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Abstract 

Background  The Pooled Cohort Equations (PCEs) are race- and sex-specific Cox proportional hazards (PH)-based 
models used for 10-year atherosclerotic cardiovascular disease (ASCVD) risk prediction with acceptable discrimination. 
In recent years, neural network models have gained increasing popularity with their success in image recognition 
and text classification. Various survival neural network models have been proposed by combining survival analysis 
and neural network architecture to take advantage of the strengths from both. However, the performance of these 
survival neural network models compared to each other and to PCEs in ASCVD prediction is unknown.

Methods  In this study, we used 6 cohorts from the Lifetime Risk Pooling Project (with 5 cohorts as training/internal 
validation and one cohort as external validation) and compared the performance of the PCEs in 10-year ASCVD risk 
prediction with an all two-way interactions Cox PH model (Cox PH-TWI) and three state-of-the-art neural network 
survival models including Nnet-survival, Deepsurv, and Cox-nnet. For all the models, we used the same 7 covariates 
as used in the PCEs. We fitted each of the aforementioned models in white females, white males, black females, and 
black males, respectively. We evaluated models’ internal and external discrimination power and calibration.

Results  The training/internal validation sample comprised 23216 individuals. The average age at baseline was 
57.8 years old (SD = 9.6); 16% developed ASCVD during average follow-up of 10.50 (SD = 3.02) years. Based on 10 × 10 
cross-validation, the method that had the highest C-statistics was Deepsurv (0.7371) for white males, Deepsurv and 
Cox PH-TWI (0.7972) for white females, PCE (0.6981) for black males, and Deepsurv (0.7886) for black females. In the 
external validation dataset, Deepsurv (0.7032), Cox-nnet (0.7282), PCE (0.6811), and Deepsurv (0.7316) had the high‑
est C-statistics for white male, white female, black male, and black female population, respectively. Calibration plots 
showed that in 10 × 10 validation, all models had good calibration in all race and sex groups. In external validation, all 
models overestimated the risk for 10-year ASCVD.

Conclusions  We demonstrated the use of the state-of-the-art neural network survival models in ASCVD risk predic‑
tion. Neural network survival models had similar if not superior discrimination and calibration compared to PCEs.
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Background
Cox Proportional Hazards (Cox PH) model is widely used 
to quantify the effect of covariates in relation to time-to-
event outcomes or to predict the survival time for a new 
individual [1]. Cox PH is a semi-parametric model, which 
consists of two main components: baseline hazard and 
multiplicative covariate effect in hazard ratio. The esti-
mates of its regression coefficients are obtained through 
optimization of the partial likelihood function, which 
depends on both censored and uncensored individuals.

With the availability of large datasets and high-speed 
computational power, neural network algorithms have 
become increasingly popular. Neural networks have 
been successful when applied to unstructured data such 
as image recognition and text classification [2–7]. Com-
pared to Cox PH, standard neural network architectures 
focus on predicting outcomes as a binary classification 
problem at a specific follow-up point. However, it is com-
mon in medical studies that individuals are lost to fol-
low-up (censored data) before the failure or event time. 
Standard neural network models cannot train or test on 
these individuals. In 1995, Faraggi-Simon first combined 
neural network architectures with the Cox PH model to 
make use of censored information as well as to model 
non-linear features-outcome relations [8]. Since then, 
there has been increasing interest in incorporating neu-
ral network architectures in survival analysis. In current 
literature, there are two main ways of modeling time-to-
event using neural networks: (i) adapting Cox PH model 
and using partial likelihood loss, e.g., Cox-nnet [9] and 
Deepsurv [10]; or (ii) discretizing survival time and using 
a heuristic loss function, e.g., Nnet-survival [11].

