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Abstract 

Introduction  Surveys are common research tools, and questionnaires revisions are a common occurrence in longitu‑
dinal studies. Revisions can, at times, introduce systematic shifts in measures of interest. We formulate that question‑
naire revision are a stochastic process with transition matrices. Thus, revision shifts can be reduced by first estimating 
these transition matrices, which can be utilized in estimation of interested measures.

Materials and method  An ideal survey response model is defined by mapping between the true value of a par‑
ticipant’s response to an interval in the grouped data type scale. A population completed surveys multiple times, 
as modeled with multiple stochastic process. This included stochastic processes related to true values and intervals. 
While multiple factors contribute to changes in survey responses, here, we explored the method that can mitigate the 
effects of questionnaire revision. We proposed the Version Alignment Method (VAM), a data preprocessing tool, which 
can separate the transitions according to revisions from all transitions via solving an optimization problem and using 
the revision-related transitions to remove the revision effect. To verify VAM, we used simulation data to study the esti‑
mation error and a real life MJ dataset containing large amounts of long-term questionnaire responses with several 
questionnaire revisions to study its feasibility.

Result  We compared the difference of the annual average between consecutive years. Without adjustment, the 
difference is 0.593 when the revision occurred, while VAM brought it down to 0.115, where difference between years 
without revision was in the 0.005, 0.125 range. Furthermore, our method rendered the responses to the same set of 
intervals, thus comparing the relative frequency of items before and after revisions became possible. The average 
estimation error in L infinity was 0.0044 which occupied the 95% CI which was constructed by bootstrap analysis.

Conclusion  Questionnaire revisions can induce different response bias and information loss, thus causing inconsist‑
encies in the estimated measures. Conventional methods can only partly remedy this issue. Our proposal, VAM, can 
estimate the aggregate difference of all revision-related systematic errors and can reduce the differences, thus reduc‑
ing inconsistencies in the final estimations of longitudinal studies.

Keywords  Survey revision, Data preprocessing, Data cleaning, Grouped data, Stochastic process, Matrix 
decomposition

Introduction
The issue of survey revision
Researchers often use questionnaires as a tool to meas-
ure values that are difficult to obtain simply through 
observations. These values are mostly related to people’s 
habits or thoughts. Psychologists usually use various psy-
chometric properties to describe the quality of the ques-
tionnaire, which can be roughly divided into two types, 
reliability (having consistent measurements) and valid-
ity (it measures what is supposed to be measured) [1]. 
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Survey methodologists usually care more about meas-
urement error, which can be divided into two categories, 
random error and systematic error (or bias). The differ-
ence between the two is that random error can decrease 
when the amount of data is large enough, while a system-
atic error can continue to exist.

In conducting long length survey research, two issues 
may arise, response burden and out-of-date statements 
and response options. It is reasonable to use closed-
ended questions to conduct survey research when there 
is a large number of items to be answered [2], but closed-
ended questions may introduce information loss [3]. 
Most interpretation methods have not considered infor-
mation loss appropriately. This can lead to overestima-
tions or underestimations of the underlying numerical 
answers. This would lead to being categorized as a sys-
tematic error. The two examples below show how using 
naive methods may lead to results with systematic errors. 
The first example is top-coded data, which commonly 
appears in closed-ended questionnaire responses, with 
an unknown underlying distribution that is greater than a 
specified bound. Suppose that there is a random variable 
X that denotes the numerical answer in the respondent’s 
mind and a top-coded response option with lower bound 
a. As the upper bound of the top-coded response option 
is infinity, it is quite naive to choose the lower bound as 
the expected value of the response option. This method 
underestimates the expected value. The second example 
is grouped data, which is commonly obtained by closed-
ended questionnaires. This example can easily lead to 
overestimations and underestimations because the distri-
bution in each group is unknown. Given a random vari-
able X denotes the answer in the respondent’s mind and 
follows a truncated normal distribution with µ =0 and 
the distribution lies within [10−6, 106] . A closed-ended 
questionnaire separates the truncated normal distribu-
tion by a bound b(b ≥ 10−6, b ≤ 106) . This means that 
there are only two response options, one correspond-
ing to the interval [10−6, b) and the other correspond-
ing to the interval [b, 106] . It is intuitive to assume the 
answer in mind in each option is uniformly distributed 
and the midpoint is used as the mean of that option. In 
this example, the only chance that the naive midpoint 
method would not lead to over or underestimations of 
the expected value of X is setting b = 0.

During long-term survey response collections, a ques-
tionnaire revision may occur to keep the survey state-
ment or response options up-to-date. Different versions 
of closed-ended questions introduce different kinds 
of information loss. The estimation by a naive method 
which contains different systematic errors implies an 
inconsistency between the estimated result. However, 
when the adjustment in revisions is small, we assume 

that the inconsistencies can be recovered by other infor-
mation in the data. In practice, it is common to screen 
responses from a single version of a questionnaire during 
data preprocessing, to avoid interference or inconsisten-
cies induced by multiple versions of the questionnaire. 
Discarding a large amount of data may cause biased 
analysis results, thus, analyzing data from different ver-
sions of a questionnaire jointly, is reasonable. To our best 
knowledge, there is no research aimed at solving incon-
sistencies between responses from different versions of 
a questionnaire. Hence, we propose a method that may 
reduce such inconsistencies.

Two types of closed-ended questionnaires are com-
monly used. One is the Likert-type scale and the other is 
the grouped data type scale. A Likert-type scale is com-
monly used in collecting data with regards to sensation, 
for example, whether a software program is helpful [1]. 
Another common type of closed-ended scale is grouped 
data type scale, and this is often used to collect a continu-
ous numerical answer from respondents. In this study, 
we focus on the revisions that occur on the grouped data 
type scale. A grouped data type scale asks for a specific 
objective number and provides some interval as options. 
Moreover, revisions on grouped data type scales often 
preserve the statements of the questions, and only adjust 
the upper and lower bound of intervals in options. This 
can infer that the participant’s perception of the question 
does not change much after revision. Due to this prop-
erty of grouped data type scales, we propose that it is 
possible to describe the changes of the responses due to 
questionnaire revision through a probability model.

Problems with grouped data type scale revisions
Data collected by grouped data type scales is grouped 
data and grouped data are commonly used in various 
fields. For example, research on income inequality usually 
relies on grouped data [4]. One reason for using grouped 
data is to protect personal privacy, such as those with 
the highest income, or whose identity can be deduced 
easily. Individual income observations are classified into 
one of several income brackets, and so researchers can 
only observe the number of individuals belonging to 
each bracket. Without information on the distribution 
within each bracket, specific identities within the group 
are kept hidden. Another example of observing grouped 
data is sieve analysis in civil engineering [5]. A sieve anal-
ysis separates particles by different sieves with different 
diameters. Through multiple sieves, the proportion of 
particles in different size ranges can be obtained, which 
reveals the particle size distribution of the whole mass.

