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Abstract 

Clinical information collected in electronic health records (EHRs) is becoming an essential source to emulate rand-
omized experiments. Since patients do not interact with the healthcare system at random, the longitudinal informa-
tion in large observational databases must account for irregular visits. Moreover, we need to also account for subject-
specific unmeasured confounders which may act as a common cause for treatment assignment mechanism (e.g. 
glucose-lowering medications) while also influencing the outcome (e.g. Hemoglobin A1c). We used the calibration of 
longitudinal weights to improve the finite sample properties and to account for subject-specific unmeasured con-
founders. A Monte Carlo simulation study is conducted to evaluate the performance of calibrated inverse probability 
estimators using time-dependent treatment assignment and irregular visits with subject-specific unmeasured con-
founders. The simulation study showed that the longitudinal weights with calibrated restrictions improved the finite 
sample bias when compared to the stabilized weights. The application of the calibrated weights is demonstrated 
using the exposure of glucose lowering medications and the longitudinal outcome of Hemoglobin A1c. Our results 
support the effectiveness of glucose lowering medications in reducing Hemoglobin A1c among type II diabetes 
patients with elevated glycemic index ( ≥ 8.5% ) using stabilized and calibrated weights.
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Introduction
Prospective randomized experiments are conducted to 
evaluate the effectiveness of an intervention. However, in 
the absence of controlled experiments, large data reposi-
tories may provide an alternative source to emulate the 
randomized experiment with the intention to draw causal 
inference pertaining to the effectiveness of an intervention 

[1]. Longitudinal data can be collected at fixed (or pre-
specified) time points or irregular time points during the 
study follow-up. For example, a randomized controlled 
study may pre-specify the fixed follow-up visits in 
advance at regular time points, while the data collection 
at unequally spaced visit times in an observational data 
repository may be related to the outcome. Since patients 
do not interact with the health care system at random, 
the longitudinal information collected in electronic 
health records (EHRs) tend to exhibit bias in the form of 
informative visit regimen [2]. For example, the data col-
lected in EHRs may correspond to an over-representa-
tion of patient population with severe or worse disease 

*Correspondence:
Sumeet Kalia
sumeet.kalia@utoronto.ca
1 Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
2 Department of family and community medicine, University of Toronto, 
Toronto, Canada

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-022-01831-2&domain=pdf


Page 2 of 16Kalia et al. BMC Medical Research Methodology            (2023) 23:4 

symptoms when patients are only visiting the clinic with 
the acute onset of new medical ailment or the manage-
ment of pre-existing chronic condition. The outcomes and 
the visits in discrete time-intervals may be correlated in 
which case the application of standard regression model 
(e.g. generalized estimating equations) generates biased 
estimation [3, 4]. To correct for this, Pullenayegum and 
Lim [5] outlined two methods to handle longitudinal data 
with irregular visits: (i) inverse-intensity weighting and (ii) 
model-based approach using correlated random effects 
between the visits and the outcome. Inverse-intensity 
weighting method uses the measured covariates to cap-
ture the correlation between the visit and outcome pro-
cesses. Similarly, the semi-parametric method assumes 
the dependency between the visits and outcome through 
baseline covariates and time-varying latent factors.

Pullenayegum and Lim [5] describe four categories 
of visit process: (i) fixed visits, (ii) history-dependent 
protocol visit, (iii) physician-driven visit, (iv) patient-
driven visit. We limit the focus of this article to “history-
dependent protocol visit” in which the protocol specify 
when the visits should be, but the intervals between visits 
are allowed to depend on patients’ previously observed 
history [5]. As an example, we may specify the covar-
iate-dependent irregular visits are more frequent in the 
presence of confounding factors [5]. In our context, his-
tory-dependent protocol visit is a reasonable assump-
tion for the management of patients with diabetes, since 
the patients are expected to visit the primary care clinic 
routinely depending on their health status, and as recom-
mended by Diabetes Canada guidelines [6]. We describe 
the irregular visits as the presence of missed visits that 
do not take place within an interval (i.e. missed vis-
its). We use non-overlapping intervals to discretise the 
continuous-time processes, and we conceptualize treat-
ment, confounder and outcome as random variables that 
evolve with study follow-up. We assume that the history-
dependent protocol visit characterize the missing at ran-
dom mechanism in which the missing outcome is not 
dependent on current and future outcome conditional 
on the past outcome and covariates [5]. We may quan-
tify the extent of visit irregularity by examining the devia-
tion from perfect repeat-measures (i.e. one visit per time 
interval) using the proportion of missed visits within 
each time intervals [7].

In the context of longitudinal causal inference, 
Hernán et al. [8] considered subject-specific visit times 
using a static observation plan with pre-specified regu-
lar times and dynamic observation plan with irregular 
visit occurrence due to clinical evolution of patients. 
Hernán et al. [8] demonstrated the need to account for 
selection bias and confounding arising in estimation of 

the effects of a dynamic treatment regime. The depend-
ence between the outcome and the visit can arise under 
various combinations including: (i) conditional inde-
pendence given past outcome-model covariates, (ii) 
conditional independence given past observation-time 
model covariates, (iii) conditional independence given 
shared latent variables [9]. In this article, the depend-
ence between the treatment and the outcome is induced 
by an unmeasured (subject-specific) confounder, and 
thereby treatment is assumed to influence the outcome 
after conditioning on the observed history [10].

Regression models may yield biased estimation of 
longitudinal causal effect of time-varying treatment 
in the presence of time-varying confounder and treat-
ment-confounder feedback [11]. In particular, selection 
bias is introduced when standard methods (e.g. gener-
alized estimating equations) are used to adjust for the 
effect of time-dependent confounding. The existence 
of treatment-confounder feedback (i.e. past treatment 
affects the current confounder which affects the current 
treatment) requires the use of causal inference meth-
ods to estimate the causal effect of time-dependent 
treatment [12]. In addition to treatment-confounder 
feedback, the longitudinal data collected in EHRs may 
also contain additional feedback with respect to visit-
confounder where the past visit affects the current 
confounder which affects the future visit. Marginal 
structural models using inverse-probability weights 
with respect to treatment and visit account for such 
temporal feedback, and provide consistent estimates of 
marginal causal effects with correct model specification 
and without unmeasured confounding factors.

