; 
the intensive-care-unit (ICU) admission rates were 0.304 
and 0.342%, respectively; and amongst those admitted 
to the ICU, the average ICU LOSs were 5.6 and 8.3 days, 
respectively. The prevalence of having ever been diag-
nosed with chronic illnesses in the model-building and 
model-validation datasets were as follows: cancer: 7.1% 
versus 7.3%; COPD: 21.5% versus 20.0%; stroke: 26.4% 
versus 23.7%; and diabetes: 26.2% versus 23.7%. The 
probability distribution of the validation dataset was as 
follows: the 28-, 30-, 60-, 90-, 120-, 150-, 180-, 210-, 240-, 
270-, 300-, 330- and 365-day rehospitalisation rates were 
20.5, 21.5, 30.7, 36.3, 40.1, 43.0, 45.6, 47.8, 49.8, 51.4, 52.9, 
54.2 and 55.6%, respectively.

In addition to validating the proposed model retro-
spectively and prospectively, we iteratively compared our 
estimator for rehospitalisation risk against the effect of 
post-acute, ambulatory, and residential care on 28-day 
rehospitalization in a sample of patients admitted to the 
study hospital in 2017. Unlike the model-building and 
model validation cohorts, the cohort for testing the risk 
estimator against the effects of other post-discharge ser-
vices different patients received included community-
dwelling elderly and residential care home residents.

The rest of the method section describes the develop-
ment of the model from which the risk estimator was 
derived and the hybrid ML model through which the 
conditional inference of the risk estimator was made 
against the effect of other post-discharge services.

Building a temporal zero‑inflated Poisson (tZIP) model
In the current study a zero-inflated Poisson (ZIP) model 
with four predictors and a temporal offset function was 
built to estimate the likelihood of rehospitalisation within 
any timeframe under 1 year.

Firstly, ZIP model was chosen here to ensure the 
robustness of our analysis despite the excessive zero 
counts in our rehospitalisation data. Secondly, in terms 
of predictors, length of stay, acuity of admission, Charl-
son comorbidity score [47, 48] and the number of Emer-
gency Room (ER) visits in the previous 6 months were 
chosen because these four factors (collectedly known as 
the ‘LACE’ [49]) are often regarded as the ‘gold stand-
ard’ in informing interventions to reduce rehospitalisa-
tion across clinical settings [9]. The LACE is one of the 
most validated sets of risk factors for rehospitalisation 
[40, 50]. Below, the LACE score was not standardised as 
LACE is already a validated instrument and the unstand-
ardised score afforded the LACE-based modelling result 
to be more interpretable. Finally, a temporal offset func-
tions were included in the ZIP model (hence, tZIP) to 
account for the deterioration of the aging population 
over time. Below, the parameter derived from the offset 
function was standardised into a value between 0 and 1 
to parameterise the proportion of the 2-year study period 
each record’s offset term represents. Since the standardi-
sation here represented only a linear transformation of 
the natural time scale, only in-sample data were used to 
standardise the offset terms during model building and 
validation.

Please refer to the supplementary material for tZIP 
model’s mathematical formulation and the derivation of 
the model’s joint estimator (JE).

We used R to analyse the data. The tZIP model was 
examined using the R package ‘pscl.’ The R package 
‘pROC’ was used to generate the area under the receiver 
operating curve (AUC) and the area under the precision-
recall curve (AUPRC) for measuring performance, and 
‘ggplot2’ was used to generate plots. AUPRC is particu-
larly sensitive to positive cases (i.e. readmission) when 
the data are highly imbalanced.

Prospective validation
In addition to validating our model with a retrospective 
cohort, we have also performed a prospective validation. 
Specifically, after our model was implemented as part of 
the actual clinical operation, we prospectively compared 
our model’s prediction against the rehospitalisation out-
come of monthly discharged cohorts tracked in real-life. 
While rarely performed, prospective validation can ena-
ble better integration of research into clinical practices 
and a more accurate evaluation of the research’s direct 
impact on patient care [51]. Here, prospective validation 
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was performed monthly on 12 monthly cohorts of com-
munity-dwelling patients discharged in 2016 from the 
study hospital. The EHR of the study hospital was sub-
sequently reviewed until December 2017 to assess if the 
patients were rehospitalised within 28 days following 
their discharges.