It can be found that one reason behind collecting 
grouped data is that some restrictions are placed on data 
collection, since the individuals are divided into multiple 
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categories and each category denotes a numerical inter-
val. Grouped data can be treated as ordinal data when 
considered as a rating task, however, information is lost 
when it is provided by the numerical intervals. On the 
other hand, even considering the numerical intervals, 
analyzing grouped data can pose a big challenge, such as 
the open-ended top bracket or top coded data problem. 
The top coded data belongs to the top interval, which has 
an unlimited upper bound. It is difficult to estimate its 
statistics and can cause systematic errors when inappro-
priate analysis methods are used.

When using grouped data type scales to conduct a 
self-report study, every participant may have a different 
perception of the numerical interval belonging to each 
option, thus, the variance of bounds belonging to each 
interval is another problem while analyzing grouped 
data. Liddell, T. M. et  al. [6] proposed that even Lik-
ert-type scales do not provide the numerical intervals, 
participants will still give each option an interval they 
believe that is appropriate, thus, taking account of the 
unknown bounds during analysis is necessary. Similarly, 
grouped data collected by a self-report scale shares this 
same property, which is that the responses are categori-
cal. Additionally, the extra information of the intervals 
that grouped data provides can be considered as an unre-
liable reference. Thus, it can be analyzed by the method 
that is proposed by Liddell, T. M. et al. [6].

The difference between each participants’ perception 
of the interval bounds and the bounds that the ques-
tionnaire provides can be considered a random error. As 
mentioned before, random error converges to 0 when the 
sample size is large. Then, it’s reasonable to use the Maxi-
mum Likelihood Estimator (MLE) proposed by Xiao, X. 
et al. [5] with the bounds that the questionnaire provides 
to analyze grouped data. Nonetheless, when it comes to 
questionnaire revisions, inconsistencies within the infor-
mation loss are still not considered and the estimated 
underlying distribution statistic still contains unexpected 
errors. In this study, participant’s perceptions of the 
bounds were considered as random errors and grouped 
data was analyzed via MLE, since the information of 
bounds was assumed to be reliable.

In this study, the changes in grouped data type survey 
responses were modeled via a discrete state stochastic 
process, since the responses were categorical which can 
be represented by states, and the shift between response 
options can be represented by transitions between 
states. A previous study by Chiba, T. et  al. [7] modeled 
the changes in consumer preference as a Markov chain 
and represented them by a transition matrix. Addition-
ally, they proposed that consecutive transition matrices 
are similar and they can use l1-norm to measure the dis-
tance between them. These intuitions helped model the 

changes in survey responses. However, the assumptions 
made about the Markov chain which included the tran-
sitions that were sufficiently high, implied the stationary 
observation and the states in each time were fixed, did 
not fit the survey revision scenario. Thus, we propose our 
own method to estimate the transitions in the stochastic 
processes.

Specific aims
To our best knowledge, there is a lack of research on how 
to analyze the data collected by different versions of a 
questionnaire. At the same time, grouped data type scales 
are often used in a longitudinal study on self-reported 
health questionnaires [8], but it contains various infor-
mation loss that can cause data inconsistencies when 
questionnaire revision occurs. Thus, our aim is to reduce 
the revision-related inconsistencies of systematic errors 
by aligning the implicit difference in responses induced 
by revisions. The implicit difference includes information 
loss and response bias.

We proposed the Version Alignment Method (VAM) 
to align grouped data collected by different versions of 
a questionnaire. In VAM, we considered the changes in 
grouped data over time as transitions of states, since each 
group can be regarded as a state. The change in response 
options by different source factors were modeled as dif-
ferent transitions. The transitions can be represented by 
transition matrices, and VAM estimates the transition 
matrices composed of transitions that represent a single 
factor via matrix decomposition, for example, regard-
ing questionnaire revisions or the changes of underly-
ing distribution. Following the matrix decomposition, 
the matrix which consists of revision transitions can be 
used to align the version of the questionnaire in grouped 
data. Matrix factorization is a similar topic, and it has 
been extensively used in recommendation systems to find 
relationships between variables, which can be solved by 
formulating it as an optimization problem. Unlike the 
recommendation system, the result of our matrix decom-
position must satisfy the definition of the transition 
matrix and some properties related to the data being ana-
lyzed, hence, some constraints according to that needed 
to be added to the objective function.

A simple example below demonstrates the novelty of 
the VAM, which is that the algined versions producting 
estimations with lower mean estimation error regardless 
the methods used. A question is used for accessing the 
usefulness of a technology tool in a questionnaire as an 
example. The first version of the question is: How many 
of the 10 functions provided by the tool do you use? The 
options are [0− 6] and [6− 10] . Later, the options were 
changed to [0− 3] , [3− 4] , [4 − 6] , [6− 8] , and [8− 10] . 
Consider the underlying answer of the question follows 
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truncated normal distribution N (µ = 5, σ 2 = 1) which 
lies in [0, 10]. The first version of the question Q1 provide 
two response options and the corresponding interval set 
is I1 = {[0, 6), [6, 10)} . The second version of the question 
Q2 provide five response options and the correspond-
ing interval set is I2 = {[0, 3), [3, 4), [4, 6), [6, 8), [8, 10)} . 
Assume the sample size is 10000, and the frequency 
of responses to Q1 is [8413,  1587] and responses to Q2 
is [227,  1359,  6828,  1573,  13]. Suppose that a correc-
tion by VAM is applied to the responses to Q1 with 
some error, the frequency of adjusted responses is 
[277,  1359,  6728,  1573,  63]. The mean estimations by 
the midpoint method and MLE based on frequency of 
responses to Q1 are 3.7935 and 3.3947. The mean estima-
tions based on frequency of responses to Q2 are 5.0365 by 
the midpoint method and 4.9999 by MLE. Additionally, 
the mean estimations based on frequency of responses to 
VAM adjusted responses to Q1 are 5.039 by the midpoint 
method and 5.0092 by MLE.

VAM was considered as a data preprocessing method, 
that did not make too many assumptions about the data-
set and did not use too much information, except the 
variable that needed to be adjusted or aligned, to let the 
effect on subsequent analysis remain small. Therefore, 
VAM only used cohort information for data alignment 
and an assumption on the underlying distribution of 
grouped data.

In this study we introduced The Survey Response 
Model and The VAM. The Survey Response Model 
defined an ideal process of an individual answering a 
grouped data type scale. The VAM leverages the Sur-
vey Response Model and models the effect of revision 
as transitions in stochastic processes. Then, it finally 
reduces the effect of revisions by estimating the transi-
tion matrix composed by the transitions related to revi-
sions and applied it on the data.

The remainder of this paper is structured as follows. 
In the Materials and methods section, we first intro-
duce how we model the ideal process of answering the 
grouped data type scale, then introduce the structure of 
VAM and the constraint of input/output data. At the end 
of this section, we introduce the two datasets we used 
for verification. The first one is the MJ dataset that has 
been used in many longitudinal studies. The next one is 
the simulation dataset, generated by the ideal process of 
answering a grouped data type scale, for observing the 
actual errors that can be induced by VAM.  We list the 
results of using VAM on the MJ dataset and simulation 
dataset and verify that the results are reasonable in the 
Results section. We summarize the difference between 
using VAM and not, then list the conditions of a data-
set to which VAM is applicable, and also propose some 
methods when VAM is not applicable to the dataset in 

the Discussion section, and the limitations of the dataset 
we used in this research. Finally, we summarize the pro-
posed method in Conclusion section. 