Atherosclerotic cardiovascular disease (ASCVD) is 
the leading cause of death globally [12]. Currently, some 
commonly used prediction models for ASCVD are based 
on Cox PH, such as the Framingham CHD risk score 
and its derivatives [13]. In recent years, the American 
College of Cardiology (ACC)/American Heart Associa-
tion (AHA) guidelines developed new equations, i.e., the 
Pooled Cohort Equations (PCEs), to estimate 10-year 
ASCVD risk in non-Hispanic whites and African Ameri-
cans [14]. The equations are developed based on data-
sets from several community-based epidemiology cohort 
studies. The PCEs are four race-, sex-specific and Cox PH 
based models. It is unclear whether neural network sur-
vival models can outperform PCEs for 10-year ASCVD 
risk prediction. In addition, it is unclear how different 
architectures of neural network survival models perform 

compared to each other. In this study, we compared the 
four race- and sex-specific PCEs with race- and sex-
specific state-of-the-art neural network survival models: 
Nnet-survival, Deepsurv, and Cox-nnet [10, 11, 15] in 
primary ASCVD risk prediction. For fair comparison, we 
also included Cox PH models with all significant two-way 
interactions since this enables Cox PH to capture more 
complex relationships. For all models, we used the same 
seven predictors as in the PCEs. Our study is the first 
study to compare the state-of-the-art neural network sur-
vival models with PCEs in incident ASCVD prediction.

Methods
Model I, II: Pooled Cohort Equations, all two‑way 
interaction Cox PH
PCEs are four Cox PH based models, each of which is for 
a specific race and sex group (white male, white female, 
black male, black female). Cox PH models the probability 
an individual experiences the event during a small-time 
interval given the individual is free of an event at the 
beginning of the time interval [1], which is also known 
as hazard rate. Specifically, the hazard function can be 
expressed as the follows:

where t is the survival time, �0(t) is the baseline hazard 
risk at time t , X i = Xi1, . . . ,Xip

T contains the covari-
ates for individual i , and  β =

[
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sion coefficient vector. The hazard function consists of 
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function exp
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)

 . Cox PH assumes that the relative 
risk for each covariate ( β in the equation) is constant over 
time. The estimate of β is obtained by optimizing the Cox 
partial likelihood function as defined below:

where �i is the indicator for the occurrence of event 
and Yj  is follow-up time for individual j.

In the PCEs, seven predictors were selected based on 
demonstrated statistical utility using prespecified crite-
ria [14]. These predictors include age at baseline, systolic 
blood pressure (SBP), diabetes medical history, treatment 
for hypertension, current smoker, high density choles-
terol and total cholesterol. The interactions between age 
at baseline and the other predictors were tested based on 
p-values. Only interactions that had significant p-values 
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(< 0.05) were kept in the model. The PCEs demonstrated 
acceptable performance in derivation samples, with 
C-statistics for 10-year risk prediction of 0.80 in white 
females, 0.76 in white males, 0.81 in black females, and 
0.70 in black males in 10 × 10 cross-validation [14].

To capture more complex relationships between pre-
dictors and ASCVD outcome, in the Cox PH-TWI 
model, we included all the two-way interactions of the 7 
predictors in the model for each race and sex. We then 
retained only the interaction terms that had significant 
p-values for each race and sex.

Models III and IV: Deepsurv and Cox‑nnet
Deepsurv and Cox-nnet are both adaptations of the 
standard Cox PH [10]. Instead of assuming the linear 
relationship between covariates and log-hazard, the 
Deepsurv and Cox-nnet models can automatically learn 
the non-linear relationship between risk factors and an 
individual’s risk of failure by its linear (i.e., multi-layer 
perceptron) and non-linear (activation functions) trans-
formation. Specifically, the log-risk function XT

i β in 
the Cox equation as shown in Eq. (1) is replaced by the 
output from neural network hw,β∗(X i) , where β∗ is the 
weight for the last hidden layer and w is the weight for 
other hidden layers for neural network (see Fig. 1A):

The neural network optimizes the log-partial likelihood 
function similar to the standard Cox model by tuning 
parameters W ,β∗:

Cox-nnet was proposed to deal with high dimen-
sional features especially in genomic studies. To avoid 
overfitting, Cox-nnet introduces a ridge regularization 
term and subsequently, the partial log likelihood in 
Eq. (2) is extended as the following:

In addition to L2-regularizer, Cox-nnet also allows drop-
out for regularization to avoid overfitting. The model is 
based on Theano framework, therefore, Cox-nnet can be 
run on a Graphics Processing Unit or multiple threads.