Knowledge gap and motivating example
To our knowledge, the simultaneous existence of treat-
ment-confounder and visit-confounder feedback with 
unmeasured confounder for each subject in longitu-
dinal settings has not been considered in the causal 
inference literature. The cumulative-time weights with 
respect to treatment and visit account for this feedback. 
Moreover, the treatment weights and visit weights are 
calibrated to make the non-probability (i.e. observa-
tional) sample similar to the target population. In this 
article, we extend the earlier work by Yiu and Su [13]) 
in two-folds: (i) extending calibration of longitudinal 
weights to irregular visits, (ii) incorporating unmeas-
ured confounder for each subject in longitudinal 
design. The application of this method is demonstrated 
to assess the effectiveness of glucose lowering medica-
tions among diabetes patients with elevated glycemic 
index (Hemoglobin A1c ≥ 8.5%).
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Methods
Notation
A framework for longitudinal causal inference is consid-
ered for n individuals (i = 1, ..., n) in mi time-intervals 
(j = 1, ...,mi) . An equally spaced time interval is denoted 
as {Ti1 < ... < Tiki} . The time-dependent binary treat-
ment is denoted as Ai(Tij) = Aij , time-dependent binary 
confounder is denoted as Li(Tij) = Lij , the occurrence of 
visit is denoted as Vi(Tij) = Vij , the continuous outcome 
is denoted as Yi(Tij) = Yij . The vector of baseline covari-
ates for individual i is denoted as Xi . The latent con-
founder ηi is defined as a common cause of treatment Aij 
and outcome Yij for individual i. In some instances, the 
index for individual i is suppressed because it is assumed 
that the random vector for each individual i is drawn 
independently with respect to other individuals. The 
cumulative treatment status Āij , cumulative confounder 
status L̄ij , cumulative visit status V̄ij denotes the com-
plete history of each factor up to and including visit j. As 
an example, Āij = {Ai0,Ai1, ...Aij} ; L̄ij = {Li0, Li1, ...Lij} ; 
V̄ij = {Vi0,Vi1, ...Vij} . We denote observed history as 
H̄j−1 ≡ {V̄j−1, Ȳj−1, L̄j−1, Āj−1,X} . We introduce Y ā,v̄

j  
and Lā,v̄j  as potential outcome and potential confounder 
(respectively) under treatment regime ā and visit regime 
v̄ with respect to the jth visit.

Marginal structural model
The marginal causal effects of treatment are specified 
through a parametric marginal structural model with 
respect to the longitudinal outcome as

where Y ā,v̄
j  is the potential outcome indexed with respect 

to hypothetical treatment ā and hypothetical visit v̄ . The 
link function is represented using an identity function 
g−1(·) . We assume a rank-preserving model in which 
the net change in potential outcome (i.e. E(Y ā,v̄

j |H̄∗

j−1) ) 
is preserved with respect to the treatment and visit for 
all subjects (i.e. absence of effect modification) [14]. In 
the context of EHRs, the causal contrast correspond to 
net change in HbA1c with respect to glucose-lowering 
medications. We are interested in accounting for three 
sources biases that distort the causal estimator: (i) meas-
ured confounding arising due to time-dependent covari-
ates, (ii) selection bias arising due to irregular visits (i.e. 
missing at random), and (iii) subject-specific unmeasured 
confounder.

We use the generalized estimating equations with 
inverse probability weights to obtain an estimate of the 
marginal treatment effect with respect to time-depend-
ent covariates. We describe the marginal structural 

(1)g−1(E(Y ā,v̄
ij |Xi)) = h(ā, v̄,Xi; θ))

model using the score function of weighted generalized 
estimating equations as

where SWi are the inverse probability weights with stabi-
lizing factor, νi is the working covariance matrix of Yi and 
it is specified through working correlation matrix R(α) , 
and µi(β) is the mean vector. The correct specification 
of the correlation matrix R(α) improves the efficiency of 
estimation while misspecification may still lead to con-
sistent estimators.

The longitudinal weights with stabilization factor are 
constructed to account for treatment-confounder and 
visit-confounder feedback as

where the product terms are defined over cumulative 
discrete-time intervals. The observed partial history with 
the exclusion of time-dependent covariates for treatment 
and visits is denoted as H̄∗

j−1 and H̄∗∗

j−1 . Since the time-
varying treatment Aj and time-varying visit Vj are sta-
tistically endogenous, the stabilized inverse probability 
treatment weights SW Ā

t  , stabilized inverse probability 
visit weights SW V̄

t  and joint inverse probability weights 
SW Ā,V̄

t  are required to estimate the marginal causal effect 
of glucose-lowering medications on hemoglobin A1c. The 
stabilized treatment weights are used to create a pseudo-
population in which the imbalance for time-dependent 
covariates across treatment groups is reduced. The stabi-
lized visit weights are used to create a pseudo-population 
in which the selection bias due to irregular visits (missing 
at random) is reduced. The pseudo-population generated 
using the joint weights SW Ā,V̄

t  incorporate both sources 
of biases (i.e. confounding bias and selection bias).

Assumptions
Longitudinal causal inference with time-varying treat-
ment use the sequential version of identifiability assump-
tions: (i) latent sequential exchangeability, (ii) sequential 
postivity and (iii) sequential consistency. The sequential 
exchangeability assumption is an extension of condi-
tional exchangeability (or no unmeasured confounding) 
assumption where the probability of treatment assign-
ment and visit occurrence at jth visit depends on past 
treatment, past visit and covariate history, and con-
ditional on these factors the potential outcome and 

(2)S(β) =

n

i=1

∂µ′

i

∂β
ν−1
i SWi(Yi − µi(β)) = 0

SW Ā
t =

t
∏

j=1

Pr(Aj|H̄
∗

j−1)

Pr(Aj|H̄j−1)
; SW V̄

t =

t
∏

j=1

Pr(Vj|H̄
∗∗

j−1)

Pr(Vj|H̄j−1)

SW Ā,V̄
t = SW Ā

t × SW V̄
t .
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potential confounder is independent of the treatment 
assignment. The latent sequential exchangeability 
assumption (or equivalently latent ignorability assump-
tion) can be described as

The sequential positivity assumption is defined as a non-
zero probability of treatment assignment and observed 
visit at each time interval j given the history H̄j−1 . We 
describe sequential positivity as P(Aj|H̄j−1) > 0 and 
P(Vj|H̄j−1) > 0 for ∀ā, v̄ . The sequential consistency 
assumption links the potential outcome Y ā,v̄

j  and con-
founder Lā,v̄j  to the observed outcome and confounder as

If causal identifiability assumptions are satisfied then an 
observational study can be used to mimic a randomized 
experiment with the limitation that the conditional prob-
ability of treatment assignment is unknown and need to 
be estimated using the data in an observational study. It 
is further assumed that the administrative censoring Cij 
is non-informative where censoring is independent of 
observation times Tij and longitudinal outcome Yij condi-
tioned on history H̄j−1 as Cij⊥⊥{Yij ,Tij}|{H̄j−1, ηi}.

Calibration of inverse probability weights
We motivate the application of calibrated longitudinal 
weights to estimate the causal effects of glucose lowering 
medications on hemoglobin A1c. Calibration has been 
used in causal inference framework to estimate the aver-
age treatment effect when regularizing high-dimensional 
covariates with lasso penalty [15], to minimize the vari-
ance of calibrated weights [16], to improve the finite sam-
ple properties of maximum likelihood estimation [17], to 
account for unmeasured cluster-level confounders [18].