Hybrid ML method for validating the JE in tZIP 
against the effects of post‑acute, ambulatory 
and residential services patients received after discharge
In addition to prospective validation, a hybrid ML 
method was introduced to compare the contribution of 
our risk estimator to the 28-day rehospitalisation with 
the individual and collective effects of patient clinical 
profiles and his/her utilisation of health services on the 
28-day rehospitalisation. Here, patient clinical profiles 
consist of features representing one’s diagnoses, comor-
bidity, intervention procedures, and ICU or surgical 
events [38]. On the other hand, the services whose utili-
zation was of interest include acute, post-acute, ambula-
tory, and residential care offered by the medical system 
studied here. The comparisons were conducted iteratively 
via conditional inferences. The objective of applying the 
hybrid ML method was to test the hypothesis that the 
JE’s contribution to 28-day rehospitalisation outcomes 
was greater than, and independent from, the unique or 
combined contributions of all other clinical and utilisa-
tion-related features. Hence, the result of hybrid ML was 
reported separately from the retrospective and prospec-
tive validations. As the objective of our retrospective and 
prospective validations was to examine the performance 
of JE in predicting monthly cohort’s rehospitalization 
outcomes among community-dwelling elderly alone.

In literature, hybridisation between a linear model 
and an ML model is performed to improve ML models’ 
generalisability [42, 43], performance [42, 52–54] and 
interpretability [55]. Here, the purpose of hybridisation 
is instead to leverage the ML model’s unique ability to 
compare the marginal contribution of each feature to all 
others in the pool and test the hypothesis that the pre-
dictability of the risk estimator is greater than, and inde-
pendent from, the effects of post-acute, ambulatory and 
residential care patients received post-discharge. Rather 
than hybridising with a linear model, the ML model in 
the current study was hybridised with a ZIP regression 
estimator [56] with a mixture of probability functions 
[57] due to the excessive zeros and a long tail resulting 
from the low prevalence of rehospitalisation events over 
time.

In addition, Unbiased Recursive Partitioning with Sur-
rogate Splitting (URPSS) [58] method was applied in our 
hybrid ML model to compare the marginal contributions 
of the estimators and all the different services patients 

received post-discharge or sometimes received concur-
rently. The following characteristics of URPSS aligned 
with the study’s objective and provided URPSS with an 
edge over other partitioning methods of the decision 
tree [59]. First, splitting along the decision tree does 
not take place in isolation for URPSS; instead, each fea-
ture is recursively compared with every other feature 
in the pool to make conditional inferences of the effect 
of each feature on the outcome. Second, URPSS’ global 
optimisation allows features to be selected in an unbiased 
manner and consequently, the overfitting of data is mini-
mised in partitioning. Third, in addition to data missing 
randomly, URPSS could handle logically (and thus sys-
tematically) missing data, which are abundant amongst 
services offered post-discharge. For example, if a patient 
is not eligible to receive a service, data on specific aspects 
of receiving services, such as the timing and duration, 
are coded as missing. Please refer to the supplementary 
material for a detailed description of, and a schematic on, 
the URPSS process.

Result
Model building
A total of 18,805 index hospitalisations in the model 
building between Jan 1, 2014, and Dec 31, 2014, were 
included. Table  1 presents the tZIP-relevant statistics. 
The average LOS per index hospitalisation was 6.4 days 
(SD = 7.4). The Charlson comorbidity index was on an 
average of 1.0 (SD = 1.4), and the average number of ER 
visits within 6 months was 0.8 times (SD = 1.2), with a 
median of zero ER visits within 6 months. Specifically, 
the model building sample’s average exposure time (time 
between discharge and subsequent rehospitalisation) was 
448.7 days (SD = 186.5), with an average rehospitalisation 
count of 1.6 times (SD = 2.3) and the first quartile being 
zero.

Notwithstanding the disproportional amount of zeros 
in the response variable, the ZIP model estimated that 
59.3% of the zero rehospitalisation actually belonged to 
the Poisson distribution (λ), representing at-risk patients 
whose zero rehospitalisation could turn positive if given 
time (i.e. “active”). Meanwhile, the remaining 40.7% of 
zero rehospitalisation were considered “inactive”, i.e., 
belonging to the binomial distribution (p). When select-
ing a temporal offset function for the tZIP model, the 
function where p is convexly decreasing and λ is con-
cavely increasing as post-discharge time increases yielded 
a model that fitted the training dataset best and was used 
in the analyses reported in the following.