The Deepsurv model also allows the above-men-
tioned regularization techniques to avoid overfitting. In 
addition to that, Deepsurv adapted modern techniques 
to improve the training of the network such as intro-
ducing scaled Exponential Linear Units (SELU) as the 
activation function [8].

Although both the Cox-nnet and Deepsurv can learn 
the non-linear relationship between risk factors and 
the event risk, it is important to note that proportional 
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Fig. 1  Frameworks for neural network survival models. The frameworks of Deepsurv/Cox-nnet and Nnet-survival are shown in A, B respectively. In 
Fig. 1A, the Deepsurv and Cox-nnet model output hw(X i) which is used to replace the log risk XT

i β in the Cox model. In Fig. 1B, the output layers 
generate hij which is the hazard for individual i at time j
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hazard assumption still stands in the sense that the haz-
ard ratio between any individual i and j is constant over 
time.

Model V: Nnet‑survival
Nnet-survival is a fully parametric survival model that 
discretizes survival time. Nnet-survival is proposed to 
improve two main aspects of the neural network model 
that are adapted from Cox model: computational speed 
and the violation of the proportional hazard assump-
tion. Neural network survival models that adapt from 
Cox model (e.g., Deepsurv, Cox-nnet) use partial like-
lihood function as the loss function to optimize. The 
partial likelihood function is calculated based on not 
only the current individual but also all the individuals 
that are at risk at the time point. This makes it diffi-
cult to use stochastic gradient descent or mini-batch 
gradient descent, both of which use a small subset of 
the whole dataset. Therefore, both Deepsurv and Cox-
nnet may have slow convergence and cannot be applied 
to large datasets that run out of memory [9]. Nnet-
survival was proposed to discretize time, which trans-
forms the model into a fully parametric model and 
avoids the use of partial likelihood as the loss function. 
In Nnet-survival models, follow-up time is discretized 
to n intervals. Hazard hj is defined as the conditional 
probability of surviving time interval j given the indi-
vidual is alive at the beginning of interval j . Survival 
probability at the end of interval j can be then calcu-
lated as the following:

The loss function is defined as the following:

for individuals who fail at interval j , and

for individuals who are censored at the second half of 
interval j − 1 or the first half of interval j.

There are two main architectures of Nnet-survival: 
a flexible version and a proportional hazards version. 
In the flexible version, output layers have n neurons, 
where n is the number of intervals and each output 
neuron represents the survival probability at the spe-
cific time interval given an individual is alive at the 
beginning of the time interval. In the proportional haz-
ard version, the final layer only has a single neuron rep-
resenting XT

i β:

Sj =
∏j

i=1
(1− hi).

L = hj
∏j−1

i=1

(

1− h(i)
)

,

L =
∏j−1

i=1

(

1− h(i)
)

,

In our study, the flexible version is used, with its 
architecture of the flexible version shown in Fig. 1B.