Under finite longitudinal sample, stabilized inverse prob-
ability weights may not remove the associations between 
time-dependent treatment Aij and time-dependent covari-
ate L̄ij conditional on past treatment regimen Āij−1 . There 
may still exist chance imbalances and residual confound-
ing of covariates in the pseudo-population (weighted using 
SWA

ij  or SWV
ij  ) and this may contribute to finite sample 

estimation errors [19]. The sample estimation errors may 
further become exacerbated when the treatment model or 
the visit model are misspecified. In this article, the longi-
tudinal inverse probability treatment and visit weights are 
calibrated to account for (i) associations between treat-
ment regimen and time-dependent covariates, (ii) asso-
ciations between irregular visits and time-dependent 
covariates, (iii) unmeasured subject-specific (i.e. time-
invariant) confounder. The purpose of calibrating the lon-
gitudinal weights is to improve the small sample properties 

{Y ā,v̄
j , Lā,v̄j }⊥⊥{Aj ,Vj}|{H̄j−1, ηi}.

Y ā,v̄
j = Yj Lā,v̄j = Lj if Ā = ā and V̄ = v̄.

of the longitudinal weights [17], while accounting for the 
unmeasured subject-specific confounder and irregular 
visits.

The calibration restrictions are employed on inverse 
probability weights to make the treatment assignment 
unassociated with the history of the time-varying covari-
ates at each time interval in the pseudo-population. Yiu and 
Su [17] proposed the calibrated inverse probability weights 
to improve estimation errors under finite samples using 
maximum likelihood estimation. Similar to Yiu and Su 
[17], we calibrate the treatment and visit inverse probability 
weights using the maximization of weighted log-likelihood 
functions:

after weighting the sample as

where c(L̄ij , �) is the calibration function and reduces 
to one when the vector of coefficients � = 0 (i.e. 
c(L̄ij , � = 0) = 1) . We assume a non-negative para-
metric form of c(L̄ij , �) = exp(K�) , where the matrix 
K ∈ R

N×r includes the data-dependent restrictions with 
N =

∑n
i=1mi observations and r columns. The unknown 

vector of � ∈ R
r is estimated using the calibration of 

inverse probability treatment and visit weights.
In similar spirit to Yiu and Su [20], the regression coef-

ficient αw of treatment model are partitioned into {αb,αd} , 
where αb characterize the baseline distribution (e.g. inter-
cept term) and αd characterize the dependence of treat-
ment assignment and covariates. Likewise, the regression 
coefficients of irregular visits ωw are partitioned into 
{ωb,ωd} with the same convention. We maximize the 
weighted log-likelihood function with respect to � through 
a score equation

where the innermost index k accumulates over j time 
intervals. The dependence of treatment Aij with the 
time-dependent covariates L̄ij is represented as αd and 
it is constrained to be zero while the vector of treatment 

n
�

i=1

mi
�

j=1







j
�

k=1

Pαw (Aik |H̄ik−1;αw)







SWA
ij (�)

n
�

i=1

mi
�

j=1







j
�

k=1

Pωw (Vik |H̄ik−1;ωw)







SWV
ij (�)

SWA
ij (�) = SWA

ij c(L̄ij , �)

SWV
ij (�) = SWV

ij c(L̄ij , �)

(3)
n∑

i=1

mi∑

j=1

SWA
ij
(𝜆)

j∑

k=1

𝜕

𝜕𝛼w

log(P
𝛼w
(Aik |H̄ik−1;𝛼𝜔))

||||𝛼b=𝛼̂,𝛼d=0
= 0
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coefficients (excluding time-dependent covariates) is rep-
resented as αb and it is set to the maximum likelihood 
estimates α̂ . In addition to calibrated treatment weights, 
the visit weights are calibrated to reduce the association 
between irregular visits and time-dependent covariates 
through a score equation

where the vector of regression coefficients ωd = 0 denote 
the independence of time-dependent covariate L̄i,j−1 and 
irregular visits Vij (constrained to be zero) while ωb = ω̂ 
is set to maximum likelihood estimates ω̂.

In both score Eqs. (3) and (4), we notice that the cali-
brated weights (i.e. SWA

ij (�) and SWV
ij (�) ) are used to 

weight the likelihood of treatment model and visit model 
(respectively) for the ith patient up to and including the 
time interval j. The calibration restrictions are inverted to 
estimate the values of unknown coefficients � . The cali-
bration restrictions using {αd = 0} and {ωd = 0} ensures 
that the treatment assignment and irregular visits are 
statistically exogenous with respect to the time-depend-
ent covariates. Since the covariate balancing restrictions 
reduce the dependence for treatment assignment and 
irregular visits with respect to the functional covariate 
history L̃ij , we may represent the model-based restric-
tions (derived in Appendix Section) as

and

where the model-based propensity scores for treat-
ment model êAik and visit model êVik are estimated as 
êAij = Pα(Aij|H̄

∗

j−1) and êVij = Pω(Vij|H̄
∗

j−1) . The model-
based covariate balancing restrictions are accumulated 
with respect to longitudinal observations. The residu-
als for treatment (i.e. Aij − êAij ) and irregular visit (i.e. 
Vij − êVij  ) are set to be orthogonal with respect to the 
functional history of time-dependent covariates L̃ij 
(including intercept term) in the pseudo-population 
defined using the calibrated weights.

Unity mean restrictions
The stabilized inverse probability weights used in the 
pseudo-likelihood function of marginal structural models 
tend to satisfy the property of unity mean at each time 
interval (i.e. E(SWA

j ) = E(SWV
j ) = 1 ∀j ) [21]. However, 

(4)
n∑

i=1

mi∑

j=1

SWV
ij
(𝜆)

j∑

k=1

𝜕

𝜕𝜔w

log(P
𝜔w
(Vik |H̄ik−1;𝜔w))

||||𝜔b=𝜔̂,𝜔d=0

= 0

n
∑

i=1

mi
∑

j=1

SWA
ij (�)

j
∑

k=1

(Aik − êAik)L̃ik−1 = 0

n
∑

i=1

mi
∑

j=1

SWV
ij (�)

j
∑

k=1

(Vik − êVik )L̃ik−1 = 0

this property is not guaranteed to hold for calibrated 
inverse probability weights. Thus, in addition to the 
covariate balancing score constraints, we further impose 
the restrictions for average calibrated weights to be one 
at each time interval as

The average treatment weights and visit weights are con-
strained to be equal to one at each time interval to sta-
bilize the longitudinal weights and to prevent trivial 
solutions of zero (or negative weights) during the calibra-
tion procedure.

Time‑invariant latent restrictions
In the presence of subject-level unmeasured confounder 
ηi , the exposed and the unexposed subjects (with respect 
to treatment) are not conditionally exchangeable given 
H̄j−1 because non-causal association between Āj and 
Yj cannot be blocked by conditioning on measured his-
tory H̄j−1 . We derive the balancing constraints for sub-
ject-specific unmeasured confounder in the context of 
repeated-measures longitudinal outcomes in Appendix 
Section. We obtain the empirical constraints to account 
for the unmeasured individual-level confounder ηi using 
treatment Aij as

and using visit Vij as

The empirical constraints in Eqs. (5) and (6) are suf-
ficient to describe the covariate balancing restrictions 
with respect to the time-invariant latent confounder ηi . 
These empirical restrictions balance the time-dependent 
covariate distribution across treatment groups and visit 
indication within each time interval in the presence of 
subject-specific latent confounder.