Table 2 demonstrates the estimated coefficients and the 
corresponding odds ratios (ORs) and rate ratios (RRs) 
from the logistic (with a distribution of p) and Pois-
son (with a distribution of λ) components of the tZIP 
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model. For the logistic component, the presence/high 
score of the four factors of LACE is negatively associated 
with one’s rehospitalisation being ‘inactive’ (i.e., with a 
rehospitalisation probability of p). Hence, greater likeli-
hood of rehospitalisization entailed. Especially, the num-
ber of ER visits during the past 6 months (OR = 0.627, 
P-value <2E-16) and the index hospitalisation being acute 
(OR = 0.627, P-value <2E-16) have the most significant 
effect that triggers rehospitalisation, followed by a high 
score on the Charlson comorbidity index (OR = 0.971, 
P-value = 8.59E-03) and an extended length of stay during 
the index hospitalisation (OR = 0.988, P-value = 1.93E-
05). Meanwhile, a mix of effects of the four factors of 
LACE could be observed on the expected rehospitalisa-
tion if an index hospitalisation is in active rehospitalisa-
tion status (i.e., with a rehospitalisation probability of λ) 
As shown in Table 2, the number of ER visits in the past 
6 months (RR = 1.161, P-value <2E-16) and the Charlson 
comorbidity index (RR = 1.054, P-value <2E-16) were 
positively associated with the expected number of active 
rehospitalisation. By contrast, the longer length of stay 
during the index hospitalisation was associated with less 
expected rehospitalisation (RR = 0.995, P-value = 3.82E-
09), whilst the more acute the index hospitalisation was, 
the less rehospitalisation could be expected (RR = 0.812, 
P-value <2E-16).

Model validation
The tZIP model was validated using the 2015 cohort’s 
hospitalisation records (n  = 15,055) that were not 
included in the model building. Considering the care 
and resource planning was conducted periodically within 
1 year, the annual cohort was divided into 12 subsets on 
the basis of each record’s month of admission, with the 
data extraction day (i.e., end-of-observation date) being 
the rth day after the average discharge time of the sub-
set’s observations. Subsequently, the proposed approach’s 
accuracy in predicting the 30-day and longer-term (up 
to 365-day) rehospitalisation was evaluated. In parallel, 
the performance (parameterised as AUCs and AUPRCs) 
of Cox’s proportional hazard model (Cox model hereaf-
ter) and the traditional LACE score model (Linear model 
hereafter) were compared; both shared the same predic-
tors as the tZIP model.

Figures 1, 2, 3 and 4 show that the JE outperformed the 
Cox and Linear models. In particular, the orange line in 
Figs. 1 and 2 showed that the JE outperformed Cox and 
Linear models in predicting 28-day rehospitalisation, 
with JE’s AUCs being generally above 80% and AUPRCs 
around 75%. By contrast, the AUCs of the Cox and Lin-
ear models fell between 60 and 70%, and the AUPRCs 
generally fell around 50% or below. Similarly, Figs. 3 and 
4 show that JE outperformed Cox and Linear models in 

Table 1  Descriptive statistics of predictors (LACE), exposure time, and rehospitalisation outcomes in the training dataset

Variable Mean (SD) Min First Quartile Median Third Quartile Max

Exposure Time, d 448.7 (186.5) 0.3 340.4 340.4 601.4 728.2

Rehospitalisation, No. 1.6 (2.3) 0 0 1.0 2.0 41.0

Length of Stay, d 6.4 (7.4) 0.1 2.9 4.6 7.3 315.2

Charlson Comorbidity Index 1.0 (1.4) 0 0 0 1.0 13.0

Visits to Emergency Room during 
Previous 6 Months, No.