Statistical analysis
In this study, we used the harmonized, individual-level 
data from 6 cohorts in the Lifetime Risk Pooling Project, 
including Atherosclerosis Risk in Communities (ARIC) 
study, Cardiovascular Health Study (CHS), Framingham 
Offsprinig study, Coronary Artery Risk Development in 
Young Adults (CARDIA) study, the Framingham Origi-
nal study, and the Multi-Ethnic Study of Atherosclero-
sis (MESA). The first 5 cohort data were used for model 
development and internal validation, and the MESA data 
was used for external validation. We included individuals 
that meet the following criteria: (i) age between 40 to 79; 
and (ii) free of a previous history of myocardial infarc-
tion, stroke, congestive heart failure, or atrial fibrillation. 
ASCVD was defined as nonfatal myocardial infarction or 
coronary heart disease death, or fatal or nonfatal stroke 
(see [14] for details of selection criteria). All study indi-
viduals were free of ASCVD at the beginning of the study 
and were followed up until the first ASCVD event, loss 
to follow up, or death, whichever came first. We fit PCE, 
Cox PH with all two-way interactions (Cox PH-TWI), 
Nnet-survival, Deepsurv, and Cox-nnet models in white 
male, white female, black male, and black female partici-
pants. For comparison purposes, for all the models, we 
included the same predictors as used in the PCEs: age at 
baseline, systolic blood pressure (SBP), diabetes medical 
history, treatment for hypertension, current smoker, high 
density cholesterol (HDL-C) and total cholesterol. The 
details of the study start and end dates, study settings, 
and how the covariates were collected can be found in 
[14]. Individuals who had missing data at baseline were 
excluded from the study.

To obtain high performance neural network survival 
models, we manually tuned various hyper-parameters 
including learning rate, number of layers, number of 
neurons, number of epochs, batch size, momentum, 
optimizer, learning rate decay, batch normalization, L2 
regularization, and dropout. More specifically, to tune 
the hyperparameters in the development dataset (the five 
training/internal validation cohorts), we split the data 
into 10 folds. We used nine folds of the data for train-
ing and the rest one-fold for evaluation. We used grid 
search to search through a range of hyperparameters and 
select the hyperparameter combination that generates 
the highest C-index in the one-fold evaluation dataset. 
After selecting the optimal hyper-parameters, we evalu-
ated model performance through internal validation with 
10 × 10 cross validation and external validation with the 

hβ(Xi) = X
T
i β ,
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MESA data. To perform 10 × 10 cross-validation, we 
randomly partitioned the pooled cohort data into 10 
equal-sized subsamples. Of the 10 subsamples, 9 subsam-
ples were used as training data and the remaining single 
subsample was retained as the validation data for testing 
the model. Each of the subsamples is used in turn as the 
validation data. We repeated this process 10 times, dur-
ing which 100 models were built. The average C-statistics 
and calibration plot of the 100 models were used as the 
final 10 × 10 cross-validation result. For PCE and Cox 
PH-TWI models, we refit the models in each of the cross-
validated training samples for the internal 10 × 10 cross-
validation to avoid overfitting. In each refit, we kept the 
original structure of the original PCE models and only 
updated the coefficients of the models. In the calibration 
plots, the observed and predicted events were shown in 
deciles [11]. For the external validation, we trained the 
model in the whole harmonized dataset (not including 
MESA cohort) and evaluated the model discrimination 
and calibration in the external MESA cohort. To compare 
whether the differences among C-statistics were signifi-
cant in neural network models vs. PCE models, we per-
formed significant test using method proposed by Uno 
et al. [16]. MESA is a more contemporary cohort that had 
lower CVD event rate compared to the earlier cohorts 
[14]. This difference could cause models to have poor 
calibration in MESA. To overcome this, we performed 
recalibration on all models using the method proposed 
by Pennells et al. [17]. Briefly, we first calculated rescal-
ing factors that were needed to bring predicted risks in 
line with observed risks using regression model in MESA 
dataset. We then applied the rescaling factors to the orig-
inal predicted risk and got recalibrated risk estimates for 
all participants.

Nnet-survival, Deepsurv, and Cox-nnet were imple-
mented in python, version 3.7.3. Cox PH model was 
conducted using the “survival” package in R, version 
3.6.0. C-statistics and the significant test in C-statistics 
between two competing risk prediction models were cal-
culated using the “survC1” package in R, version 3.6.0 
[16]. We chose 0.05 as the statistical significance level. 
Regression model for recalibration was performed using 
“scikit-learn” module in python, version 3.7.3 [18].

