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Abstract 

Background:  The high number of COVID-19 deaths is a serious threat to the world. Demographic and clinical bio-
markers are significantly associated with the mortality risk of this disease. This study aimed to implement Generalized 
Neural Additive Model (GNAM) as an interpretable machine learning method to predict the COVID-19 mortality of 
patients.

Methods:  This cohort study included 2181 COVID-19 patients admitted from February 2020 to July 2021 in Sina and 
Besat hospitals in Hamadan, west of Iran. A total of 22 baseline features including patients’ demographic information 
and clinical biomarkers were collected. Four strategies including removing missing values, mean, K-Nearest Neighbor 
(KNN), and Multivariate Imputation by Chained Equations (MICE) imputation methods were used to deal with missing 
data. Firstly, the important features for predicting binary outcome (1: death, 0: recovery) were selected using the Ran-
dom Forest (RF) method. Also, synthetic minority over-sampling technique (SMOTE) method was used for handling 
imbalanced data. Next, considering the selected features, the predictive performance of GNAM for predicting mortal-
ity outcome was compared with logistic regression, RF, generalized additive model (GAMs), gradient boosting deci-
sion tree (GBDT), and deep neural networks (DNNs) classification models. Each model trained on fifty different subsets 
of a train-test dataset to ensure a model performance. The average accuracy, F1-score and area under the curve (AUC) 
evaluation indices were used for comparison of the predictive performance of the models.

Results:  Out of the 2181 COVID-19 patients, 624 died during hospitalization and 1557 recovered. The missing rate 
was 3 percent for each patient. The mean age of dead patients (71.17 ± 14.44 years) was statistically significant higher 
than recovered patients (58.25 ± 16.52 years). Based on RF, 10 features with the highest relative importance were 
selected as the best influential features; including blood urea nitrogen (BUN), lymphocytes (Lym), age, blood sugar 
(BS), serum glutamic-oxaloacetic transaminase (SGOT), monocytes (Mono), blood creatinine (CR), neutrophils (NUT), 
alkaline phosphatase (ALP) and hematocrit (HCT). The results of predictive performance comparisons showed GNAM 
with the mean accuracy, F1-score, and mean AUC in the test dataset of 0.847, 0.691, and 0.774, respectively, had the 
best performance. The smooth function graphs learned from the GNAM were descending for the Lym and ascending 
for the other important features.
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Conclusions:  Interpretable GNAM can perform well in predicting the mortality of COVID-19 patients. Therefore, the 
use of such a reliable model can help physicians to prioritize some important demographic and clinical biomarkers by 
identifying the effective features and the type of predictive trend in disease progression.

Keywords:  COVID-19, Feature selection, Laboratory markers, Machine learning, Generalized neural additive, 
Prediction

Background
Since late 2019, the spread of SARS-CoV-2 pneumonia, 
known as COVID-19, began in Wuhan, China, and has 
become a worldwide pandemic disease [1]. In the treat-
ment of COVID-19 patients, the assessment of demo-
graphic, laboratory biomarkers, and clinical risk factors 
as well as the identification of death predictors in these 
patients have always been considered as one of the chal-
lenges facing researchers [2]. Several studies have been 
performed to evaluate changes in levels and relationships 
between laboratory biomarkers such as aspartate ami-
notransferase (AST), alanine aminotransferase (ALT), 
lymphocytes (LYM), neutrophil (NEU), and lactate dehy-
drogenase (LDH) in patients with COVID-19 [3, 4].

Recently, advanced models of medical information 
analysis have been extended that can help interpret com-
plex biological relationships between clinical measure-
ments and patient outcomes. Machine learning is a very 
powerful tool for identifying patterns, classifying clinical 
decision making, also identifying features of medical data 
that are relevant to clinical outcomes [5].

Prediction and classification models are designed to 
help healthcare professionals with some decisions such 
as using different diagnostic, starting or stopping treat-
ments, using the available resources in a good way, and 
also can avoid some common biases in clinical decision 
making [6]. To estimate the probability that a specific 
outcome i.e. death will occur, risk prediction models 
are employed. These models used patient characteristics 
and the accuracy of the prediction depends on the abil-
ity of the model in discovering the complex relation-
ship between patient characteristics and outcome [7, 8]. 
Recently, various machine learning methods have been 
used to predict and classify caused by COVID-19 mortal-
ity, including the use of logistic regression, RF, and GBDT 
[9–11].

To improve the performance of any analysis such as 
identifying the most important features and classification 
analysis many preprocessing techniques can be applied. 
One of the most important stages of preprocessing is 
dealing with missing values in features. Some methods 
require complete data without missing values. Conduct-
ing the analysis without considering missing values will 
bias the results and make some analyzes impossible [12]. 
There are different strategies in dealing with missing 

values such as deleting missing cases, but may leads to 
bias, imputing missing values using statistical imputa-
tion methods i.e., univariate methods; the mode, mean, 
or zero, but the results are not optimal, imputing miss-
ing values with KNN, and MICE imputation methods 
[13–16].

In most cases, the relationship between features and 
the clinical outcomes is non-linear. For this situation, the 
classic models e.g. the linear regression models are inap-
propriate. There are methods such as GAMs that enable 
to capture of non-linear patterns [17]. GAMs are supe-
rior in several respects, and the purpose of using these 
models is to maximize the accuracy of response predic-
tion and to discover the nonlinear relationships of pre-
dictor features while maintaining explain ability [18].