Simulation study
Kang et al. [22] assessed the performance of various meth-
ods that use inverse probability weighting to estimate the 
causal effect from observational data with incomplete 
(missing) outcome. In similar spirit to Kang et al. [22] and 
others [16, 23, 24], the data generation in this simulation 
study is designed as an amalgamation of earlier longitudi-
nal settings to evaluate the performance of inverse prob-
ability weighting with calibration restrictions.

E(SWA
ij
(�)) =

1

n

n∑

i=1

SWA
ij
(�) = 1 E(SWV

ij
(�)) =

1

n

n∑

i=1

SWV
ij
(�) = 1.

(5)
� ∑n

i=1

∑mi

j=1
SWA

ij
(𝜆)

∑j

k=1

�
(Aik − êA

ik
) × Lik−1

�
= 0

∑mi

j=1
SWA

ij
(𝜆)

∑j

k=1

�
(Aik − êA

ik
)
�

= 0 ∀i

(6)

�∑n

i=1

∑mi

j=1
SWV

ij
(𝜆)

∑j

k=1

�
(Vik − êV

ik
) × Lik−1

�
= 0

∑mi

j=1
SWV

ij
(𝜆)

∑j

k=1

�
(Vik − êV

ik
)
�

= 0 ∀i
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Estimation of marginal treatment effect
We allow the treatment Aj to depend on the evolution of 
an individual’s time-varying covariate(s) L̄j−1 , and also 
Āj−1 . Using the potential outcome framework defined 
with respect to treatment Āj and visit V̄j , the non-null 
causal effect is estimated using the G formula as

where the sum is defined with respect to all possible real-
izations of {ȳj−1, l̄j−1} and the marginal means of poten-
tial outcome E(Y ā,v̄

j |X = x) is specified with respect to 
treatment Āj = āj and visit V̄j = v̄j . With large number of 
time intervals, the marginal means of potential outcomes 
may also be approximated using Markov and stationary 
assumptions [25].

Apart from observed dependencies between outcome 
E(Yj|H̄j−1) and treatment E(Aj|H̄j−1) using observed his-
tory H̄j−1 , a subject-specific random effect ηi generates 
latent dependency between the outcome E(Yj|H̄j−1, η) and 
the time-dependent treatment E(Aj|H̄j−1, η) . As detailed 
in Appendix section, the G-computation can be extended 
to incorporate the subject-specific random effect ηi as

The G-computation is a generalization of covariate 
standardization in the longitudinal setting with time-
dependent exposure to express the marginal causal effect 
when the identifiability assumptions are satisfied [26]. 

The G-computation defines the population-average (i.e. 
marginal) causal contrast with respect to treatment and 
visit conditioned on baseline covariates and random 
effect. We used the G-computation to estimate the mar-
ginal quantity of interest (i.e. treatment effect) in mar-
ginal structural model.

Data generation
In the conditional data generating mechanism, the 
most recent values for visit Vj−1 , confounder Lj−1 and 

E(Y ā,v̄
j |X = x) =

∑

∀l̄j−1

∑

∀ȳj−1

E(Yj|H̄j−1)

j−1
∏

k=1

E(Yk |H̄k−1)P(Lk = lk |H̄k−1)

E(Y ā,v̄
j |Xi) =

∫

∑

∀l̄j−1

∑

∀ȳj−1

E(Yj|H̄j−1, η)

j−1
∏

k=1

E(Yk |H̄k−1, η)P(Lk = lk |H̄k−1)f (ηi)∂ηi.

past treatment Aj−1 are assumed to influence the lon-
gitudinal outcome Yj . The inter-dependencies in the 
collection of longitudinal information (with respect 
to discrete time-intervals) give rise to treatment-
confounder feedback and visit-confounder feedback 
[27, 28]. The treatment-confounder feedback (i.e. 

· · · → Aj−1 → Lj → Aj → · · · ) and visit-confounder 
feedback (i.e. · · · → Vj−1 → Lj → Vj+1 → · · · ) are 
defined over discrete time-intervals (as shown in Fig. 1).

The baseline covariates XT
i  are assumed to be meas-

ured as

where UT

i
= (Ui1,Ui2,Ui3) is a vector of unobserved 

covariates independently sampled from multivariate 
standard normal distribution. The outcome Yij is gener-
ated as

The data generating mechanism for time-varying covari-
ates Lij , irregular visits Vij and treatment Aij are specified 
as

where Vj = Lj = Aj = Yj = 0 when j < 0 and 
expit(·) =

exp(·)
1+exp(·)

 . Bernoulli distribution is used to gen-

erate the time-varying binary factors with respect to the 
conditional probabilities for Vij , Lij and Aij while the out-
come is assumed to be distributed using normal distribu-
tion ( Yi ∼ N (�, σ 2

Y ) ). The probabilities of the binary 
factors (Lij ,Aij ,Vij) are described using inverse-logit link 
function where positive values indicate increased proba-
bility of binary factor. The latent factor ηi ∼ N (0, 1) is 

X
T
i
= (Xi1,Xi2,Xi3) =

(
exp

(
Ui1

2

)
,

Ui1

1 + exp(Ui2)
,
Ui1Ui3

25

)

�(Yij|Aj−1,Vj−1, Lj−1,X
T
i
, �i) =�0 + �1Aj−1 + �2Vj−1 + �3Lj−1

+ �4X1 + �5X2 + �6X3 + �7�i .

P(Lij|Vj−1,Yj , Lj−1,Aj−1) = expit(µ0 + µ1Vj−1 + µ2Yj + µ3Lj−1 + µ4Aj−1)

P(Vij|Lj−1,X
T
i ) = expit(ω0 + ω1Lj−1 + ω2X1 + ω3X2 + ω4X3)

P(Aij|Vj−1,Yj , Lj ,Aj−1,X
T
i , ηi) = expit(α0 + α1Vj−1 + α2Yj + α3Lj + α4Aj−1

+ α5X1 + α6X2 + α7X3 + α8ηi)
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time-invariant for each individual and acts as a common 
cause for time-varying treatment Aij and outcome Yij.

In the absence of visit (i.e. Vij = 0 ), we assume the con-
tinuation of previous treatment Aij and previous covari-
ate Lij , and a change in treatment and covariate is only 
observed in the presence of visit. Moreover, we specify the 
outcome Yij to be missing in the absence of visit. Using the 
conditional data generating mechanism, the joint distribu-
tion is expressed using the causal Markov factorization as

The data generating mechanism in the presence of visit 
and unmeasured (latent) factor ηi is described using a 
directed acyclic graphs in Fig. 1 where red edges denote 
associations, and black edges denote causal relationship 
between treatment and outcome.

f (V̄ij , Ȳij , L̄ij , Āij , ηij) =

n
∏

i=1

mi
∏

j=1

P(Vij|Lj−1,X
T
i )f (Yij|Aj−1,Vj−1, Lj−1,X

T
i , ηi)

1(Vij=1)

P(Lij|Vj−1,Yj , Lj−1,Aj−1)

P(Aij|Vj−1,Yj , Lj ,Aj−1,X
T
i , ηi)

P(Xi1)P(Xi2)P(Xi3)f (ηij).