All data were de-identified, and all study protocols 
and procedures were approved by the Institutional 
Review Board at Northwestern University with a waiver 
for informed consent. All methods were performed in 
accordance with the relevant guidelines and regulations.

Results
Overall, out of 26406 participants, 3190 (13.7%) had 
missing data at baseline. After excluding participants 
with missing data, there were 23216 participants left in 

total, including 8644 white male, 1354 black male, 10719 
white female, 2499 black female individuals. The aver-
age age at baseline was 57.8 years old (SD = 9.6). Among 
these individuals, 16.0% developed ASCVD with aver-
age follow-up of 10.50 (SD = 3.02) years. The mean SBP 
value was 127.1  mmHg (SD = 21.0), the mean HDL-C 
value was 51.6  mg/dL (SD = 16.4), total cholesterol was 
217.8  mg/dL (SD = 43.0). For binary predictors, 4.6% 
individuals had a history of diabetes, 26.0% individuals 
were current smokers, 31.6% individuals had treatment 
for hypertension. SBP, HDL-C, TOTCHL, history of dia-
betes, smoker percentage, age, and history of hyperten-
sion are all significantly different among the four race 
gender groups. More specifically, black males have the 
highest SBP, HDL-CL, percentage of diabetes history, 
percentage of smokers. The descriptive statistics for each 
race and sex group were shown in Table 1.

In the MESA external validation dataset, there were 
4259 individuals in total. The average age at baseline was 
61.6  years old (SD = 9.6). Among the 4259 individuals, 
331 (7.77%) developed ASCVD with average follow-up 
years of 10.97  years old (SD = 2.48). Among these indi-
viduals, there were 1194 white males, 799 black males, 
1284 white females, and 982 black females. All the base-
line characteristics (among the 7 covariates) are sig-
nificantly different among the four race gender groups, 
except for age. Similarly, we observed that black males 
have the highest SBP, HDL-C, percentage of diabetes his-
tory, percentage of smokers. Baseline characteristics of 
the study sample were shown in Table 1, stratified by race 
and sex group.

In 10 × 10 cross validation, in the white male popula-
tion (see Fig.  2 and supplemental Table  1), Deepsurv 
achieved the highest C-statistics (0.7371) among all 
the models. In the white female population, Deepsurv 
(0.7972) and Cox PH-TWI (0.7972) had the highest 
C-statistics. In the black male population, PCE had the 
highest C-statistics (0.6981). In the black female popula-
tion, Deepsurv had the highest C-statistics (0.7886). The 
details of C-statistics for each model and race sex group 
were shown in Supplemental Table 1. In the external vali-
dation dataset, in white male population, Deepsurv had 
the highest C-statistics (0.7032). In white female popula-
tion, Cox-nnet had the highest C-statistics (0.7282). In 
black male population, PCE had the highest C-statistics 
(0.6811). In black female population, Deepsurv (0.7316) 
had the highest C-statistics and this difference was sta-
tistically significant compared to PCE (p = 0.00, see Sup-
plemental Table 1). Overall, when including results from 
both internal and external validations, Deepsurv had the 
highest C-statistics for five times followed by PCE which 
had the highest C-statistics for two times followed by 
Cox-nnet and Cox PH-TWI for one time. However, the 
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Table 1  Baseline characteristics for each race and sex group in training/internal validation dataset and external validation dataset

Abbreviations: SD standard deviation, SBP systolic blood pressure, HDL-C high density cholesterol, TOTCHL total cholesterol, HXDIAB history of diabetes, RXHYP history 
of hypertension

Overall White male Black male White female Black female P-value

Training/internal validation dataset

  N 23216 8644 1354 10719 2499

  Number of Events, n (%) 3705 (16.0) 1788 (20.7) 300 (22.2) 1217 (11.4) 400 (16.0)

  Age (year), mean (SD) 57.8 (9.6) 58.0 (9.6) 57.3 (9.5) 58.0 (9.7) 56.4 (9.3)  < 0.001