Machine learning algorithms seem to be suitable as a 
nonlinear method for data modeling as well as for pre-
dicting and classifying responses, because of automatic 
discovering the relationships between the data and 
being able to generate a suitable output with minimum 
error [19]. Among the machine learning methods that 
have been used for prediction, we can mention neural 
network-based methods such as DNNs, and GNAMs 
[20, 21].

Despite the remarkable results of DNNs in predict-
ing the effects of clinical biomarkers on virus infections 
[22] and biomedical studies [23], since these models are 
considered as black-box models, it is inexplicit to under-
stand how they perform their predictions and how can be 
interpreted. Therefore lack of interpretability is an inevi-
table problem in applying these methods in fields such 
as healthcare. Interpretive machine learning method 
inspired by generalized additive models is an emerging 
research topic that seeks to solve this problem.

One of the suitable methods for debugging neural net-
work predictions is the use of GNAMs which are inher-
ently interpretable. Advantages of GNAMs include 
showing a larger class of classic GAMs, interpretable of a 
neural network model, and showing learned diagrams as 
accurate descriptions of predictions [20].

This study aimed to predict COVID-19 patient out-
comes (dead/recovered) admitted to hospitals in Hama-
dan, Iran, GAMs will be used as a classical method 
and DNNs and GNAMs will be used as machine learn-
ing methods. The fitted models will be compared with 
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Accuracy and AUC classification indices. The behavior of 
each feature in mortality risk will be visualized and inter-
preted based on GNAMs.

Methods
The method section is assigned into several subsections. 
First, data details used in this study was introduced in 
the subsection  COVID-19 dataset. Then, in the subsec-
tion Data Imputation, imputation algorithms were intro-
duced. In the subsection  Data Description, the method 
of reporting the results is presented. In the subsec-
tion  Feature Selection using random forest, the method 
of feature selection using the random forest algorithm 
was described. Finally, the classification models used in 
this study were fully explained in the Logistic regression 
model, Gradient Boosting Decision Tree (GBDT), Gener-
alized Additive Models, Deep Neural Networks (DNN), 
and Generalized Neural Additive Models  sub-sections. 
At last, in the  Evaluation metrics and Class imbal-
anced issue  subsection performance of the models was 
described.

COVID‑19 dataset
In this cohort study, the dataset of 2181 Covid-19 patients 
who were admitted to Sina (COVID-19 treatment center) 
and Besat hospitals affiliated to Hamadan University of 
Medical Sciences, Iran were used. In this study, patients 
with positive real time reverse transcriptase polymerase 
chain reaction (RT-PCR) on samples from upper respira-
tory nasopharyngeal swabs were enrolled to the study. The 
study was approved by the Ethical Committee of the Ham-
adan University of Medical Science with the approved 
ethical code: IR.UMSHA.REC.1400.366. The dataset was 
collected from patient information from February 2020 to 
July 2021, which includes baseline demographic and clini-
cal biomarkers. Demographic characteristics i.e. age, sex, 
smoking, compromised immune system (Com.immune.
sys), renal insufficiency, diabetes, and hypertension as 
well as clinical biomarkers i.e. erythrocyte sedimenta-
tion rate (ESR), blood urea nitrogen (BUN), blood sugar 
(BS), blood creatinine (CR), prothrombin (PT), serum 
glutamic-pyruvic transaminase (SGPT), serum glutamic-
oxaloacetic transaminase (SGOT), alkaline phosphatase 
(Alp), thromboplastin or partial thromboplastin time 
(PTT), platelets (Plat), hematocrit (HCT), hemoglobin 
(Hb), lymphocytes (Lym), monocytes (Mono), and neu-
trophils (NUT) were collected from patient information. 
A total of 22 features (or input features) were retrieved, 
consisting of 15 clinical biomarkers and 7 demographic 
characteristics of patients. For all classification models the 
patient’s recovery status considered as a binary outcome 
(death = 1 and recovery = 0).

Data Imputation
The missing rate in this study was 3 percent based on 
all features for each patient. A detailed description 
of the missing rate for each feature was reported in 
Table 1. In this study, we followed four different strate-
gies to deal with missing data. First, discarding entire 
rows (cases) containing missing values and subsequent 
analysis was done. In this strategy, the information of 
2117 patients was analyzed (Complete case dataset). In 
the three other strategies missing values were imputed 
by the mean, the KNN imputation, the MICE method, 
and subsequent analysis was done (Imputed dataset). 
In the mean imputation method, the missing values in 
features are imputed by the average of all the observa-
tions in that feature that are not missing. In the KNN 
imputation method, the missing values are imputed by 
an average of the corresponding values of the k nearest 
features which are computed by similarity measures 
such as Euclidean distance. In this study, k varies from 
5 to 100 and the best k value for imputation was 10. 
The MICE imputation method based on fully condi-
tional specification, first, calculates the mean of each 
feature that has a missing value and uses the mean as 
replacement values. Then (linear/logistic) regression 
models with chain equations are fitted using features 
with missing values and target feature. Finally, the 
missing values are predicted and updated with 100 
iterations.