Estimation procedures
The g-computation formula (in the absence and pres-
ence of unmeasured confounder) is used to obtain the 
true values of marginal treatment effects (see Appen-
dix Section). Since the time-varying treatment Aj and 
visit Vj are statistically endogenous in observational 
studies, the stabilized inverse probability treatment 
weights (sIPTW), stabilized inverse probability visit 
weights (sIPVW) and joint stabilized inverse probabil-

ity weights (sIPTW × sIPVW) with calibration restric-
tions (described in Section 2.4) are used to estimate the 
causal effect. The correct specification of the treatment 
model, visit model and marginal outcome model (with 
the exclusion of time-dependent confounders) are used 

Fig. 1  Directed cyclic graph in the presence latent subject-specific confounder with treatment-confounder and visit-confounder feedback (arrows 
are not drawn for vertices in time-interval j-1 and j-2)
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in relation to the data generating mechanism. Four 
simulation scenarios are considered in the simulation 
study:

•	 Scenario 1: absence of irregular visits (i.e. V̄j = �̄ ) 
and absence of unmeasured confounder ηi . The esti-
mation of marginal treatment effect is performed 
using sIPTW and calibrated IPTW with the con-
straint for [a] orthogonality between treatment resid-
ual (Aij − êAij ) and time-dependent covariates Lij , [b] 
average treatment weights equal to one at each time 
interval.

•	 Scenario 2: absence of irregular visits and presence 
of unmeasured confounder ηi . The estimation of 

marginal treatment effect is performed using sIPTW 
and calibrated IPTW estimator with the constraint 
for [a], [b] and [c] covariate balance with respect to 
time-invariant latent confounder restriction.

•	 Scenario 3: presence of irregular visits and absence 
of unmeasured confounder ηi . The estimation of 
marginal treatment effect is performed using sIPTW, 
calibrated IPTW, sIPVW and calibrated IPVW esti-
mators with the constraint for [a] orthogonality 
between treatment residual (Aij − êAij ) (or visit resid-
ual Vij − êVij  ) and time-dependent covariates Lij , [b] 
average treatment weights equal to one at each time 
interval.

•	 Scenario 4: presence of irregular visits and presence 
of unmeasured confounder ηi . The estimation of 
marginal treatment effect is performed using sIPTW, 
calibrated IPTW, sIPVW and calibrated IPVW esti-
mators with the constraint for [a], [b], [c] covariate 

balance with respect to time-invariant latent con-
founder restriction.

We implemented the constrained optimization of the 
cumulative-time product weights using the Barzilai-
Borwein (BB) method [29]. After the estimation of 
stabilized and calibrated weights, the marginal causal 
effect of treatment is estimated using the pseudo-likeli-
hood function of generalized estimating equations with 
AR(1) working correlation structure (geeglm function 
in R) with stabilized weights and calibrated weights. 
Based on the data generating mechanism, the correct 
specification of the marginal structural models for four 
scenarios were fitted as

The absence of irregular visits in scenario 1 and 2 led to the 
exclusion of Vj−1 in the equation above. We also applied a 
naïve estimator by fitting unweighted generalized estimat-
ing equations with AR(1) working correlation structure. 
The naïve estimator was used as a reference to determine 
the extent of bias introduced by measured confounding, 
selecting bias (due to irregular visit) and unmeasured sub-
ject-specific confounding within simulated scenarios.

Simulation parameters
Table  1  describes the simulation parameters for the 
data generating mechanism described in Fig.  1. The 
performance of inverse probability weight-based esti-
mators is assessed using relative bias, Monte Carlo 
error (MCE), root mean square error (rMSE) and cov-
erage probability. Relative bias is estimated as the 
average difference between an estimator and the true 

E(Y ā,v̄
j |X) =

{

ψ0 + ψ1aj−1 + ψ2X1 + ψ3X2 + ψ4X3 for scenario 1 and 2
ψ0 + ψ1aj−1 + ψ2vj−1 + ψ3X1 + ψ4X2 + ψ5X3 for scenario 3 and 4.

Table 1  Simulation parameters for irregular visits, confounder, treatment and longitudinal outcome

a (.) denotes the coefficient for unmeasured confounder
b [.] denotes the coefficient for absence of irregular visits

Description Simulation parameters

Yij : Longitudinal outcomea θ0 = 9; θ1 = −0.3; θ2 = −0.1 ; θ3 = 0.5;

θ4 = θ5 = θ6 = 0.5 ; ( θ7 = 0.1 ); σ 2
y = 3

Lij : Time-dependent confounder µ0 = 0;µ1 = 0.1;µ2 = 0 ; µ3 = 0 ; µ4 = 0.1

Vij : Irregular visitsb ω0 = 2[16];ω1 = 0.1;ω2 = 0.1;ω3 = 0.1 ; ω4 = 0.1

Aij : Time-dependent treatmenta
α0 = 0;α1 = 0.1 ; α2 = 0.1 ; α3 = 0.1;

α4 = 0 ; α5 = 0.3 ; α6 = 0.3 ; α7 = 0.6 ; ( α8 = 0.1)

N :  number of subjects 100

t :  number of discrete time-points 10

r :  number of replicates 1000
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parameter value. MCE is defined as the standard devia-
tion of an estimator while the rMSE is the square root 
sum of bias squared and MCE squared. The coverage 
probability was estimated as the proportion of times 
when the 95% confidence interval contained the true 
parameter value. The simulation study is repeated for 
1,000 replications using a sample size N = 100 with ten 
discrete time intervals.

Results
The results of the simulation study are presented for 
the four scenarios in which the presence or absence of 
irregular visits and time-invariant latent confounder 
is considered. The results are summarized using the 
performance metrics of relative bias, MCE, rMSE, cov-
erage probabilities and successful convergence of cali-
brated weights, as shown in Table 2.

Scenario 1: regular visits, no unmeasured confounder
We assessed the performance of sIPTW and cali-
brated IPTW in the absence of irregular visits and 

unmeasured confounder. An improvement in bias was 
observed for calibrated IPTW in relation to sIPTW. 
The MCE and rMSE for calibrated weights was smaller 
than the stabilized weights, and the coverage prob-
abilities were close to 95% nominal rate. The cor-
relation between stabilized weights and calibrated 
weights ranged from 0.986 to 0.999. Successful conver-
gence of calibrated weights was observed for all 1,000 
replicates.

Scenario 2: regular visits, unmeasured confounder
In this scenario, we assessed the performance of sIPTW 
and calibrated IPTW in the absence of irregular visits, 
and in the presence of unmeasured confounder. Nominal 
coverage rates close to 95% were observed for marginal 
structural models with sIPTW and calibrated IPTW. 
The calibrated weights had smaller mean bias than sta-
bilized weights. The calibrated weights also had smaller 
MCE and rMSE than stabilized weights. The correla-
tion between stabilized weights and calibrated weights 
ranged from 0.929 to 0.999. Successful convergence was 
observed for 959 out of 1,000 replicates.