Materials and methods
Model formulation
Survey response model
To analyze the grouped data generated by the question-
naire, we defined a mathematical model which described 
the process of answering grouped data type scales. The 
purpose of the questionnaire was to get the answer in 
participants’ minds. Within a population, the use of 
the random variable X denotes the answer in the mind 
of individuals. A d point scale Q maps an individual’s 
answer to a number in set S = {s1, ..., sd |si = i, i ∈ N } , 
and each element in set S has a corresponding numeri-
cal interval in set I. Assume that the union between these 
intervals in set I are always an empty set, we defined 
I = {[lbi,ubi)|i = 1, ..., d} . Let x denote the answer of a 
respondent, and x ∈ [lbi,ubi) , then Q will map x to si = i . 
The data after mapping is called “grouped data”. Suppose 
that there are n independent respondents sample from 
the population and they all answer the questionnaire. 
We defined a vector o = [(o)1, ..., (o)d]

T which denotes 
the observation of each group. Furthermore, let prob-
ability vector p = o/n = [(p)1, ..., (p)d]

T denotes the rela-
tive frequency of each group, and it can also be seen as a 
discrete probability distribution of the survey responses. 
When it comes to measuring similarities between two 
discrete probability distributions, the first method that 
comes to our mind is L infinity. L infinity computes the 
maximum difference between each cell in different dis-
tributions, thus given two probability vectors p and q 
with the same dimension, L infinity between them is 
L∞ = max(|p1 − q1|, |p2 − q2|, ..., |pd − qd |)

Suppose that there are samples from the same popula-
tion at different times, the probability vectors p1, p2, ..., pn 
denote the responses made by those samples at different 
times from t1 to tn . It is reasonable to denote the prob-
ability transitions between two probability vectors by a 
transition matrix. Let a transition matrix T1 satisfies the 
equation T1 ∗ p1 = p2 , a cell (T1)ij in T1 denotes the prob-
ability that an individual change their choice from option 
j at t1 to i at t2 . Obviously, given p1 and p2 can’t solve the 
unique solution of T1 . But when some individuals appear 
multiple times (especially more than 2 times), say t1 and 
t2 , then it is possible to use these individual’s responses 
to estimate T1 . We called these individuals “cohort” 
and defined cohort as the samples who have observa-
tions at two consecutive times. The transition matrix is 
constructed by multiple probability vectors, which can 
infer that measuring the distance between the transition 
matrices is similar to measuring the distance between 
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pairs of probability vectors. Therefore, we defined the L 
infinity between two matrices as the maximum L infin-
ity between every pair of probability vectors in those two 
transition matrices.

Long‑term survey responses as multiple stochastic processes
We used stochastic processes to model responses to 
grouped data type scales at multiple times. According 
to the Survey Response Model defined earlier, the actual 
answer in the respondent’s mind is a real number. Con-
sider a discrete time series t1, t2, ... , and a random vari-
able T represents a specific time. Given a population that 
exists in all the times and the actual answer of individu-
als follows a distribution which changes depending on 
the time T. We used XT to denote the actual answer of 
individuals at T, then a discrete-time continuous state 
stochastic process {XT }T=ti can be constructed and the 
sample space of it is all of the real numbers. Suppose that 
we ask individuals to answer a grouped data type scale 
Q which maps answer in mind to a response option set 
S at every T, then we can get another stochastic process 
{YT }T=ti with sample space S which denotes the survey 
responses at each time. Since grouped data type scales 
are one type of close-ended questionnaires, the mapping 
from XT to YT can induce information loss and response 
bias. Hence, estimation of XT using observations of YT 
can introduce systematic errors. In the Survey Response 
Model we defined earlier, ideally, the response bias does 
not occur, so the simulation experiment in this study, 
we only considered the systematic error induced by the 
information loss.

Considering that there are many versions of a ques-
tionnaire, then we can use distinct stochastic processes 
to denote the responses of each version of the question-
naire. Additionally, questionnaire revisions can be rep-
resented by the transitions between different stochastic 
processes. Different versions of a questionnaire cause 
different types of information loss and induce differ-
ent systematic errors in the estimated answers in mind. 
Thus, to reduce the inconsistencies between estimations 
by observations from different questionnaire versions, 
transferring every observation from different stochastic 
processes to the same stochastic process before estimat-
ing the answer in mind is reasonable.

There are two perceptions of deciding the final trans-
ferred questionnaire version. Assume that a question-
naire with less information loss is likely to introduce 
fewer estimation errors, transferring to the questionnaire 
version with the least information loss is reasonable. 
On the other hand, since transferring the questionnaire 
version can cause some errors, transferring to the ver-
sion that is used most of the time can reduce estimation 
errors.

When it comes to transferring observations from one 
stochastic process to another, we did not want the transi-
tions that depended on time T. Thus, we proposed VAM, 
a method which can extract transitions depending on 
different interfering source factors separately. It is com-
mon to use only one version of a questionnaire to collect 
data at a single time. Hence, there are two types of transi-
tions between the observations before and after revision; 
transitions according to time and transitions according to 
revision. These transitions can be denoted by conditional 
probability and can be composed to a transition matrix.

As mentioned previously, consecutive survey responses 
to the same questionnaire can be denoted by probability 
vectors. These probability vectors are the observations of 
a stochastic process {YT }T=ti , and the transition matri-
ces can be used to represent the transitions that occur 
between the two consecutive times. If there is a question-
naire revision between t1 and t2 , then the observations 
of t1 and t2 belong to different stochastic processes. To 
change the questionnaire version of observations in t1 to 
t2 , we proposed that the first thing is to estimate the tran-
sition matrix which consists of time-related transitions 
and revision-related transitions, then decompose it into 
two transition matrices, one related to time and the other 
related to revision. After decomposition, the revision-
related matrix can be used to change the questionnaire 
version of observations in t1 to t2.

It is difficult to estimate the transition matrix between 
t1 and t2 just by the observations in such times. A group 
of individuals that have observations in both t1 and t2 is 
labelled as cohort. The observations of the cohort can be 
used to estimate the transition matrix directly. It belongs 
to a stochastic process that only has observations two 
consecutive times and is different from the stochastic 
process of the whole population. By using the method we 
proposed, the cohort revision-related matrix can be esti-
mated. By assuming that the reaction of revision in differ-
ent groups of individuals is the same, the cohort revision 
matrix is identical to the population revision matrix. 
Finally, the population revision matrix can be used to 
change the version of the questionnaire used to collect 
observations in t1 to the version of the questionnaire used 
in t2.