After applying different methods of dealing with miss-
ing data; the complete case dataset (for the first strategy) 
and imputed datasets separately were prepared for use in 
the following steps (Fig. 1).

Data Description
The quantitative features described as mean ± standard 
deviation and qualitative features as frequency and per-
centage. Two independent sample t-test were used to 
compare the mean of the quantitative features between 
two groups. To investigate the relationship between the 
qualitative features in pairs, the Pearson Chi-square test 
was employed. The significance level was set at 0.05 in all 
analyses.

Feature selection using random forest
Due to the large number of input features, the RF algo-
rithm was used as one of the most common approaches 
to identify important features that had acceptable 
results. RF is one of the supervised learning algorithms 
for classification and regression. The RF is an ensemble 
of several decision trees that grow using recursive parti-
tioning of bootstrap samples. RF uses several indices to 
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calculate the importance of features in predicting out-
come, and one of them is the Gini index and is the value 
between zero to one [24]. In this study, the RF algorithm 
with 600 decision trees and the Gini index employed to 
calculate the importance of each feature, and the fea-
tures with a relative importance value higher than 4% 
chose for further analysis. Also, the RF was considered 

as a classification model for comparing with the other 
models.

Logistic regression model
Logistic regression is a traditional statistical model 
used in the classification task. For a binary outcome, 
the logistic regression model is shown below:

Table 1  Descriptive statistic of demographic characteristics and laboratory biomarker of COVID-19 patients based on the complete 
dataset

Com.immune.sys Compromised immune system, Renal insuf Renal insufficiency, ESR Erythrocyte Sedimentation Rate, BUN Blood Urea Nitrogen, BS Blood Sugar, CR 
Blood Creatinine, PT Prothrombin time, SGPT Serum Glutamic-Pyruvic Transaminase, SGOT Serum Glutamic-Oxaloacetic Transaminase, Alp Alkaline Phosphatase, PTT 
Partial Thromboplastin Time, Plat Platelets, HCT Hematocrit, Hb Hemoglobin, Lym Lymphocytes, Mono Monocytes, NUT Neutrophils

Categorical Feature Treatment Result Total
(N = 2181)

Missing rate
(%)

P-value

Recovered
(N = 1557)

Dead
(N = 624)

Frequency (%) Frequency (%) Frequency (%)

Sex 0

  Male 819(52.6) 349(55.9) 1168(53.6) 0.125

  Female 738(47.4) 275(44.1) 1013(46.4)

Smoking 0

  Yes 114(7.3) 51(8.2) 165(7.6) 0.422

  No 1443(92.7) 573(91.8) 2016(92.4)

Com.immune.sys 0

  Yes 4(0.3) 1(0.2) 5(0.2) 0.675

  No 1553(99.7) 623(99.8) 2176(99.8)

Renal insufficiency 0

  Yes 65(4.2) 31(5.0) 96(4.4) 0.391

  No 1492(95.8) 593(95.0) 2085(95.6)

Diabetes 0

  Yes 314(20.2) 155(24.8) 469(21.5) 0.010

  No 1243(79.8) 469(75.2) 1712(78.5)

Hypertension 0

  Yes 509(32.7) 285(45.7) 749(36.4)  < 0.001

  No 1048(67.3) 339(54.3) 1387(63.6)

Continues Feature Mean (± SD) Mean (± SD) Mean (± SD) P-value

  Age(year) 58.25(16.52) 71.17(14.44) 61.95(16.99) 0.05  < 0.001

  ESR(mm/hr) 42.27(26.54) 47.53(31.31) 43.77(28.08) 0.23  < 0.001

  BUN(mg/dl) 18.45(13.04) 32.97(25.15) 22.6(18.58) 0.23  < 0.001

  BS(mg/dl) 139.05(72.25) 146.53(91.03) 141.17(78.08) 1.47 0.047

  CR(mg/dl) 1.13(0.99) 1.59(1.25) 1.27(1.1) 0.23  < 0.001

  PT(sec) 12.49(4.20) 13.72(4.83) 12.84(4.42) 1.33  < 0.001

  SGPT(U/L) 34.70 (35.88) 49.50(59.46) 38.87(44.32) 1.42  < 0.001

  SGOT(U/L) 38.89 (34.31) 65.54(67.96) 46.4(47.84) 1.38  < 0.001

  ALP(U/L) 177.62(92.42) 231.0481(184.6) 192.82(127.76) 1.51  < 0.001

  PTT(sec) 33.64(11.78) 34.91(14.34) 34(12.56) 1.28 0.067

  Plat(× 1000µL) 196.83(80.27) 189.78(88.13) 194.82(82.64) 0.28 0.054

  HCT(%) 42.28(5.80) 41.49(7.83) 42.06(6.46) 0.18 0.005

  Hb(mg/l) 13.86(2.39) 13.42(2.70) 13.74(2.49) 0  < 0.001

  LYM(%) 22.57 (11.49) 13.47(10.29) 19.95(11.9) 1.28  < 0.001

  Mono(%) 3.06(2.39) 2.39(1.42) 2.87(2.13) 1.6  < 0.001

  NUT(%) 72.58(12.01) 76.97(16.60) 73.85(13.65) 1.28  < 0.001
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where for a given input feature xi =
(

x1i,… , xiq
)

, i =

1,… , n; n is the number of training samples, q is the 
number of the input features, and p is the probability of 
belonging to class 1,  the logarithm of the odds of this 
class ( log p

1−p  ) is called the logit function which is a lin-
ear function of the input features. Also, βj are regression 
coefficients that are estimated based on the dataset from 
the maximum likelihood method [25].