Table 2  Finite sample properties using Monte Carlo simulation study

ψ = marginal causal effect

sIPT(V)W= stabilized inverse probability treatment (visit) weights

cIPT(V)W= calibrated inverse probability treatment (visit) weights
a MCE= Monte Carlo Error (standard deviation of Monte Carlo estimator)
b rMSE = root Mean Square Error= 

√

Bias2 + Var

Estimator Effect ψ Estimate Bias R. Bias(%) MCEa rMSEb
α-level

Scenario 1: No irregular visits, no unmeasured confounder
Naïve Aj−1 -0.3 -0.274 0.0260 8.67% 0.2966 0.2978 0.939

sIPTW Aj−1 -0.3 -0.2796 0.0204 6.8% 0.3183 0.3189 0.944

cIPTW Aj−1 -0.3 -0.2842 0.0158 5.27% 0.3071 0.3075 0.943

Scenario 2: No irregular visits, unmeasured confounder
Naïve Aj−1 -0.3 -0.2642 0.0358 11.93% 0.3484 0.3502 0.936

sIPTW Aj−1 -0.3 -0.2839 0.0161 5.37% 0.3181 0.3185 0.928

cIPTW Aj−1 -0.3 -0.2909 0.0091 3.03% 0.3138 0.3139 0.940

Scenario 3: Irregular visits, no unmeasured confounder
Naïve Aj−1 -0.3 -0.2678 0.0322 10.73% 0.3421 0.3436 0.927

sIPTW Aj−1 -0.3 -0.2719 0.0281 9.37% 0.3332 0.3343 0.934

sIPVW Aj−1 -0.3 -0.2776 0.0224 7.47% 0.3142 0.3150 0.940

sIPTW×sIPVW Aj−1 -0.3 -0.2859 0.0141 4.7% 0.3292 0.3295 0.935

cIPTW×cIPVW Aj−1 -0.3 -0.3029 -0.0029 -0.97% 0.3341 0.3341 0.944

Scenario 4: Irregular visits, unmeasured confounder
Naïve Aj−1 -0.3 -0.2612 0.0388 12.93% 0.3397 0.3419 0.921

sIPTW Aj−1 -0.3 -0.2672 0.0328 10.93% 0.3317 0.3333 0.938

sIPVW Aj−1 -0.3 -0.2692 0.0308 10.27% 0.3162 0.3177 0.932

sIPTW×sIPVW Aj−1 -0.3 -0.2777 0.0223 7.43% 0.3294 0.3301 0.940

cIPTW×cIPVW Aj−1 -0.3 -0.2932 0.0068 2.27% 0.2934 0.2934 0.947
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Scenario 3: irregular visits, no unmeasured confounder
In this scenario, we assessed the performance of sta-
bilized and calibrated variants of treatment and visit 
weights in the presence of irregular visits and absence 
of unmeasured confounder. The coverage probabilities 
were close to the expected 95% nominal rate for the four 
estimators: (i) sIPTW, (ii) sIPVW, (iii) joint sIPTW and 
sIPVW, (iv) and calibrated IPTW and IPVW. Smaller bias 
was observed for calibrated weights when compared to 
the stabilized weights. The correlation between stabilized 
weights and calibrated weights ranged from 0.25 to 0.99, 
and successful convergence was observed for all 1,000 
replicates.

Scenario 4: irregular visits, unmeasured confounder
In this scenario, we assessed the performance of sta-
bilized and calibrated variants of treatment and visit 
weights in the presence of irregular visits and unmeas-
ured confounder. The coverage probabilities were close 
to the expected 95% nominal rate for all estimators. A 
reduction in bias was observed for calibrated IPTW 
and IPVW estimators when compared with sIPTW and 
sIPVW estimators. The correlation between stabilized 
weights and calibrated weights ranged from 0.24 to 0.99, 
and successful convergence was recorded for 966 out of 
1,000 replicates.

Application: emulating randomized experiment 
using EHRs
Electronic health records (EHRs) can serve as a complete 
lifetime record of a patient’s longitudinal health trajec-
tory, and they can be collected from different sources 
including hospitals, specialist clinics, primary care 
providers, pharmacies, and laboratories. University of 
Toronto practice based research network (UTOPIAN) 
collects de-identified patient-level medical information 
from EHRs of primary care practices across the Greater 
Toronto region [30, 31]. The EHRs in UTOPIAN data-
base contains patient-level demographics, medical 
diagnosis, procedures, medications, immunization, 
laboratory test results, vital signs and risk factors. Even 
though the UTOPIAN repository is a rich source of de-
identified patient-level medical information, it is prone 
to many sources of bias including informed presence of 
patients due to acute onset of new medical ailment or 
the management of pre-existing chronic condition. In 
our context, we used the irregular visits in longitudinal 
follow-up to describe the informed presence of diabetes 
patients in primary care.

Glucose lowering medications
Diabetes is one of the most common chronic condi-
tions in which the body cannot properly use insulin 

produced by pancreas (Type II). Hemogloblin A1c 
(HbA1c) is an important glycemic marker to reduce 
the incidence of diabetes-related complications and 
mortality [32]. More than 90% of type II diabetes 
patients eventually require more than metformin mon-
otherapy to achieve their target for optimal glucose 
control. Dual or combination therapy may become 
necessary when metformin is insufficient. The sec-
ond-line options for glucose management include 
sodium-glucose co-transporter 2 inhibitors (SGLT-
2i) and dipeptidyl peptidase-4 inhibitors (DPP-4i) 
medications. SGLT-2i medications are associated with 
reduction in cardiovascular outcomes and decreased 
progression of renal disease [6], while DPP-4i medica-
tions are known to have highly favourable tolerability 
among elderly patients [33]. We assess the effective-
ness of SGLT-2i and DPP-4i drugs using HbA1c as the 
glycemic marker among patients with type II diabetes. 
We assume intention-to-treat design for time-varying 
treatment assignment where the analysis are based 
on the treatment assignment (i.e. drug prescription) 
rather than the treatment eventually received (i.e. drug 
dispensation).

Cohort generation
We emulate a randomized experiment using an obser-
vational setting, and describe several elements of emu-
lating the target trial in Table  3. Patients are enrolled 
in the longitudinal cohort from January 01 2018 when 
the following conditions are satisfied: (i) patient is at 
least 18 years of age; (ii) patient has a clinical indication 
for diabetes [34]; (iii) HbA1c ≥ 8.5% is recorded within 
the study period. Patient follow-up starts when these 
eligibility criteria (i)-(iii) are met. Patients are admin-
istratively censored on September 30 2021 or cen-
sored at mid-calendar (June 30) when deceased year is 
recorded. The enrollment period is terminated on Jan-
uary 01 2020 while the study follow-up is terminated 
on September 30 2021. Once the patient is enrolled in 
the cohort, three month time-intervals are generated 
under the assumption that the patient regularly visits 
the clinic on quarterly basis (i.e. every 3 months) as 
recommended by Diabetes Canada guidelines [6]. The 
presence of billing record for any primary care services 
within a quarter for a given patient indicate Vij = 1 . 
As an example, Vij = 0 if no billing record is available 
within an index quarter and Vij = 1 if patient has one 
or more billing records within an index quarter. The 
time-dependent exposures 

A′

ij and A
′′

ij (prescription 
for SGLT-2i and DPP-4i medications), time-dependent 
confounders Lij (co-morbidities and glucose lowering 
medications, respectively), and continuous outcome Yij 
(Hemoglobin A1c) are assumed to be constant within 
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each index quarter. In the case of multiple visits within 
each quarter, positive values of A′

ij , A
′′

ij and Lij take 
precedence while an average value of Yij is computed 
for each patient within each quarter. Once the positive 
indication for a co-morbidity is recorded, the patient is 
assumed to have the co-morbidity for the remainder of 
the study period. Patients who had an earlier prescrip-
tion for SGLT-2i or DPP-4i medications three years 
prior to January 01 2018 were excluded. The three-year 
look back window reduced the possibility of selection 
bias by left truncating those individuals who initiated 
the secondary treatment (using SGLT-2i or DPP-4i) 
prior to meeting the eligibility criteria.