0.8 (1.2) 0 0 0 1.0 13.0

Prevalence of Acute Admission 87.7%

Table 2  Odds ratios and rate ratios of the logistic and poisson components of the tZIP Model

Probability of Inactive Rehospitalisation Status (p(t)) Odds Ratio Coefficient (SE) z Value P Value Sig.
Intercept 2.385 0.869 (0.043) 20.058 < 2E-16 ***

Length of Stay 0.988 −0.012 (0.003) −4.272 1.93E-05 ***

Acute Admission (Yes) 0.627 −0.467 (0.041) − 11.306 < 2E-16 ***

Charlson Comorbidity Index 0.971 −0.029 (0.011) −2.628 8.59E-03 **

Visits to Emergency Room during Previous 6 Months 0.627 −0.467 (0.018) −25.955 < 2E-16 ***

Probability of Active Rehospitalisation Rate (λ(t)) Rate Ratio Coefficient (SE) z Value P Value Sig.
Intercept 1.061 0.059 (0.016) 3.679 2.34E-04 ***

Length of Stay 0.995 −0.005 (0.001) −5.892 3.82E-09 ***

Acute Admission (Yes) 0.812 −0.208 (0.015) − 13.706 < 2E-16 ***

Charlson Comorbidity Index 1.054 0.053 (0.003) 15.216 < 2E-16 ***

Visits to Emergency Room during Previous 6 Months 1.161 0.149 (0.003) 48.291 < 2E-16 ***
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predicting 30-day and longer-term (up to 365-day) rehos-
pitalisation. Whilst JE’s AUCs stayed above 80% between 
30 and 365 days, Cox and Linear models’ AUCs hovered 
around 65% (Fig. 3). Meanwhile, the 30-, 90- and 180-day 
AUPRCs were 73, 85% and around 90%, respectively, for 
JE and below 50, 70 and 75%, respectively, for Cox and 
Linear models (Fig. 4).

In addition to comparing Cox’s model and JE’s perfor-
mance in predicting the studied cohort’s rehospitalisation 
outcomes across different timeframes, Fig. 5 reports the 
cohort’s survival rates by the two models, i.e., the pro-
portion of studied cohort not rehospitalised overtime 
against the observed survival rate in a Kaplan–Meier 
plot. As shown in, Fig. 5, the survival rate estimated by JE 

Fig. 1  Comparing AUCs of 28-day rehospitalisation predictions: linear model, Cox’s proportional hazard model and JE

Fig. 2  Comparing AUPRCs of 28-day rehospitalisation predictions: linear model, Cox’s proportional hazard model and JE
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was much closer to the observed survival rate than Cox’s 
model’s estimation.

Prospective validation was also performed in addition 
to retrospective validation. As shown in Fig.  6, the per-
formance of the JE in prospective validation consistently 
stayed above 80%.

Result from the hybrid ML
The hybrid ML algorithm selected our JE first among 
the entire pool of clinical and service utilisation-related 
features in a 28-day rehospitalisation outcome-super-
vised URPSS process (AUC = .78). In other words, JE 
was selected by the algorithm as the ‘mother node:’ The 

Fig. 3  Comparing AUCs of longer-term rehospitalisation predictions: linear model, Cox’s proportional hazard model and JE

Fig. 4  Comparing AUPRCs of longer-term rehospitalisation predictions: linear model, Cox’s proportional hazard model and JE
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feature from which all other features were split and on 
which all other features’ effects were conditionally based. 
Hence, the finding supported the hypothesis that the 
contribution of JE on 28-day rehospitalisation was supe-
rior to, and independent from, the contribution of all 
other features, singly or in combination. Consequently, 
as the objective of applying a hybrid ML algorithm was 
to test the hypothesis that the JE’s contribution outranks 

all other features, individual paths that spilt from JE the 
‘mother node’ were not shown as they were not the focus 
of this study.

Discussion
The rich EHR data provide opportunities to develop tem-
poral risk prediction modelling for large-scale popula-
tions. In this study, a mixture model with two temporal 

Fig. 5   Comparing to survival rates estimated by Cox’s proportionals: hazards model and JE compared with the observed survival rate

Fig. 6  Prospective validation AUCs of JE over a one-year period
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components and a model-based joint risk estimator for 
depicting all-cause rehospitalisation risk over time within 
any timeframe between 28- and 365-day post-discharge 
were developed and validated. With AUCs of above 80% 
in the external validation samples, the proposed approach 
outperformed most relevant published models with an 
average AUC of 69% [26–39] and it was on par with the 
relatively advanced ML models with a median AUC of 
68% [60]. Using the same dataset of the tZIP model, the 
AUCs of Cox and Linear models closely aligned with the 
literature’s best AUC, between 60 and 70%. The modest 
AUCs of Cox and Linear models provided evidence that 
ignoring temporal changes or assuming linear changes in 
rehospitalisation risk over time led to a poorer fit of older 
patients’ rehospitalisation patterns. In turn, the good per-
formance, for the first time, confirmed the nonlinearity 
association between rehospitalisation risk and exposure 
time for older patients. Such nonlinearity between risk 
and time could be directly visualised in the exploration of 
the studied data shown in Additional file 1: Fig. S-1.