Gradient Boosting Decision Tree (GBDT)
GBDT is a reinforcement algorithm in machine learning 
where several weak classifiers (individual decision trees) 
are constructed to form a strong classifier. By combin-
ing the results of each weak classifier, the end prediction 
results are obtained. For a binary outcome, GBDT used 
the decision tree as the weak classifier and makes global 
convergence of the algorithm by following the negative 
gradient [26]. Let xi =

(
x1i, . . . , xip

)
, i = 1, . . . , n , n and 

p are the number of training samples and the number of 
the input features, respectively, and yi ∈ {0, 1}ni=1 denoted 
input feature or binary target. The steps of GBDT are as 
follows:

(1)log

(
p

1− p

)
= β0 +

q∑

j=1

βjxij + εij ,
Step I: the model β is the initial constant value, for 

the regression model ( Y = βX):

Step II: calculate the residuals; let Fm : Rp → R be a 
predictive model at iteration m,m = 1, . . . ,M , and let 
L
(
yi, Fm(xi)

)
 be a differentiable loss function. According 

to the least square approach, the parameter em of the 
model is obtained and the model h(xi; em) is fitted.

Step III: minimization of loss function; where βm is 
obtained by fitting a regression tree to the gradients of 
each sample concerning the current estimator at stage 
m;

Step IV: update of the model and reduce overfitting 
( h(xi; e) so called learning rate);

(2)F(x) = argmin
β

n∑

i=1

L
(
yi,β

)
,

(3)em = argmin
e,�

n
∑

i=1

(

−
�L

(

yi, Fm−1(xi)
)

�Fm−1(xi)
− �h

(

xi;e
)

)2

,

(4)βm = argmin
e,β

n∑

i=1

L
(
yi, Fm−1(xi)+ βh(xi; e)

)
,

(5)Fm(xi) = Fm−1(xi)+ βmh(xi; e),

Fig. 1  The steps of study design for COVID-19 mortality prediction
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These steps are repeated until m trees are grown [27].
Be noted that, if the target feature was binary, the logis-

tic regression was selected for the growing tree. There-
fore, the model β is the initial constant value, for the 
logistic regression model; 

Generalized additive models
GAMs are a semi-parametric extension of the general-
ized linear models, used for the case when there is no a 
priori reason for choosing a particular response function 
(such as linear, quadratic, etc.). GAMs are interpretable 
by design because of their functional forms. Given an 
input xj ∈ R

Dj = 1, . . . , p , where p is the number of fea-
tures a binary response yii = 1, . . . , n , where n is sample 
belongs to an exponential or non-exponential family dis-
tribution, a link function g (e.g. g is log π

1−π
 in binary clas-

sification, π is the probability of death), main effects fj for 
the jth feature called smooth functions with E

(
fj
)
= 0 . For 

a univariate response variable of multiple features, GAMs 
is expressed as follows [18]:

where µ = E
(
yi
)
 , β0 is intercept parameter, and 

ε ∼ N
(
0, σ 2

)
 is random variables. In GAMs the linear or 

nonlinear relationships between response and features 

(6)F (x) = argmin
�

n
∑

i=1

−yilog
(

p̂i
)

−
(

1 − yi
)

log
(

1 − p̂i
)

,

(7)g(µ) = β0 +

p∑

j=1

fj
(
xji
)
+ ε,

follow smooth patterns and are explained by unspecified 
smooth functions known as splines or basis function. The 
smoothness of each function determined by the smooth-
ing regularization parameter known � . In this study, the 
GAM was fitted by 30 to 300 basis functions, and the � 
varies from 0.1 to 0.9.

Deep Neural Networks (DNN)
The structure of a shallow neural network consists of 
three layers, i.e., the input, the hidden, and the output 
was considered. Each layer has a weight that indicates 
the effect of the features on each other. The goal of neural 
network is to reduce the error or cost function in clas-
sification or regression and bring the network closer 
to the desired result. To achieve this goal the connec-
tion weights is update during training by various algo-
rithms i.e. backpropagation, and amount of changes in 
weights control by a hyperparameter called learning 
rate. Another parameter known as batch size should 
be obtained which is the number of training examples 
in one forward or backward pass. In DNNs, the hidden 
layers are more than one, which may increase the clas-
sification and prediction accuracy of the network [28]. 
Schematic representation of the DNN architecture used 
in the current study with 3 hidden layers containing 100 
nodes in each layer is given in Fig. 2. It should be noted 
that rectified linear unit (ReLU) activation function used 
for all hidden layers.

The mathematical form of this structure is given 
following;

(8)Y = sigmoid
{

W
(4)ReLU

(

W
(3)ReLU

(

W
(2)ReLU

(

W
(1)
Xi + b

(1)
)

+ b
(2)
)

+ b
(3)
)

+ b
(4)
}

,

Fig. 2  The structure of the DNN
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where W matrix and b vectors are weight and bias in 
each layer.