We assume the time-varying patient characteristics 
(i.e. co-morbidities, other glucose-lowering medications) 
as time-dependent confounders. Other glucose lower-
ing medications (Xij) include the use of monotherapy 
and combination therapy using several drug classes: (i) 
metformin, (ii) GLP-1, (iii) sulfonylurea, (iv) insulin, as 
detailed elsewhere [35]. We included several co-morbid-
ities with disease onset date as time-dependent covari-
ates: (i) chronic obstructive pulmonary disease (COPD), 
(ii) depression, (iii) dyslipidemia, (iv) hypertension, (v) 
osteoarthritis, (vi) chronic kidney disease, as detailed 
elsewhere [34].

Marginal structural model
The effectiveness of glucose lowering medications was 
assessed among diabetes patients who were prescribed 
SGLT-2i and/or DPP-4i medications during the study 
period. Longitudinal marginal structural models using 
generalized estimating equations (AR-1 correlation) with 
stabilized and calibrated weights were used to generate 

covariate balance with respect to treatment assignment 
(i.e. SGLT-2i and DPP-4i medications) and irregular vis-
its. We fitted the following marginal structural model:

where 
∑

j denotes the cumulative number of prescrip-
tions for glucose lowering medications, truncated at 
two prescriptions. The marginal structural model did 
not include the time-dependent covariates Lij as they 
were accounted for using the longitudinal weights. The 
pseudo-populations were defined using the stabilized 
weights with their calibrated counterparts defined as

(7)

E(Y ā,v̄
ij

|H∗

j−1
) = 𝜃0 + 𝜃1 × age groupij

+ 𝜃2 × sexi

+ 𝜃3 × income quintilesi

+ 𝜃4 × ruralityi

+ 𝜃5 ×
∑

j

(SGLT-2i prescription)ij

+ 𝜃6 ×
∑

j

(DPP-4i prescription)ij

+ 𝜃7 × visitij−1

+ 𝜃8 × baseline HbA1ci

SWA�

t
=

t∏

j=1

P(A�
j−1

|H̄∗
j−1

)

Pr(A�
j−1

|H̄j−1)
; SWA�

t
(𝜆1) = SWA�

t
× exp(K𝜆1)

SWA��

t
=

t∏

j=1

P(A��
j−1

|H̄∗
j−1

)

Pr(A��
j−1

|H̄j−1)
; SWA��

t
(𝜆2) = SWA��

t
× exp(K𝜆2)

SWV
t

=

t∏

j=1

P(Vj−1|H̄∗
j−1

)

Pr(Vj−1|H̄j−1)
; SWV

t
(𝜆3) = SWV

t
× exp(K𝜆3)

Table 3  A summary of target trial to estimate the change in HbA1ca among type II diabetes patients

a HbA1c= Hemoglobin A1c;
b SGLT-2i= Sodium-Glucose co-Transporters 2 Inhibitor;
c DPP-4i = Dipeptidyl Peptidase-4 Inhibitor

Protocol component Description

Follow-up period Study follow-up starts on January 01, 2018 and terminated on September 30, 2021. Patient follow-up defined with eligibility 
and censoring criteria.

Exclusion criteria Exclude patients with three year look-back window for SGLT-2ib and DPP-4ic prescriptions with respect to the start of the 
study period (January 01 2018).

Eligibility criteria At least 18 years old patients with diabetes and elevated HbA1c (≥ 8.5%).

Censoring criteria Administratively censored on September 30, 2021 or mid-calendar year (June 30) when deceased year is recorded.

Treatment strategy SGLT-2i medication v.s. standard care (i.e. without SGLT-2i prescriptions), and DPP-4i medication v.s. standard care (i.e. with-
out DPP-4i prescriptions).

Assignment procedures Participants randomly assigned to either treatment strategy.

Outcome Repeat-measures HbA1c (in %).

Causal contrast of interest Cumulative SGLT-2i prescriptions v.s. standard care.

Cumulative DPP-4i prescriptions v.s. standard care.

Analysis plan Intention-to-treat analysis.
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where Ā′ denotes treatment for SGLT-2i medications 
and Ā′′ denotes treatment for DPP-4i medications, and 
�̃ = {�1, �2, �3}

 . The stabilized weights with respect to the 
SGLT-2i medications, DPP-4i medications, and irregular 
visits were used to construct the pseudo-populations. At 
last, the product weights of SGLT-2i medications, DPP-
4i medication and irregular visits were calibrated to bal-
ance the time-dependent covariate distributions. The 

SWA′,A′′,V
t =SWA′

t × SWA′′

t × SWV
t

SWA′,A′′,V
t (�̃) =SWA′

t (�1)× SWA′′

t (�2)× SWV
t (�3)

calibration restrictions included the balancing conditions 
for the orthogonality constraint (i.e. (Aik − êAik)⊥⊥L̃ik−1

 
and (Vik − êAik)⊥⊥L̃ik−1 ), and unity constraints (i.e. 
E(SWj) = 1 ∀j ). We truncated the stabilizing and cali-
brated weight functions at 1% and 99% quantiles to 
improve the estimation of the marginal effects [36].

Effectiveness of glucose lowering medications
We describe the effectiveness of glucose lowering medi-
cations among diabetes patients with elevated HbA1c 
(i.e. ≥ 8.5% ) using the stabilized (product) weights and 

Fig. 2  Scatter plot of stabilized and calibrated product weights
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the calibrated weights. The pseudo-population charac-
terized using the product weights (Fig. 3) and calibrated 
weights (Fig. 4) were used to describe the net change in 
mean HbA1c with respect to the patient demograph-
ics, geographical characteristics and treatment assign-
ment. The stabilized (product) weights ranged from 0.003 
to 20.808 with mean value of 1.381 while the calibrated 
weights ranged from 0.003 to 13.045 with mean value of 
1.002 (see Fig. 2). The correlation between stabilized and 
calibrated weights was 0.985.

Using the calibrated weights, we note that older 
patients have lower mean HbA1c than younger patients 
(e.g. 