This study contributes to an enhanced understanding 
of the association between time and rehospitalisation 
risk for older patients. The proposed approach allowed 
the EHR-based data to choose the type of nonlinearity 
empirically. Methodologically, generalised linear mod-
els could also be time-varying as an alternative to other 
time-varying models, such as survival models, that were 
used in literature [61]. Another alternative to handling 
nonlinear risk changes over time is to solely transform 
Poisson or logistic regression models to make time-
varying predictions at constant rates similar to the Cox 
model [58, 62]. In the present work, tZIP was found to fit 
the data better than ZIP, whilst ZIP fitted the data better 
than the transformed Poisson or logistic regression. This 
finding affirmed the importance of handling excessive 
zeros in observed rehospitalisation counts amongst older 
patients and the nonlinear risk changes over time.

The clinical meaning of the nonlinear association 
between time and rehospitalisation risk of older adults is 
no less critical. Rehospitalisation models should be devel-
oped separately for older and young patient populations. 
The identified temporal complexity is possibly driven by 
the fact that older adults deteriorate more rapidly and 
nonlinearly than their younger counterparts. It, in turn, 
explains why poor performance amongst older adult 
samples than their younger counterparts was observed 
in time-invariant rehospitalisation prediction models 
that dominate the literature [15]. Hence, more research 
is needed.

This study addressed the gap in the literature; that 
is,  previous studies seldom examined in one paper 
rehospitalisations that take place in different timeframes 
(say, 28 and 365 days), which makes it difficult to gauge 

a risk estimator’s performance over different rehospi-
talisations timeframes. Besides good discrimination in 
predicting 28-day rehospitalisation, a time-varying esti-
mator of rehospitalisation risk that is flexible in its appli-
cation to any rehospitalisation timeframe between 28 
and 365 days was put forward to extend the temporality 
of a risk estimator for rehospitalisation. The risk esti-
mators performed consistently better than the Cox and 
Linear models over the course of 365 days. However, a 
slight decrease in AUC was observed as the timeframe 
for predicting rehospitalisation risk widened to 1 year. 
The fluctuations in the JE’s predictability of rehospitalisa-
tion could be attributed to the highly variable post-dis-
charge services and follow-up care the sample may have 
received between 28 and 365 days after discharge. How-
ever, by iteratively comparing the risk estimator with the 
post-acute, ambulatory, and residential care the elderly 
patients received post-discharge, the proposed ML model 
demonstrated that the JE’s superb performance was not 
affected by patients’ post-discharge service ecology. To 
the authors’ knowledge, the current study was the first to 
use hybrid ML to examine the performance of a rehos-
pitalisation prediction model within one’s post-discharge 
environment.

In fact, whilst patients’ rehospitalisation risk and the 
clinical decisions informed by the risk estimates are 
affected by patients’ post-discharge environment, it has 
not been incorporated as a component in any of the pub-
lished models on rehospitalisation risk. Notably, Gold-
stein et al. [63] concluded that the poor performance of 
risk prediction models is generally attributable to their 
failure to estimate risk in accordance with the “intended 
clinical use at the point of clinical decision.” For exam-
ple, benefiting clinical decisions at the point of discharge 
planning is the accurate estimation of patients’ rehospi-
talisation risk and the extent that it could be mitigated 
by the service ecology to which patients are being dis-
charged. Consequently, a temporal offset function was 
built into the proposed model to encapsulate the 2-year 
trajectory of the rehospitalisation-mitigating effect of 
the regional population’s service ecology. In addition, 
the built model was validated by comparing the marginal 
predictability of JE against the acute, post-acute, ambula-
tory, and residential care in the patient’s post-discharge 
service ecology.