  SBP (mm Hg), mean (SD) 127.1 (21.0) 127.2 (19.5) 131.8 (21.5) 125.5 (21.6) 130.8 (22.7)  < 0.001

  HDL-C (mg/dL), mean (SD) 51.6 (16.4) 43.8 (12.7) 49.7 (16.0) 56.8 (16.5) 57.5 (16.4)  < 0.001

  TOTCHL (mg/dL), mean (SD) 217.8 (43.0) 212.1 (39.9) 208.6 (44.4) 223.9 (43.8) 216.0 (45.4)  < 0.001

  HXDIAB, n (%) 1069 (4.6) 295 (3.4) 175 (12.9) 294 (2.7) 305 (12.2)  < 0.001

  Smoker, n (%) 6035 (26.0) 2294 (26.5) 441 (32.6) 2723 (25.4) 577 (23.1)  < 0.001

  RXHYP, n (%) 7326 (31.6) 2226 (25.8) 707 (52.2) 2951 (27.5) 1442 (57.7)  < 0.001

MESA external validation dataset

  N 4259 1194 799 1284 982

  Number of Events, n (%) 331 (7.8) 104 (8.7) 85 (10.6) 79 (6.2) 63 (6.4)

  Age (year), mean (SD) 61.6 (9.6) 61.9 (9.6) 61.5 (9.6) 61.5 (9.6) 61.3 (9.4) 0.446

  SBP (mmHg), mean (SD) 126.3 (21.0) 123.7 (18.3) 130.0 (19.2) 121.8 (21.4) 132.4 (22.8)  < 0.001

  HDL-C (mm/dL), mean (SD) 52.2 (15.5) 45.2 (12.1) 46.5 (12.5) 58.8 (15.8) 56.9 (15.6)  < 0.001

  TOTCHL (mm/dL), mean (SD) 193.3 (35.7) 189.2 (34.4) 182.0 (34.6) 202.3 (34.4) 195.7 (36.5)  < 0.001

  HXDIAB, n (%) 354 (8.3) 57 (4.8) 117 (14.6) 51 (4.0) 129 (13.1)  < 0.001

  Smoker, n (%) 628 (14.7) 137 (11.5) 166 (20.8) 160 (12.5) 165 (16.8)  < 0.001

  RXHYP, n (%) 1676 (39.4) 389 (32.6) 370 (46.3) 402 (31.3) 515 (52.4)  < 0.001

Fig. 2  C-statistics for PCEs, Nnet-survival, Deepsurv, Cox-nnet, and Cox PH-TWI in 10 × 10 cross-validation and MESA external validation. The ‘x’ 
markers represent C-statistics in 10 × 10 cross-validation, the ‘o’ markers represent C-statistics in MESA external validation
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difference between all neural network models vs. PCE are 
not significant except for Deepsurv in black females (see 
Supplemental Table 1).

In terms of calibration, in 10 × 10 cross-validation (see 
Fig.  3), the calibration plot showed that all five models 
had similar calibration compared to PCE in white male 
and white female population. In black male population, 
PCE and Cox PH-TWI had better calibration compared 
to neural network models. In black female population, 
all models have better calibration than Cox-nnet. In 
the MESA external validation dataset, calibration plot 
showed that all five models overestimated the event rate 
among all race and sex groups. In white female and black 
female populations, all five models had similar overes-
timation with predicted event rate ranging from 0 to 
approximately 0.43 compared to 0 to approximately 0.18 
in the observed event rate (see Fig. 4). In white male and 
black male populations, all five models had similar over-
estimation with predicted event rate ranging from 0 to 
approximately 0.6 compared to 0 to approximately 0.2 in 
the observed event rate (see Fig.  4). After recalibration 

by fitting linear regression models, over-estimations of 
event risk were greatly reduced in all models among all 
race and sex groups (see Fig. 5). The recalibration inter-
cept and slope are summarized in Supplemental table 2.