Initial values of W matrix was chosen as random val-
ues from a normal distribution with mean and variance 
equal to zero and 0.2, respectively, and the initial values 
of b vector was chosen as 1.

Generalized Neural Additive Models
GNAMs belong to the GAMs family and learn a linear 
combination of multi-layer perceptron (MLP) with an 
input, an output, and several hidden layers. The output of 
each MLP is

where ω is the network parameter, j = 1, . . . , p , where 
p is the number of features, and initial values of these 
parameters could be chosen as random values from a 
normal distribution with mean and variance equal to 
zero and 0.2, respectively. It should be noted that the 
weight distribution was selected based on the pre-trained 
source network proposed by Agarwal et  al., [20] which 
was designed for a similar binary classification task.

The Exp-Centered (ExU) activation function in the hid-
den layer for each neuron computes given by

where τ = 1, . . . , k , k is the number of neurons in the 
hidden layer of the jth MLP. The sum of all MLP outputs, 
in addition to the intercept of the model is g(µ) which is 

(9)fj
(
xj
)
= ω1jExU

(
xj,1

)
+ · · · + ωτ jExU

(
xj,τ

)
,

(10)ExU
(
xj,τ

)
=

(
xj − ω0τ j

)
exp

(
ω1τ j

)
,

shown earlier in formula (1). In the last step to classify 
binary outcome, sigmoid activation function, h(.), was 
employed [20]. The architecture of the GNAMs with a 
hidden layer is presented in Fig. 3.

One of the characteristics of the GNAMs is interpret-
ing by visualizing its corresponding smooth function from, 
fj(xj) , versus xj . We take this advantage of the GNAMs and 
plot each fj(xj) , versus  xj for features extracted in feature 
selection step.

Based on the loss function below, the training of GNAMs 
is done,

where D = {x(i), y(i)}
n
i=1 is the training set of size n 

for input (x) and target (y) features, l(x, y; θ) is the loss 
function, η(x; θ) = 1

K

∑
x

∑
k

(
f θk (xk)

)2 is the output pen-
alty for K features (L2 norm), γ (θ) is the weight decay 
for K features (L2 norm), f θk  is the feature network 
for the ktℎ feature. The development of the network is 
also regularized based on feature dropout (drop col-
linearity features during training) and dropout related 
to smoothness (regularization of ExUs in each features 
until the smooth functions are learned while being 
able to represent jumps) with coefficients λ3 and λ4 
respectively.

Then, the cross-entropy loss function for binary target 
given as,

(11)L(θ) = Ex,yD
(
l
(
x, y; θ

)
+ �1η(x; θ)

)
+ �2γ (θ),

(12)
l
(
x, y; θ

)
= −ylog(pθ (x))−

(
1− y

)
log(1− pθ (x)),

Fig. 3  Example of a GNAM architecture
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Where pθ (x) = sigmoid
(
βθ
0 +

∑K
k=1 f

θ
k (xk)

)
 is pre-

dicted probability from output GNAMs [20].
Tuning of hyperparameters of Adam optimizer for 

training networks such as learning rate and batch size 
were tested based on the values between 0.001 to 0.2 and 
100 to 500, respectively. With the aim of avoiding overfit-
ting, the value of regularization parameters (λ) for DNN 
and GNAM was tuned and the optimized values were set 
as follows: the λ1 (output penalty coefficient) in the dis-
crete set {0.001, 0.01, 0.1}, λ2 (weight decay coefficient) in 
the discrete set {0, 0.00001, 0.0001, 0.001, 0.01}, λ3 (drop-
out coefficient) in the discrete set {0, 0.1, 0.3, 0.5, 0.7, 0.9} 
and λ4 (feature dropout coefficient) in the discrete set 
{0, 0.05, 0.1}. The tuning of the λ2 and λ3 parameters for 
DNNs was the same as the tuning of the GNAMs model 
and the number of epochs for both models was 200. The 
desired range for mentioned parameters such as the 
number of hidden layer neurons, learning rate, number 
of the epoch, etc., was also valued based on the range 
proposed in Agarwal’s study [20]. However, the specific 
optimal value of each hyperparameter was determined 
according to the data of the present study by the method 
of cross-validation.

Evaluation metrics and Class imbalanced issue
Firstly, regarding the imbalance ratio of 4:10 (minor-
ity/majority) for the imbalanced binary classification 
problem, data balancing was done using the synthetic 
minority over-sampling technique (SMOTE) method. 
For subsequent analysis, the dataset is randomly divided 
into the two subsets of train and test with a ratio of 7:3, 
respectively. The process of splitting the dataset into the 
train and test sets was repeated fifty times. The desired 
prediction models were fitted based on each data set and 
the evaluation indices for the respective train and test 
sets were calculated separately. The final performance of 
the models is calculated as the average of these iterations.

Then the logistic regression, RF, GBDT, GAM, DNN, 
and GNAM are trained based on the selected features. To 
compare the predictive performance of models the accu-
racy, F1-score and the area under the receiver operating 
characteristics curve (AUC) indices were employed. The 
steps are shown graphically in Fig.  1. For all evaluation 
metrics the closer the value to one showed the higher the 
diagnostic power of the test or the predictive accuracy 
of the model. The analysis of these methods was done by 
python 3.8 with sklearn and torch modules using Xeon® 
4210 Core i32 CPU  with 128  GB ram memory and the 
source code for NAM models available at https://​neural-​
addit​ive-​models.​github.​io. Although, depending on the 
conditions and available data, some changes have been 
made in the original codes.