Algorithm VAM
The main purpose of VAM is to reduce the inconsistency 
between the grouped data collected from two different 
versions of a questionnaire. These grouped data were col-
lected at multiple times, and the version of questionnaire 
is different each time. Because of the change of the ver-
sion, using the responses from different times to estimate 
the answer in the respondents’ mind can introduce differ-
ent systematic errors and cause inconsistent estimations.
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The inputs of VAM are time-series data with multiple 
stochastic processes, and the scenario of it is depicted 
in Fig. 1. Given a stochastic process {Xi} , which repre-
sents the population’s answer in mind and follow the 
unknown distribution F(θi) at each time ti . As VAM 
aligns observations from two different versions of a 
questionnaire, assume only two versions of a question-
naire, Q1 and Q2 , are used to collect responses from 
the population and the responses can form two addi-
tional discrete state stochastic processes {Yi} and {Zi} . 
In addition, a group of individuals who are observed by 
questionnaire in multiple consecutive times is called a 
cohort {Ci} with unknown underlying distribution. The 
responses of cohort form another two stochastic pro-
cesses’ sets {{Ui,U

′
i }} and {{Vi,V

′
i }} , and correspond-

ing to Q1 and Q2 respectively. Using the observations 
of cohort, the cohort transition matrix Ti between two 
consecutive times can be easily estimated, while the 
transition matrix of the population can not be esti-
mated easily. As the cohort and population are not 
from the same stochastic process, their transitions are 
different even if they occur at the same time, which 
implies their transition matrices are different. Thus, 
VAM leverages the transition matrix of cohorts to esti-
mate the revision-related matrix, and then adopts the 

revision-related matrix for reducing the revision effect 
that occurs in population.

Assume that a revision happened between t1 and t2 , 
and the version of the questionnaire is changed from 
Q1 to Q2 . Then we can only observe responses of Y1 , 
Z2 , U1 , V ′

1
 , and V2 in t1 and t2 . When we attempt to esti-

mate the expected value of X1 and X2 by observations 
of Y1 and Z2 , the estimated expected values Ê(F(θ1)) 
and Ê(F(θ2)) will include different systematic error and 
cause inconsistency, since Y1 and Z2 came from different 
stochastic processes corresponding to different versions 
of the questionnaire with different information loss and 
response bias. Suppose that the information loss of Q2 is 
less than Q1 , and Q2 is used more than Q1 . It is reasonable 
to map all the observations of {{Ui,U

′
i }} and {Yi} corre-

sponding to Q1 to {{Vi,V
′
i }} and {Zi} , because the estima-

tion of expected value has a larger probability to include 
less estimation error if the information loss and the esti-
mation error of switching between different stochastic 
processes decreases. The transitions of {{Vi,V

′
i }} after t2 

are only related to change of time, and so are the transi-
tions of {{Ui,U

′
i }} before t0 . Note that there are two kinds 

of transitions observed at t1 , which are revision-related 
transitions and time-related transitions, and these tran-
sitions compose transition matrix T1 . The time-related 

Fig. 1  Scenario of inputs of VAM. The non-dashed lines and circles represent given information. And the letters in red represent the estimation 
target
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transitions can compose a transition matrix, B1 , and 
the revision-related transitions can compose a transi-
tion matrix, A1 . It is intuitive to form the equation of the 
cohort transitions in t1 as

u1, v1, v
′
1
 represents the discrete distribution of the ran-

dom variable U1,V1,V
′
1
 , respectively. The Eq. (1) reveals 

that observations of U1 can be transferred to V ′
1
 by the 

transitions of T1 or by combination of transitions of B1 
and A1 . Except t1 , there is only time-related transitions in 
other times; hence, the revision-related transitions can be 
formed as a identity matrix I, which do not contain any 
effective transition. As the goal is to reduce the system-
atic error inconsistency, which is induced by revision, 
by transferring the observations from Y1 to Z1 , we need 
to extract the revision-related transition matrix A1 from 
T1 . Assume that the revision effect is the same in every 
group of individuals, thus revision-related transitions are 
identical in population and the cohort. Thus, Y1 and Z1 
are from population stochastic processes but the revi-
sion-related transitions between them are equal to the 
transitions between U1 and V1 , which compose transition 
matrix A1 . Finally, multiplying Y1 by A1 gives Z1 , which is 
the estimated responses to Q2 of the population at t1.

After the application of the revision-related transition 
matrix A1 to Y1 gives the estimate grouped data after revi-
sion, Z1 , using it can estimate the proper Ê(F(θ1)) , which 
contains the systematic error corresponding to Q2 . This 
reduces the inconsistency caused by a different system-
atic error, because Ê(F(θi))|i≥2 contains the systematic 
error corresponding to Q2 . Moreover, A1 is estimated 
from cohort probability vector (p.v.) and transition matri-
ces, and it is composed of cohort revision-related tran-
sitions; therefore it can be truly applied to U1 . Thus, the 
output of VAM includes Z1 , V1 , the matrices B1 and A1 , 
and the estimation of the mean of population, Ê(F(θ1)).

It is impossible to use Eq. (1) to solve the B1 and A1 . 
Therefore, we introduced six constraints, which describes 
the similarity between vectors and matrices, to construct 
an optimization problem that makes B1 and A1 solvable. 
Four of the six constraints are listed below. 

C1	� The columns in transition matrix must sum to 1, 
then by assuming B1 is an n by n matrix, the first 
constraint is denoted by n

k=1(B1)kj = 1, j = 1, ..., n . 
The (B1)kj denotes the entry at kth row and jth col-
umn of B1.

C2	� A1 is also an transition matrix, then by assuming it 
an n by m matrix, the second constraint is denoted 
by 

∑n
k=1(A1)kj = 1, j = 1, ...,m . The (A1)kj denotes 

the entry at kth row and jth column of A1.

(1)T1 ∗ u1 = B1 ∗ A1 ∗ u1 = B1 ∗ v1 = v′1.

C3	� According to Eq. (1), constraint equation 
B1 ∗ A1 = T1 can be realized. As the estimation of 
A1 and B1 introduces some tolerable but inevitable 
error and the precision of decimal in probability 
is set to the fourth decimal places, it is reason-
able to change the equality to approximate equal-
ity. Due to the distance measurement method we 
used is L infinity, constraint can be rewritten as 
|B1 ∗ A1 − T1|∞ < γ . γ represent the error that can 
be tolerated.

C4	� According to Eq. (1), constraint equation 
B1 ∗ A1 ∗ u1 = v′

1
 can be realized. As the same rea-

son mentioned in C3 , constraint can be rewritten 
as |B1 ∗ A1 ∗ u1 − v′

1
|∞ < ǫ . ǫ represent the error 

that can be tolerated.

In addition to the four constraints introduced, 
the remaining two constraints are according to the 
assumptions on time-series data and the underlying 
distribution. 

C5	� We assume two time-related cohort transitions 
in consecutive times are similar, because we 
believed that the individuals in the cohort read 
the health screening report and react in similar 
ways, as well as that the trend of LTPA duration 
is similar in consecutive times. Hence, the cor-
responding transition matrices, B1 and B2 , are 
similar and the constraint can be formulated 
as |B1 − B2|∞ < β . β denotes the similarity of B1 
and B2.