Discussion
In this study, we implemented state-of-the-art neural net-
work survival models in predicting 10-year risk for a first 
ASCVD event. Our results showed that overall, when 
using the same predictors as in the PCEs, neural network 
survival models and PCE had comparable discrimination. 
Neural network survival models outperformed PCE in 
white male, white female, and black female population by 
slim margins. However, the difference is not statistically 
significant expect for Deepsurv in black female popula-
tion. In terms of calibration, in the internal validation 
dataset, PCEs, Cox-PH TWI had good calibration across 
all race and sex populations, while the neural network 
models’ performance is not consistent. In external vali-
dation dataset, all models over-estimated the event rate 
in all four race-sex groups. Recalibration largely reduced 

Fig. 3  Kaplan–Meier Observed Event Rate and Predicted Event Rate for the ASCVD Outcome in the 10 × 10 cross-validation. For each model, we 
divided participants into 10 groups (decile) based on their sorted predicted event probability. Then, for each decile, mean observed event rate 
(Kaplan–Meier method) was plotted against mean predicted event rate. In a perfectly calibrated model, the predicted event rate would be the 
same as the observed event rate in each decile. This means that all points would be clustered around the blue identity line
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the overestimation. Among different race gender groups, 
models in black males have relatively worse performance, 
which is consistent with the results from the PCE paper 
[1]. The number of African Americans, particularly men, 
is relatively low, which could potentially cause greater 
level of uncertainty with respect to the estimates. In the 
training dataset, the sample size for black males is 1354, 
which is much smaller than the white male (8644) and 
white female (8644) population. In addition, black male 
population has the highest ASCVD rate compared to 
other race gender groups. Our prior work showed racial 
differences in risks for first cardiovascular events and 
non-CVD death and competing risks analyses may yield 
somewhat different results than traditional Cox models 
and provide a complementary approach to examining 
risks for first CVD events [24].

Theoretically, among the different neural network 
survival models, Nnet-survival is faster in training than 
Deepsurv and Cox-nnet models. Nnet-survival’s loss 
function only relies on individuals in the current mini-
batch which allows mini-batch gradient descent while 

both Deepsurv and Cox-nnet require the entire dataset 
for each gradient descent update. On the other hand, the 
discretization of time-to-event in Nnet-survival leads to a 
less smooth predicted survival curve compared to Deep-
surv and Cox-nnet.

In prior studies, Gensheimer et  al. applied Cox PH, 
Nnet-survival, Deepsurv, and Cox-nnet in life expectancy 
prediction using the Study to Understand Prognoses 
and Preferences for Outcomes and Risks of Treatments 
(SUPPORT) dataset [11]. The dataset consisted of 9105 
individuals and 39 predictors. The four neural network 
survival models generated similar C-statistics com-
pared to the Cox PH model, which was consistent with 
our findings in ASCVD prediction. Both the SUPPORT 
dataset and our dataset had low dimension number 
of predictors. Several studies explored other machine 
learning methods for CVD prediction. Joo et  al. [19] 
applied logistic regression, deep neural networks, ran-
dom forests, and LightGBM to predict CVD as a binary 
outcome using the Korean National Health Insurance 
Service–National Health Sample Cohort dataset. The 

Fig. 4  Kaplan–Meier Observed Event Rate and Predicted Event Rate for the ASCVD Outcome in the MESA Cohort. For each model, we divided 
participants into 10 groups (decile) based on their sorted predicted event rate. Then, for each decile, mean observed event rate (Kaplan–Meier 
method) was plotted against mean predicted event rate. In a perfectly calibrated model, the predicted event rate would be the same as the 
observed event rate in each decile. This means that all points would be clustered around the dotted identity line
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authors found that deep neural network had better per-
formance (C-statistics = 0.7446) compared to the PCE 
(C-statistics = 0.7381) in that cohort. However, the ML 
models used more predictors (hemoglobin level, diastolic 
blood pressure, presence of proteinuria, serum aspartate 
aminotransferase, serum alanine aminotransferase, and 
total cholesterol) compared to the PCE. In another study, 
Dimopoulos et  al. implemented KNN, random forest, 
and decision tree to predict CVD compared to the Hel-
lenicSCORE, a Cox regression based model [20]. Their 
results showed that ML models have comparable perfor-
mance compared to the HellenicSCORE [21] using 5 and 
13 same predictors respectively but were not able to out-
perform the baseline model.