65− 79
 years vs. 18− 34 years: −0.63% (95% CI: 

−1.02% to −0.24% , P-value < 0.001)). The mean HbA1c is 
lower among male patients than female patients ( −0.16% 
(95% CI: −0.31% to 0.00% , P-value = 0.049)). The mean 
HbA1c is lower among patients residing in highest 
income quintiles than lowest income quintiles ( −0.26 % 
(95% CI: −0.49% to −0.04% , P-value = 0.02)). We note 
that the mean HbA1c is reduced with glucose lowering 
medications (SGLT-2i and DPP-4i). For example, the 
mean HbA1c is reduced by −0.38% (95% CI: −0.57% to 
−0.19% , P-value < 0.001 ) with a single prescription of 
SGLT-2i medication while it is reduced by −0.28% (95% 
CI: −0.45% to −0.10% , P-value< 0.001 ) with a single pre-
scription of DPP-4i medication. A reduction of −0.78% 
(95% CI: −0.87% to −0.69% ) in mean HbA1c is observed 

with primary care visit, indicating improved regula-
tion of blood glucose. Similar findings were observed 
for stabilized weights (when compared to calibrated 
weights) as the inference did not change drastically (see 
Figs. 3 and 4).

Discussion
The longitudinal data in EHRs feature several methodo-
logical complexities. For example, the irregular visits in 
EHRs are often recorded in which the longitudinal out-
come is measured sporadically across time-intervals, and 
it may depend on patients’ observed history (i.e. missing 
at random) [5]. Furthermore, the presence of time-invari-
ant latent confounders in EHRs may generate biased esti-
mation of treatment effect [37].

In this article, we proposed calibrated weights to esti-
mate the effect of time-dependent treatment on longitu-
dinal outcomes with irregular visits and with unmeasured 
confounding. We derived the calibrated restrictions for 
subject-specific latent confounder which acts as a com-
mon cause for treatment and outcome. In our simulation 
study, the effect of time-varying treatment propagated 
towards the longitudinal outcome in multiple pathways: (i) 
direct effect of treatment on outcome, (ii) indirect effect of 
treatment through the time-varying covariate, (iii) indirect 
effect of treatment through the irregular visits. The pro-
posed weights created a pseudo-population in which the 

Fig. 3  Marginal structural model using the stabilized product weights
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irregular visits were exogenous (using the visit weights), 
and in which the treatment groups were exchangeable 
(using the treatment weights). Marginal structural model 
with inverse probability weights with respect to treatment 
accounted for confounding bias in treatment-confounder 
feedback while the inverse probability weights with respect 
to irregular visit accounted for selection bias in visit-con-
founder feedback [8]. An improvement in finite sample 
properties (e.g. reduced bias) was observed with the appli-
cation of calibrated weights. We further employed the 
calibrated weights to assess the effect of cumulative pre-
scription of glucose lowering medications (SGLT-2i and 
DPP-4i) on Hemoglobin A1c.

Similar to calibrated weights, Imai and Ratkovic [24] 
proposed a methodology for covariate balancing weights 
which improved performance by reducing the mean 
square error under correct and incorrect model misspeci-
fication. Covariate balancing weights are computationally 
intensive and may only accommodate small number of 
follow-up visits and covariates in longitudinal settings due 
to increase in the total number of moment conditions for 
weight estimation [13]. Even when the causal identifiability 
assumptions hold, biased estimation of average treatment 
effect is possible for longitudinal marginal structural mod-
els or g-computation when the parametric models are mis-
specified. In the earlier literature [20] and in this article, 
the calibrated restrictions on inverse probability weights 

improved the estimation error under finite sample when 
compared to maximum likelihood estimation.

Young et al. [38] discretized continuous-time and used 
pooled logistic regression with short intervals to estimate 
the causal effect of treatment on longitudinal outcome 
with rare occurrence. If we consider binary repeated-
measures outcome (e.g. elevated Hemoglobin A1c) then 
we may specify short discrete time intervals with negli-
gible event rate where the time-dependent treatment is 
influenced with respect to the observed history. Varying 
the length of time-intervals may also describe the extent 
of irregularity in follow-up visits [7]. Furthermore, in this 
article, attention was limited to irregular visits where the 
entire study population was assumed to follow a single 
type of homogeneous process. As alluded by Neuhaus 
et al. [39], a more realistic approach could be to consider 
a combination of regular and irregular visits in the lon-
gitudinal cohort using the outcome-visit dependency. 
One approach to incorporate this could be to cluster the 
patient profiles (with respect to irregularities in visits) 
using latent class analysis prior to assessing the effective-
ness of glucose lowering medications [32].

In this article, we made the assumption of sequen-
tial positivity with respect to the treatment and irregu-
lar visits. Sequential positivity assumption may become 
implausible in some situations when the clinical profile 
of a patient precludes them from receiving SGLT-2i or 

Fig. 4  Marginal structural model using the calibrated product weights
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DPP-4i medications, or precludes them from visiting the 
primary care clinic for some time-intervals. As an exten-
sion when the sequential postivity assumption is unreal-
istic, we may employ doubly robust estimators to reduce 
bias and imprecision due to large weights. Doubly robust 
estimators may improve the robustness against model 
misspecification when either the treatment model or 
the counterfactual outcome model is misspecified [40]. 
For example, Pullenayegum and Feldman [41] described 
the doubly robust estimator which is robust to the mis-
specification of the visit model (using the inverse inten-
sity weights) and imputation model (using increment 
estimator). Future research may focus on the extension of 
calibrated estimators to accommodate for the misspeci-
fication of treatment or outcome models using doubly 
robust estimation [20]. The proposed estimators with 
calibrated restrictions also relied on the assumption of 
sequential exchangeability where all potential confound-
ers are measured at each time-interval (i.e. no unmeas-
ured time-variant confounders). In a situation where the 
sequential exchangeability assumption is violated, Cou-
lombe et  al. [42] and Streeter et  al. [43] describe sensi-
tivity analysis to assess the extent to which unmeasured 
confounding can affect the marginal effect of the treat-
ment. As an extension to this article, sensitivity analysis 
may become necessary if we consider unmeasured time-
dependent covariates in longitudinal settings.

Conclusion
We demonstrated the application of calibrated weights to 
assess the effect of irregular visits and to assess the effi-
cacy of glucose lowering medications (SGLT-2i and DPP-
4i) on the longitudinal trajectory of Hemoglobin A1c. The 
empirical results showed a reduction in mean Hemoglobin 
A1c with cumulative prescriptions of SGLT-2i and DPP-
4i medications using primary care EHRs. These findings 
support the earlier results from a meta-analysis in which 
SGLT-2i medications had stronger efficacy than DPP-
4i medications [44]. In general, stronger efficacy of one 
treatment (e.g. SGLT-2i medications) in reducing Hemo-
globin A1c is not a clinical rationale for selecting a par-
ticular treatment (e.g. DPP-4i medications). Instead, the 
treatment for glycemic control in type II diabetes patients 
is often intertwined with several clinical characteristics 
including weight change, blood pressure, cardiovascular 
profile, renal profile, and other safety profiles [45].
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