C6	� According to the proposed Survey Response Model 
and assumption of the underlying distribution of 
cohort in t1 , we can manually compute an ideal revi-
sion matrix that consists of ideal transitions, which 
represent the change of individuals’ responses of Q1 
to responses of Q2 at t1 . We assumed this ideal tran-
sition matrix is similar to the revision matrix, A1 , 
which we aim to estimate. Assume that the PDF of 
the underlying distribution of cohort at t1 is H(ξ1) , 
and by using MLE to the observations of U1 ,the 
ξ̂1 can be estimated. Suppose that the interval set 
I1 = {(I1)j = [lbj ,ubj)|j = 1, 2, ..., d1} belongs to Q1 , 
and I2 = {(I2)i = [lbi,ubi)|i = 1, 2, ..., d2} belongs to 
Q2 , then an ideal transition matrix of revision can 
be computed, denoted by G. d1 and d2 denote the 
number of response options for Q1 and Q2 . Define 
a function �(interval) , which denotes the cumula-
tive probability of H(ξ̂1) in a given interval. Then 
each cell in G can be computed by the following 
equation: 
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 and it describes the probability of changing from Q1 ’s 
response option j to Q2 ’s response option i, and x in the 
equation denotes the answer in the respondent’s mind. 
According to the assumption, which is the ideal revision-
related transition matrix G will be similar to the real revi-
sion matrix A1 . Then the last constraint |A1 − G1|∞ < α 
can be constructed.

The six constraints each represent a different relation-
ship between vectors or matrices, and some of them use 
variables of similarity(ǫ, γ ,β ,α) to denote the similarity 
between vectors or matrices in each relationship. Moreo-
ver, except for the two constraints related to transition 
matrix’s basic property that does not include a variable of 
similarity, which has no tolerance on that the probabilities 
in a column of a transition matrix need to be sum to 1. The 
variable of similarity in other constraints have a propor-
tional relationship between each other. The proportional 
relationship represents the order of similarity relevant 
to other constraints, the higher proportion implies the 
higher similarity of vectors or matrices in that constraint. 
Let θi denotes the proportion between those variables of 
similarity and we named it the parameter of proportion. θ1 
to θ4 are according to variables of similarity γ , ǫ , β , and α 
respectively. As the variable of similarity is the distance in 
L infinity, and according to the rationale of constraints that 
the vectors or matrices are similar and have subtle distance 
between them, the objective function can be defined as a 
minimization equation as follows.

subject to

Gij =p(x ∈ (I2)i|x ∈ (I1)j)

=p(x ∈ (I1)j ∩ x ∈ (I2)i)/p(x ∈ (I1)j)

=�((I2)i ∩ (I1)j)/�((I1)j),

(2)min θ1 ∗ γ + θ2 ∗ ǫ + θ3 ∗ β + θ4 ∗ α

(3)
n

∑

k=1

(B)kj = 1, j = 1, ..., n

(4)
n

∑

k=1

(A)kj = 1, j = 1, ...,m

(5)|B1 ∗ A1 − T1|∞ < γ

(6)|B1 ∗ A1 ∗U1 − V ′
1|∞ < ǫ

(7)|B1 − B2|∞ < β

(8)|A1 − G1|∞ < α

This is a Quadratic Programming (QP) problem. The 
proportional relationship can be determined by com-
paring the rationale of each constraint. The inequality 
constraints (5) and (6) according to the Eq. (1), which 
can only tolerate the subtle estimation error below 10−4 
from estimating probability vectors (e.g. u1, v′1 ) and tran-
sition matrices (e.g. A1,B1 ), and also tolerate the preci-
sion of probability to 10−4 . It implies that we need to set 
the highest priority of minimizing the corresponding 
variables of similarity and below 10−4 . Accordingly, the 
corresponding θ1 and θ2 are equal to each other and are 
greater than other parameters of proportion. After that, 
the remaining two inequality constraints (7) and (8) are 
corresponding to assumptions of time-series data and 
the Survey Response Model with an known underly-
ing distribution. As we had more confidence in assum-
ing transition matrix is alike at consecutive times, the 
similarity in constraint (7) is higher and has a greater 
relevant proportion θ3 . Furthermore, we assumed that 
the distance of the transition matrices is alike when the 
matrices are consecutive and the duration of transitions 
of the matrices are similar. Thus, the distance between B1 
and B2 may be close to the distance between B2 and B3 , 
which is a reasonable reference to the variable of similar-
ity β when tuning the parameter of proportion during the 
optimization process. The last constraint (8) is the simi-
larity between the ideal revision-related matrix G and the 
actual revision-related matrix A1 , which has the least pri-
ority on minimization because the distribution assump-
tion is arbitrary and the ideal revision-related transitions 
may vary from the realistic revision-related transitions. 
In summary, the parameter of proportion acts like hyper-
parameter which is tuned in the optimization process 
but needs to satisfy the inequality θ1 = θ2 > θ3 > θ4 , and 
make the corresponding variable of similarity meet the 
target value in the end.

MJ dataset
The relationship between leisure-time physical activ-
ity (LTPA) and various diseases has been well studied 
via analyzing various datasets. Since the MJ dataset col-
lected a large amount of long-term medical screening 
data, many researchers have used it as evidence to sup-
port their argument [8, 9]. MJ dataset includes demo-
graphics, lifestyle, and medical history data collected by a 
self-administered questionnaire. Additionally, a series of 
health examinations including anthropometric measure-
ments, general physical examinations, and biochemical 
tests of blood and urine were taken, which complements 
the corresponding data [10]. Most of this study used the 
intensity of LTPA and duration spent on LTPA in the MJ 
dataset to compute the level of LTPA. The questionnaire 
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asking the duration of LTPA is a grouped data type scale, 
and it was revised several times during data collection.

There were 615,353 individuals (1448034 responses 
including multiple screening records) who participated 
in the health screening program run by MJ Health Man-
agement Institution, and all of their screening data were 
between 1996 and 2017. Due to the purpose of this study, 
which is to remove the effects caused by revisions, we 
used the data from 1997 to 2008 that contained a version 
changed on the questionnaire asking for the duration of 
LTPA. Since the level of LTPA (MET-h per week) was 
computed by LTPA intensity (MET; 1 MET=1 kcal per h 
per kg of bodyweight) times LTPA duration (hour/week)
[8], only the participants who responded both intensity 
and duration were considered. Besides selecting data in 
specific years and responses to specific questions, due 
to how the population cannot estimate the transition 
matrix directly, we additionally selected the individu-
als who rescreened in two consecutive years to estimate 
the transition matrices directly. These individuals are 
defined as the cohorts. Fig.  2 describes the process of 
data screening.