Results
In this study, out of 2181 (53.6% male) COVID-19 
patients, 1557 were recovered and 624 were dead. The 
mean age of recovered patients (58.25 ± 16.52 years) was 
significantly lower than dead patients (71.17 ± 14.44 years) 
(p < 0.001). Thoroughly, the frequency, percentage, mean, 
and standard deviation of the mentioned clinical bio-
markers with their statistical significance between the 
two groups of dead and recovered patients are shown in 
Table 1.

After the implementation of four imputation strategies, 
the relative importance score of each feature was calcu-
lated by Gini index in RF classifier and the results were 
reported in Fig.  4. These figures confirmed that these 
different strategies have led to the selection of the same 
important features; BUN and Com.immune.sys selected 
as the most and the least important features, respectively. 
Ten first important features with the relative importance 
more than 4% were used as the final input features to fit 
the logistic, GBDT, RF, GAM, DNN, and GNAM models.

The optimal parameters values of different models were 
adjusted according to cross-validation in different impu-
tation scenarios as follows:

Based on the first strategy of handling missing value 
(remove cases with missing values); The best results for 
GAM were obtained by 250 basis functions and � = 0.8 . 
For the GBDT, the number of trees and learning rate reg-
ularization parameters were set to 200 and 0.05, respec-
tively. For the RF, the number of trees and the maximum 
depth of the tree were set to 300 and 10, respectively.

After various checks with different values of the regu-
larization parameters, the DNN optimized by the λ2 and 
λ3 regularization parameters of 0.001 and 0.3, respec-
tively, and the batch size 150, learning rate were set to 
0.005, the number of hidden layers in this model contain-
ing 3 layers with 86, 64, and 16 neurons in each hidden 
layer, respectively.

The GNAM was optimized by the batch size of 150, the 
learning rate were set to 0.005, and the number of hidden 
layers in this model containing 3 layers with 86, 64, and 
16 neurons, respectively. Also, the GNAM optimized by 
the λ1, λ2, λ3, and λ4 regularization parameters were set to 
0.01, 0.001, 0.5, and 0.05, respectively.

Based on three imputation strategies similar results 
were obtained; The best results based on GAM were 
obtained by 230 basis functions and � = 0.75 . For the 
GBDT, the number of trees and learning rate regulariza-
tion parameters were set to 200 and 0.04, respectively. 
For the RF, the number of trees and the maximum depth 
of the tree were set to 300 and 10, respectively.

After various checks with different values of the regu-
larization parameters, the DNN optimized by the λ2 and 
λ3 regularization parameters were set to 0.001 and 0.25, 

https://neural-additive-models.github.io
https://neural-additive-models.github.io


Page 9 of 14Moslehi et al. BMC Medical Research Methodology          (2022) 22:339 	

respectively, and the batch size 300, learning rate were set 
to 0.002, the number of hidden layers in this model con-
taining 3 layers with 86, 64, and 16 neurons in each hid-
den layer, respectively.

The GNAM was optimized by the batch size 300, the 
learning rate were set to 0.002, and the number of hidden 
layers in this model containing 3 layers with 86, 64, and 
16 neurons, respectively. Also, the GNAM optimized by 

the λ1, λ2, λ3, and λ4 regularization parameters were set to 
0.01, 0.001, 0.4, and 0.03, respectively.

The accuracy, F1-score and AUC of the trained models 
based on the four imputation strategies are reported in 
Table 2. Results showed that, the GNAM model had the 
best performance with the test accuracy, F1-score and 
AUC value 0.847, 0.691, and 0.774 for the removed miss-
ing values strategy (a), and AUC value of 0.855, 0.704, 

Remove cases with missing values Mean imputation

KNN imputation MICE imputation

Fig. 4  The relative importance of all features selected by random forest classifier based on four imputation strategies (complete case dataset and 
imputed datasets)
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and 0.782 for KNN imputation dataset, respectively. The 
GAM model in all datasets had the worst performance 
with the test accuracy, F1-score and AUC value.

Feature smooth functions learned by ensemble of 
fifty GNAMs along with the density of the COVID-19 
dataset be shown in Fig. 5. The deepteal color indicates 
the data density for each feature. The darker the bar the 
more data is present in that area and the trend of the 
learned feature smooth functions is shown by the red 
lines. For example, the smooth feature function of age 
showed that the risk of death in COVID-19 patients 
increased as age increased and for ages, almost over 
60 years, the risk of death slope has the most rapid rise.

The smooth feature function of CR showed three dif-
ferent behavior. The risk of death in COVID-19 patients 
is constant from the CR values zero to 30, it increased 

from the values 30 to 80, slowly, and for CR almost over 
80, the risk of death slope has the most rapid rise.

The smooth feature function of Lym showed, the risk 
of death in COVID-19 patients is higher in lower values 
of Lym counts. So by increasing the Lym counts, the 
probability of death is decreased. It is also showed, the 
risk of death is high and constant from the values zero 
to 50, and the risk of death slope has the most rapid fall.