Similar to other machine learning models, neural net-
work models often show advantage in modeling non-
linear complex relationships between predictors and 
outcome. We used the same predictors as the PCE, which 
are all well-studied risk factors of cardiovascular disease. 
The biologic basis for many of these variables has been 

well studied, and they are known to be independently 
and often linearly associated with risk of cardiovascular 
events. In this situation, simpler models might suffice 
since they can accurately capture a linear biologic rela-
tion without sacrificing interpretability. Similar conclu-
sions were reached in data comparing three machine 
learning methods to a simpler logistic regression model 
for predicting death after acute myocardial infarction 
[22]. In the study, two of the 3 machine learning algo-
rithms improved discrimination by a slim margin [22]. 
In the follow up editorial by Engelhard et  al. [23], they 
mentioned that machine learning has been most impact-
ful with complex data (e.g., high dimensional and difficult 
to summarize without substantial loss of information). 
There have been some explorations on using machine 
learning/deep learning with high dimensional features 
and/or longitudinal risk factors to improve CVD risk 
prediction. However, the findings are somewhat mixed 
in the literature. For instance, Zhao et  al. implemented 
convolutional neural network and recurrent neural 

Fig. 5  Kaplan–Meier Observed Event Rate and Recalibrated Predicted Event Rate for the ASCVD Outcome in the MESA Cohort. For each model, 
we divided participants into 10 groups (decile) based on their sorted recalibrated event rate estimates. Then, for each decile, mean observed event 
rate (Kaplan–Meier method) was plotted against mean recalibrated event rate estimates. In a perfectly calibrated model, the recalibrated event rate 
estimates would be the same as the observed event rate in each decile. This means that all points would be clustered around the dotted identity 
line
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networks with long short-term memory using longitudi-
nal electronic health records and genetic data and dem-
onstrated significant improvement over the PCEs [24]. 
Dolezalova et  al. trained both Cox PH and Deepsurv 
models using 608 variables derived from the UK Biobank. 
The two models achieved almost identical performance 
in C-index, although both models were superior to the 
Framingham risk score [25]. Taking together, with the 
same set of predictors as in the PCEs, our results show 
that the neural network survival models do not provide 
clinically meaningful improvement over the simpler and 
more interpretable PCEs. With more high dimensional 
complex data being readily accessible (e.g., repeated 
measurement data and imaging data in the electronic 
health records database), further research is needed to 
establish the clinical utility of neural network survival 
models and other machine learning/deep learning mod-
els for improving CVD risk prediction.

Limitations
Our study has several limitations. First, the cohorts we 
used from the Lifetime Risk Pooling Project were the 
same cohorts used in the derivation of the PCEs. This 
may have led to some optimism in the performance of the 
PCEs. Second, the participants of our external validation 
cohort, MESA, were perhaps healthier than the general 
population. More importantly, they received intensive 
screening for subclinical CVD, which influenced health 
behaviors and preventive interventions including use 
of effective drug therapies; this may result in the lower 
event rate in MESA participants than what would have 
been predicted because of the use of effective preventive 
therapies selectively in higher-risk individuals.

Conclusion
Neural network survival models can achieve comparable 
discrimination if not superior performance compared to 
the PCEs in 10-year time-to-ASCVD prediction in the 
white female, white male, black female, and black male 
population in our dataset. In future studies, high dimen-
sional features and/or longitudinal risk factors should 
be considered to fully explore the benefits of neural net-
work survival models for ASCVD risk prediction.
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