There are several versions of the multi-choice ques-
tionnaire asking the duration of LTPA. They all share the 
same statement Fixed duration for exercise from 1997 to 
2008, but have different descriptions of response options. 
The first version only contained four options, (1) No or 
less than one hour a week (2) One to two hours a week (3) 
Two to three hours a week (4) Above 3 hours a week, this 
version was only used in 1997, and we named it “ques-
tionnaire of 1997”. Additionally, this version is denoted 
by Q1997 , and the response to this version at multiple 
times can be described by a stochastic process. It’s sam-
ple space is S = {1, 2, 3, 4} and the corresponding interval 
set is I = {[0, 1), [1, 2), [2, 3), [3,∞)} . The second version 
was used between 1998 to 2008 and contained 5 options, 
(1) No or less than 1 hour a week (2) 1 to 2 hours a week 
(3) 3 to 4 hours a week (4) 5 to 6 hour a week (5) More 
than 7 hours a week, we call this version “questionnaire of 

1998”. Obviously, the numerical interval of options in the 
questionnaire from 1998 is discontinuous, thus assum-
ing that the respondent answered the interval closest to 
the answer in their mind when the answer was not in 
any interval of the options. The discontinuous gap was 
evenly distributed to adjacent intervals. For example, the 
upper bound of option 2 was extended to 2.5 hours, and 
the lower bound of option 3 was extended to 2.5 hours. 
Same as the Q1997 , we denoted questionnaire of 1998 
as Q1998 and the responses is described by a stochas-
tic process different from Q1997 . The sample space of it 
is S = {1, 2, 3, 4, 5} and the corresponding interval set is 
I = {[0, 1), [1, 2.5), [2.5, 4.5), [4.5, 6.5), [6.5,∞)}.

As stated earlier, the questionnaire of duration is a 
grouped data type scale and the data collected is grouped 
data. Most of the studies were interested in the annual 
average physical activity change, since the level of LTPA 
is LTPA intensity times LTPA duration, and it is neces-
sary to compute the annual average duration of LTPA 
first. To our best knowledge, no study had reported their 
strategy on analyzing the average duration of LTPA and 
the strategy on dealing with revision, hence the method 
that computes average LTPA remains unclear. Therefore, 
researchers that want to study similar topics will need to 
devise a method on their own, which can lead to unex-
pected or various results. When it comes to computing 
the average of grouped data, the most simple way is to 
use the midpoint of the interval corresponding to each 
option as the average of that option. This assumes that 
responses in each interval are uniformly distributed, 
and we named this naive method the midpoint method. 
The mean of the last option with an interval that has an 
infinite upper bound is unable to be estimated properly, 
even assuming the observation is uniformly distrib-
uted can still get 0 mean. It is intuitive to set the lower 
bound of that interval as the mean of that interval, but 
this can easily underestimate the mean of that option. 
According to the description of the midpoint method, 
the midpoint of each options in Q1997 are {0.5, 1.5, 2.5, 3} . 

Fig. 2  Process of screening the MJ dataset. n denotes the number of individuals. nn denotes the number of observations, including multiple 
re-screenings
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Assume that the probability distribution of observa-
tion of each option is [p1, p2, p3, p4] , then the annual 
average duration of 1997 by the midpoint method is 
0.5 ∗ p1 + 1.5 ∗ p2 + 2.5 ∗ p3 + 3 ∗ p4 . We used the mid-
point method to compute the average of LTPA duration 
in the MJ dataset and found a large gap between the 
duration of LTPA in 1997 and 1998, which is shown in 
Fig.  3 by the green line. Due to the problem caused by 
the option with an infinite upper bound, both LTPA 
duration in 1997 and 1998 are underestimated. Moreo-
ver, the distribution of responses in Fig. 4 shows that the 
relative frequency of the last response option is larger in 
1997, which implies that the underestimation in 1997 is 
larger, which also explains the large gap between LTPA 

duration in 1997 and 1998. The higher underestimation 
in 1997 can be explained by the higher information loss 
in Q1997 . Q1998 preserves some information on the dis-
tribution greater than 3 which is completely missing in 
Q1997 . Besides that, Q1997 was only used in 1997 but Q1998 
was used from 1998 to 2008. It is reasonable to transform 
to the version that is used most of the time which can 
reduce the number of transformations between stochas-
tic processes, and reduce the estimation error introduced 
by the transformations. In summary, transforming all the 
observations of the stochastic process related to Q1997 to 
the stochastic process related to Q1998 is more feasible. 
Thus, in this study, we transformed the observations in 
1997 to the stochastic process related to Q1998.

Fig. 3  Yearly mean of weekly duration of LTPA. The vertical lines in the figure show the revision time of duration and intensity questions, which are 
the blue and the dotted red lines, respectively. The orange line shows the annual mean duration, estimated by the midpoint method. The green line 
shows the annual mean duration estimated by MLE

Fig. 4  Distribution of grouped data in 1997 and 1998. The left figure shows the distribution of survey responses in 1997, and the right figure shows 
the distribution of survey responses in 1998. The height of each bar is the number of observations of that response in a specific year. The number 
above each bar is the relative frequency of that response
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The evidence mentioned above shows that the mid-
point method isn’t feasible to use when there is an infi-
nite bound appearing in any interval. Additionally, it is 
not appropriate to consider the underlying distribution 
as multiple uniform distribution segments, which is dis-
similar from the distribution of actual responses. Xiao, X. 
et al. [5] proposed that MLE is the most robust method 
to analyze grouped data when not enough prior informa-
tion is available. MLE takes the infinite upper bound into 
account and considers the underlying distribution as a 
proper continuous distribution, which makes it more reli-
able than the midpoint method. Using MLE to estimate 
expected value is as simple as the midpoint method, and 
an example of estimating expected value of the annual 
average LTPA duration of 1997 is shown below. Sup-
pose that the underlying answer in the respondents mind 
follows a Gamma Cumulative Distribution Function 
(CDF) which is denoted by F(ubi, θ) , where ubi denotes 
a upper bound which related to a option of Q1997 , and 
ub0 = 0 . The parameter θ of the CDF denotes the param-
eter of Gamma distribution. Furthermore, we denoted 
the observed frequency of response options of Q1997 by 
o = [(o)1, (o)2, (o)3, (o)4] . It follows the probability mass 
function g((o)1, (o)2, (o)3, (o)4 ;�) = ((o)1+(o)2+(o)3+(o)4 )!

(o)1 !(o)2 !(o)3 !(o)4 !