Discussion
In this study, some effective laboratory findings and 
demographic features were evaluated to predict the prob-
ability of death due to COVID-19 disease. Since the pat-
tern of some features affecting COVID-19 is generally 
nonlinear, the aim is to determine an appropriate model 
with the highest prediction accuracy.

Table 2  Accuracy, F1-score and AUC of the different classification models for different imputation strategeis, based on the train and 
test datasets

a removed missing values b Mean imputed method, c KNN imputed method, d MICE imputed method

SE Standard Error, GNAM Generalized Neural Additive Model, DNN Deep Neural Network, GAM Generalized Additive Model, RF Random Forest, GBDT Gradient Boosting 
Decision Tree, IM imputation method

IM Models Train Test

Accuracy AUC​ F1-score Accuracy AUC​ F1-score

Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE

a GNAM 0.885 0.003 0.851 0.001 0.784 0.003 0.847 0.002 0.774 0.002 0.691 0.003

logistic 0.862 0.004 0.842 0.003 0.743 0.005 0.837 0.002 0.761 0.003 0.681 0.003

GBDT 0.861 0.003 0.854 0.001 0.783 0.003 0.839 0.002 0.768 0.002 0.684 0.002

DNN 0.821 0.006 0.808 0.005 0.723 0.004 0.813 0.004 0.742 0.006 0.641 0.003

GAM 0.721 0.002 0.719 0.002 0.699 0.002 0.782 0.004 0.672 0.003 0.622 0.003

RF 0.882 0.002 0.862 0.001 0.788 0.002 0.841 0.002 0.771 0.001 0.685 0.002

b GNAM 0.887 0.003 0.860 0.002 0.791 0.003 0.851 0.002 0.779 0.002 0.696 0.003

logistic 0.869 0.003 0.846 0.004 0.749 0.005 0.840 0.002 0.767 0.003 0.687 0.003

GBDT 0.884 0.003 0.857 0.001 0.788 0.003 0.845 0.002 0.775 0.002 0.690 0.003

DNN 0.829 0.006 0.812 0.005 0.728 0.005 0.819 0.005 0.744 0.010 0.645 0.005

GAM 0.757 0.003 0.721 0.003 0.702 0.002 0.788 0.004 0.679 0.003 0.625 0.003

RF 0.886 0.002 0.858 0.002 0.793 0.001 0.849 0.001 0.777 0.002 0.691 0.003

c GNAM 0.891 0.003 0.866 0.002 0.796 0.003 0.855 0.002 0.782 0.002 0.704 0.002

logistic 0.875 0.003 0.854 0.004 0.754 0.004 0.844 0.003 0.772 0.002 0.697 0.004

GBDT 0.889 0.003 0.864 0.002 0.794 0.003 0.851 0.003 0.781 0.002 0.699 0.003

DNN 0.834 0.005 0.815 0.006 0.733 0.004 0.823 0.005 0.746 0.009 0.651 0.004

GAM 0.763 0.003 0.726 0.003 0.705 0.003 0.790 0.004 0.682 0.004 0.629 0.004

RF 0.890 0.002 0.865 0.002 0.795 0.002 0.853 0.002 0.782 0.002 0.703 0.002

d GNAM 0.890 0.002 0.866 0.002 0.796 0.003 0.854 0.002 0.780 0.002 0.702 0.002

logistic 0.874 0.003 0.852 0.004 0.753 0.003 0.842 0.003 0.770 0.002 0.694 0.004

GBDT 0.887 0.003 0.860 0.002 0.794 0.002 0.849 0.003 0.780 0.002 0.698 0.003

DNN 0.833 0.005 0.811 0.006 0.731 0.005 0.820 0.006 0.745 0.010 0.649 0.004

GAM 0.762 0.004 0.724 0.003 0.702 0.003 0.789 0.004 0.679 0.004 0.625 0.004

RF 0.888 0.002 0.864 0.002 0.795 0.003 0.853 0.002 0.779 0.002 0.701 0.002
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Fig. 5  Feature smooth functions learned by ensemble of fifty GNAM along density of COVID-19 dataset (the complete case dataset was used)
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The results showed that the risk of death from COVID-
19 increases with age. This finding was also confirmed in 
studies performed on SARS [29], Middle East respiratory 
syndrome (MERS) [30], and COVID-19 [31]. Because 
various medical conditions such as hypertension, surgery, 
hyperlipidemia, and hyperglycemia occur due to old age, 
this group of patients is susceptible to COVID-19 [32].

Further findings indicated that sex, smoking, com-
promised immune system, renal insufficiency, PTT, and 
Plat had no significant effect on death. In Abohamr et al., 
study, sex, smoking, renal insufficiency, and Plat had 
a significant effect on death. In the study of Liu et  al., 
smoking, Plat, and PTT factors had no significant effect 
on death [33]. In the present study, from overall patients, 
only five patients with a compromised immune  system 
were reported and only one patient experienced death. 
However, in the study of Kostoff et al., and Yazdanpanah 
et  al., they examined the importance of the immune 
system feature, and the results of their studies showed 
that increasing biomarkers of the immune system leads 
to inflammation and ultimately more damage to other 
organs and even death [34, 35].