Using EHR data brought a similar disadvantage shared 
by previous studies that certain variables are not col-
lected within the EHR [57]. The cohorts employed in the 
present study were older Chinese patients discharged 
alive from the hospital in Hong Kong. The direct model-
ling results should apply to all such patient populations 
in Hong Kong. However, the medical services differ-
ences by geographical areas remain unstudied in current 
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Hong Kong, which may also affect the applicability of 
the results. The estimation results may not be generalis-
able to other Chinese older patient populations outside 
of Hong Kong or non-Chinese older patients. Research-
ers could replicate the entire design with their EHR data 
and contexts regarding these theoretically inapplicable 
samples. The EHR data for the model-building and the 
model-validation cohorts were sampled consecutively 
from the same medical ward, possibly increasing the 
validation AUCs. Research with EHR data could hardly 
obtain a completely external sample to validate a model 
but the use of an out-of-model sample could be a solution 
to the issue.

The proposed approach assumed that the clinical 
and functional declines of the selected older adults 
population remained the same during the study period, 
which could be unrealistic in a rapid aging context. 
To offset this assumption’s potential adverse effect, 
rehospitalisation events over 2 years were used as an 
omnibus proxy measure to capture the deterioration 
of the study population. For example, in the literature 
on frequent hospitalisations, the researcher measured 
participants’ ability to live independently in the com-
munity to assess their level of deterioration [64]. How-
ever, studies published thus far relied only on one-time 
measures of the participants’ ability to independently 
engage in activities of daily living as an assessment of 
their decline and deterioration. Zhao et al. [65] stated 
that rehospitalisation risk models should be based on 
‘all discharges as opposed to just the first discharge per 
patient and utilise methods that account for clustered 
data.’ Deterioration and decline are, by definition, tem-
poral constructs that include previous care utilisation, 
chronicity and temporal model formulation to control. 
Future studies could have more measures on func-
tional status and one’s environment for stable factors 
that continuously affect one’s rehospitalisation risk. 
The unspecific effects of post-acute and residential 
care on rehospitalisation were considered in this study, 
and they showed to be secondary to the proposed 
estimator.

Institutionalised older patients accounted for around 
40% of elderly utilisation in the study hospital. Their 
hospital utilisation also affects the allocation of medical 
resources to the community-dwelling older adults. Pre-
vious studies did not target this co-existing population 
when studying community-dwelling patients, possibly 
due to limited data availability. To address this limita-
tion, a rehospitalisation estimator was validated in a 
cohort with community-dwelling elderly and long-term 
residential care residents. Similar to the hybrid ML val-
idation, the temporal estimator’s contribution to 28-day 

rehospitalisation prediction remained outweighed the 
contribution of patients’ discharge location.

However, the model’s overall performance deteriorated 
from greater than 80% AUC to 78% AUC after including 
residential care patients. In fact, the model performance 
deteriorated despite the application of ML and a com-
prehensive feature pool that includes patients’ clinical 
profiles and their post-discharge environment captured 
on EHRs. Such deterioration could be attributed to fac-
tors not captured by EHR, such as the quality of care 
provided in different long-term care facilities to patients 
discharged and patients’ functional and psychosocial 
challenges, which could be improved in future research 
if more critical non-EHR information could be collected.

Conclusions
With the zero inflation and dual-parameter tempo-
ral components in predicting rehospitalisation counts 
within a 2-year exposure time, a new rehospitalisation 
risk model and its risk estimators that accounted for 
the nonlinear post-discharge deterioration were pro-
posed and validated. The approach outperformed the 
estimations conducted with time-invariant or rate-
invariant models, especially in an extended rehospi-
talisation timeframe. The good discriminations of the 
time-varying estimation of rehospitalisation risk were 
not affected by the chronic and complex conditions that 
characterised elderly hospitalisations. The time-varying 
risk estimator was the prominent factor amongst the 
diverse post-acute care a patient may receive due to 
his/her conditions at discharge. The proposed approach 
also relied on four LACE variables that could be easily 
computed from EHR systems and allowed clinicians to 
visualise a patient’s rehospitalisation risk from 4 weeks 
to 365 days since discharge. This new approach is useful 
in screening and identifying high-risk older patients for 
proper follow-up care at the proper time, which shall 
benefit healthcare systems in clinical, policy and opera-
tional aspects if adopted in practice.
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