∏4

i=1
[F (ubi , �) − F (ubi−1, �)]

(o)i . 
The best θ fitting g((o)1, (o)2, (o)3, (o)4; θ) can be solved 
by MLE and the expected value of annual average LTPA 
duration of 1997 can be estimated by θ . The orange line 
in Fig.  3 is the annual average duration of LTPA esti-
mated by MLE when assuming the underlying distribu-
tion is Gamma distribution. The average estimated by 

MLE is larger than by the midpoint method because the 
infinite upper bound is taken into account. But the large 
gap between 1997 and 1998 still exists, even larger, hence 
the effect caused by revisioning the questionnaire is huge 
and cannot be corrected by MLE. The estimated annual 
means computed by the midpoint method and MLE are 
listed in Table 1 column 3. There is a larger difference in 
the annual average duration of LTPA between 2008 and 
2009 shown in Fig. 3. During the same time, the item ask-
ing LTPA duration was revised into two questions belong 
to two items, and the item asking LTPA intensity was 
revised. This made the revision effect more complicated, 
we did not use data after 2008 in this study. The item ask-
ing LTPA intensity was revised again between 2013 and 
2014. After this revision, respondent is able to skip items 
asking LTPA duration according to their response to item 
asking LTPA intensity. As the branching logic was intro-
duced into the questionnaire, a significantly change on 
annual mean of LTPA duration occurred between 2013 
and 2014. Additionally, there were multiple items ask-
ing LTPA duration and LTPA intensity revised between 
2016 and 2017, and we did not use observations in 2017 
as well. The questionnaire used in 1996 is not a grouped 
data type scale, since the response options did not con-
tain actual numerical intervals. We did not use observa-
tions in 1996.

The difference in annual means from 1998 to 2008 was 
listed in the fourth column in Table 1. And the range of 
it is [0.00038,  0.07386] and [0.00590,  0.12550], com-
puted by the midpoint method and MLE, respectively. 

Table 1  Information of all observations. This table lists the statistics of the population in each year. The number of individuals is listed 
in the Population column. The estimated annual mean of LTPA duration of the population is listed in the Mean(Midpoint, MLE(Gamma)) 
column. The absolute difference of annual mean in two consecutive years are listed in the Diff(Midpoint, MLE(Gamma)) column. The 
L infinity between probability vectors of population consecutive years is listed in the L infinity between vectors column. * Due to the 
revision between 1997 and 1998, the Linfinity of probability vectors can’t be computed. All the probabilities are rounded to 5 decimal 
places

Year Population Mean(Midpoint, 
MLE(Gamma))

Diff(Midpoint, MLE(Gamma)) L infinity between 
vectors

1997 75242 1.36833, 1.62673 0.68243, 0.59378 *X

1998 73940 2.05077, 2.22051 0.00320, 0.02901 0.01263

1999 70316 2.04756, 2.19150 0.00896, 0.01719 0.01135

2000 74962 2.05653, 2.17430 0.00038, 0.01712 0.00941

2001 67811 2.05691, 2.15717 0.02025, 0.03129 0.00395

2002 69715 2.03665, 2.12588 0.02099, 0.00590 0.01431

2003 63852 2.05765, 2.13179 0.04719, 0.06497 0.00875

2004 71137 2.01045, 2.06681 0.07386, 0.12550 0.01437

2005 74616 1.93659, 1.94131 0.04867, 0.05672 0.01634

2006 77411 1.98527, 1.99804 0.00836, 0.01061 0.00266

2007 76808 1.97690, 1.98742 0.05552, 0.06614 0.01216

2008 76503 2.03243, 2.05356
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Besides that, the difference of the estimated annual 
mean between 1997 and 1998 is 0.68243 by midpoint 
method and 0.59378 by MLE. Additionally, it is increas-
ing between 1997 and 1998 while decreasing between 
1998 and 2008. The difference of annual mean between 
two consecutive years can represent a short-term LTPA 
change, and we assume that the amount of short-term 
LTPA change did not vary extremely. However, the differ-
ence between 1997 and 1998 was not close to the annual 
mean ranges from 1998 to 2008. Since there was no other 
event that happened in Taiwan between 1997 and 1998 
which affected people’s habits of physical activity during 
leisure time, it is reasonable to deduct questionnaire revi-
sions as the source of interference.

The data collected by the questionnaire of duration is 
grouped data. Additionally, we considered it as a prob-
ability vector or a discrete probability distribution in one 
year and computed the L infinity between two consecu-
tive years. The 5th column in Table 1 listed the L infin-
ity from 1998 to 2007, it can be found that the maximum 
L infinity is 0.0163 indicates the maximum difference of 
relative frequency between two consecutive years is 1.6% 
which is a small value. As we assumed that short-term 
LTPA change is subtle, the L infinity between 1997 and 
1998’s probability vectors must be close to the L infinity 
between 1998 and 1999’s probability vectors or 1.6%.

In addition to the probability vector computed by all 
the observations, some special groups of individuals 
who were rescreened in two consecutive years can also 
use the same method to compute multiple pairs of prob-
ability vectors. These groups of individuals are defined as 
cohorts. The L infinity of cohorts from 1998 to 2007 are 
all greater than the L infinity computed by all the obser-
vations. We simply deduced the reason was the behav-
ior changed caused by having access to and reading the 
health screening reports. The L infinity of cohorts are 
listed in the 3rd column in Table  2. Since it is possible 
to estimate the transition matrices of cohorts directly, 
the cohort transition matrices were estimated and the L 
infinity between them was listed in Table  2, column 4. 
Note that the transition matrix of 1997 and 1998 includes 
revision transitions, thus it is not compatible with other 
transition matrices and have different dimensions with 
them. In this study, we estimated the transition matrix 
of 1997 and 1998 without revision transitions, and we 
assumed that the L infinity between it and the transi-
tion matrix of 1998 was close to the L infinity between 
the transition matrix of 1998 and the transition matrix of 
1999.

It is possible to estimate the transition matrix by 
cohort. Table 2 column 4 lists the L infinity between tran-
sition matrices, and the range of L infinity between matri-
ces is [0.022, 0.054]. We can infer that L infinity between 

1997 and 1998 will be close to this range. In summary, L 
infinity between vectors and matrices, without the effect 
of revisions, may be useful when estimating the probabil-
ity vector or the annual average at 1997.

Simulation
As the underlying distribution is unknown in the MJ 
dataset, the actual error of the estimated result can-
not be computed. To verify that the proposed method 
only corrected the error caused by revision and did not 
produce unexpected errors in the estimated underly-
ing distribution, a dataset that can provide the underly-
ing information of population was required. Simulation 
is a means to generate a controllable dataset. We con-
structed a simulation process by referring to the Survey 
Response Model defined earlier. In the simulation, the 
most important parts needs to be simulated are the pairs 
of cohort’s p.v. and the revision-related transitions and 
time related-transitions between them. This is because 
the proposed method tried to estimate the matrix com-
posed of those transitions and apply the estimation to 
population’s p.v. for reducing the revision effect. The 
probability vectors and transition matrices in MJ data-
set are utilized in the simulation process. This made the 
simulation result similar to that of the scenario in the 
real dataset. Sample size, questionnaire, and transition 

Table 2  Information of the cohort. This table lists the statistics of 
the cohort in each two consecutive years. The number of cohort 
individuals is listed in the Rescreen population column. The L 
infinity between the two consecutive cohort transition matrices 
is listed in the L infinity norm between transition matrices column. 
The L infinity between the two consecutive cohort probability 
vectors is listed in the L infinity norm between vectors column. 
* Due to the revision between 1997 and 1998, the L infinity of 
probability vectors and transition matrices can’t be computed. All 
the probabilities are rounded to 5 decimal places