Also, the results of the evaluated factors such as dia-
betes, hypertension, age, ESR, BUN, BS, CR, PT, SGPT, 
SGOT, ALP, HCT, Hb, LYM, Mono, and NUT indicate 
the significant effects on the COVID-19 death that the 
same finding was reported in the studies of Bertimas 
et  al., Liu et  al., Bahl et  al., Guan et  al., Cao et  al., and 
Chen et  al. So that the probability of death increased 
impressively when increasing their level of the normal 
range [36–38]. As vital components of the immune sys-
tem, Neutrophils and lymphocytes play a considerable 
role in host defense and clearance of infections. In the 
blood, fewer lymphocyte counts may be an important 
factor in disease severity and mortality in COVID-19 
[39]. Ruan et  al. and Chen et  al. showed that if factors 
such as the number of lymphocytes, neutrophils, mono-
cytes, and platelets were out of the normal range, it 
would indicate virus replication and inflammation in 
COVID-19 patients [40, 41]. According to studies on 
the factors affecting the severity of COVID-19 disease, 
the number of neutrophils in patients with high disease 
severity was higher than patients with moderate disease 
severity [42]. In this study, the mortality risk of COVID-
19 patients increased with increasing neutrophil count 
and with decreasing lymphocyte count.

There are several methods to select important features. 
Based on this method, ten features BUN, Lym, age, BS, 
SGOT, Mono, CR, NUT, Alp, HCT, respectively, were 
the most important effective features in the probability 
of COVID-19 death were selected whose their relative 
importance was more than 4%. In the study of Ma et al., 
Lym, age, NUT, Mono [43], in Aljame et al., Lym, NUT, 

age [44], and in Subudhi et  al., Lym, NUT, BS, and age 
[45] due to the most important risk factors in COVID-19 
death was introduced. Also, the results showed that the 
relative importance of the selected features by remov-
ing missing values or imputation did not change much in 
terms of the order of relative importance.

Many studies, such as the present study, have pre-
dicted mortality from COVID-19 using supervised 
machine learning techniques. The results of predictive 
performance comparisons showed overlay GNAM had 
the best performance with the test accuracy with mean 
accuracy, F1-score and mean AUC in the test dataset of 
0.847, 0.691, and 0.774 respectively.

Li et  al. considered six important biomarkers 
(D-dimer, blood oxygen, Lym to NUT ratio, C-reac-
tive protein (CRP), and lactate dehydrogenase) using 
the DNN model to predict the mortality of COVID-19 
patients. Their model AUC was 0.95 [46]. In a study by 
Lin et  al. of 30 demographic and laboratory biomark-
ers using machine learning methods including neural 
network to predict mortality of COVID-19 patients, 
the accuracy and AUC of this model were 0.91 and 
0.88, respectively [47]. In the study of Morales et  al., 
ten important demographic and laboratory biomark-
ers were used, including age, blood pressure, liver, and 
kidney failure. The accuracy of predicting the death of 
COVID-19 patients using the neural network model 
was 0.88 [48].

An important advantage of the GNAM over other 
neural networks, including DNN (black box), is its 
interpretability, which is based on the smooth function 
graphs of each feature learned from the GNAM. In this 
regard, instead of inflexible parametric assumptions, 
the relationship between the output and the input fea-
ture is expressed by a smoothing function that can be 
applied to virtually any form of data.

Considering the 3% of missing values, similar results 
were obtained in different scenarios of handling miss-
ing data. The GNAM model compared to other mod-
els had a higher predictive performance. Therefore, the 
interpretable smooth function graphs related to the 
GNAM model were drawn and reported for the non-
missing data. The smooth functions learned from fifty 
fitted GNAMs are visualized in Fig.  5 to interpret the 
behavior of each feature. With increasing the value 
of the features age, BUN, BS, CR, SGOT, ALP, HCT, 
Mono, and NUT, the smooth function of the loga-
rithm odds of COVID-19 mortality in these features 
increased. However, with increasing the value of Lym, 
the smooth function of the logarithm odds decreases.

Since the critical time for disease progression has 
been reported 10 to 14  days from the onset of clini-
cal symptoms, identifying the factors affecting patient 
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mortality from hospitalization makes it possible for 
decision-making and predictive power for physicians 
[41]. Also, the use of interpretable machine learning 
models such as GNAM, compared to common black-
box neural networks, can provide physicians with a 
broad view of changes resulting from effective vari-
ables that reduce or increase the risk of patient mortal-
ity. As a result, they increase the accuracy of predicting 
patient mortality.

Limitations
The samples used in this study are limited to the central 
city of Hamadan, Hamadan province, Iran, so the num-
ber of generalizable samples was less. To identify the 
features affecting patient mortality, some patient infor-
mation such as BMI, predisposing factors, or under-
lying comorbidities due to high missing did not use. 
These features may also play an efficient role in predict-
ing patient mortality.

Conclusion
When the relationships between predictor features and 
response are nonlinear, machine learning models such 
as GNAM can perform well in predicting the mortal-
ity of COVID-19 patients. Therefore, the use of inter-
pretable machine learning models such as GNAM helps 
physicians to prioritize some important demographic 
factors and laboratory findings by identifying the effec-
tive features and the type of predictive trend in disease 
progression.
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