Year Rescreen 
population

Linfinity 
between 
vectors

Linfinity between 
matrices

1997-1998 21551 *X *X X

1998-1999 20461 0.04183 0.03200

1999-2000 22245 0.03735 0.04007

2000-2001 21914 0.04303 0.02244

2001-2002 20257 0.02749 0.04503

2002-2003 19577 0.04178 0.04052

2003-2004 21186 0.01444 0.05387

2004-2005 23928 0.01830 0.05048

2005-2006 24903 0.03919 0.02865

2006-2007 25648 0.02144 0.03269

2007-2008 27018 0.03664 X
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matrices in the MJ dataset were used as configurations 
in simulation. A general simulation process is consid-
ered, which includes some random factors in generating 
time-related transition matrices. The transition matrices 
in the MJ dataset between 1998 and 2008 are used for 
reference, since they only consists of time-related tran-
sitions. The diagonal elements in the generated transi-
tion matrix is computed by sampling a number from a 
uniform distribution. The lower and upper bound of the 
uniform distribution are the minimum and maximum 
of diagonal elements in the transition matrices refer to 
MJ dataset. The non-diagonal elements of the generated 
transition matrix is computed by weighted average of the 
non-diagonal elements in the transition matrices refer 
to MJ dataset. The weights used in weighted average 
are generated from uniform distribution with 0 as lower 
bound and 1 as upper bound. After weighted sum, the 
non-diagonal elements in each column is divided by the 
sum of non-diagonal elements in that column. Finally, 
multiply the non-diagonal elements and the difference of 
1 and the diagonal element in the same column. There 
were three simulation datasets been generated with dif-
ferent transition matrices, but the other configurations 
remains the same.

According to our purpose of doing simulation, we 
need to simulate a transition that includes the effect of 
revision to a cohort which has observations in two dif-
ferent times. The simulation scenario is similar to the 
scenario in MJ dataset, which is depicted in Fig. 1, but 
only two times ( t1 and t2 ) are considered. Given a popu-
lation X1 follows a underlying distribution with Prob-
ability Density Function(PDF) F(θ) , which denotes the 
answer in the mind of the population at t1 . We used 
F(θ) to draw samples and used them to complete two 
versions of a questionnaire Q1 and Q2 where two ran-
dom variables, Y1 and Z1 , denote survey responses. Fur-
thermore, y1 and z1 denote the corresponding discrete 

distribution of survey responses. Q1 and Q2 are the same 
as Q1997 and Q1998 , which were used in the MJ dataset. 
Randomly selecting data from the samples just drawn 
from F(θ) , gives the cohort random variables U1 and V1 
denote the survey responses at t1 , and u1 and v1 denote 
the corresponding discrete distribution of the cohort’s 
survey responses. As noted earlier, we randomly gen-
erated some time-related transition matrices based on 
the transition matrices in the MJ dataset between 1998 
and 2008. Those matrices were used as the cohort time-
related transition matrix between t1 and t2 in simula-
tion, denoted by B1 . The cohort time-related transition 
matrix between t2 and t3 in simulation used another 
generated transition matrix, denoted by B2 . The L infin-
ity between B2 and an imagine B3 for reference was the 
average L infinity between all the pairs of the gener-
ated transition matrices. Therefore, we multiply B1 by 
grouped data of V1 gives V ′

1
 denotes the cohort com-

pleting questionnaire Q2 at t2 . After that, the cohort 
transition matrix T1 was constructed by transitions 
between U1 and V ′

1
 , since every individual’s ID and their 

responses at every time were known. After the proce-
dure of generating a simulation dataset, we defined the 
estimation task similar to the scenario in the MJ data-
set. Assume that we can only observe grouped data col-
lected by Q1 at t1 , and grouped data collected by Q2 at t2 . 
Grouped data of all the observations Y1 , grouped data of 
cohort U1 , V ′

1
 , the cohort transition matrix T1 , B2 , and 

the L infinity of B2 and B3 are given in the estimation 
task. The goal of the estimation task is estimating the 
response of cohort and of all the observations to Q2 at 
t1 , z1 and v1 , and the expected values of the underlying 
distribution of population at t1 , Ê(F(θ)) . Additionally, 
the estimation error needed to be computed to verify 
that the proposed method VAM is feasible. The configu-
ration parameters were listed in Table 3.

Table 3  Configuration parameters in simulation. Since the underlying distribution and sample size in t2 were not used in the 
simulation, they were not specified and denoted by an X. v1 denotes the cohort completing questionnaire Q2 at t1 . Both B1 and B2 were 
randomly generated based on the transition matrices in the MJ dataset between 1998 and 2008

Time t1 t2

Underlying distribution of population Gamma(1, 3) X

Sample size 57000 X

Questionnaire version 1997 1998

Generation method of cohort grouped data Randomly select from samples Com‑
puted by 
B1 ∗ v1

Transition matrix B1 Randomly generated

Transition matrix B2 Randomly generated

Cohort size 20000



Page 14 of 20Liang et al. BMC Medical Research Methodology           (2023) 23:15 

To implement the VAM method and the simulation 
experiment, we used the Scipy [11] package in python 
for linear regression analysis, nloptr [12] package in R 
for Maximum likelihood estimation, and Optimization 
Toolbox add-on in Matlab [13] for solving quadratic 
programming problems. The code of estimation and 
simulation is available at github repository [14]. Part 
of the simulation data and estimations are available at 
Supplementary material.

Result
The MJ dataset
In the MJ dataset, a revision occured between 1997 and 
1998 on the questionnaire investigating the LTPA dura-
tion, and we wanted to reduce the inconsistency that 
it induced. As the responses to the 1998 questionnaire 
had a smaller relative frequency on the group with an 
infinite upper bound, which implies lower extreme 
information loss in the collected data, the 1998 ques-
tionnaire was used more than the 1997 questionnaire. 
We tend to estimate the 1997 responses of individu-
als to the 1998 questionnaire without modifying the 
underlying distribution of the answer in mind. The 
first step is to assume the underlying distribution of 
cohort at 1997 is Gamma(θ1997) and use MLE to esti-
mate θ̂1997 = [α = 0.801,β = 2.028] , then ideal revision 
matrix

can be computed by Gamma(θ̂1997) . The α is the shape 
parameter and the β is the scale parameter of Gamma 
distribution, when the PDF of Gamma distribution is 
f (x) = 1

βαŴ(α)
xα−1e

−x
β .

The next step is to compute the vectors and matrices 
used in the constraints of VAM, the cohort p.v. of 1997

the cohort p.v. of 1997

the transition matrix of 1997

(9)G =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

9.44 ∗ 10−1 1.75 ∗ 10−1 4.12 ∗ 10−3 7.88 ∗ 10−7

2.09 ∗ 10−2 7.78 ∗ 10−1 3.25 ∗ 10−1 8.32 ∗ 10−7

1.40 ∗ 10−2 1.25 ∗ 10−2 5.82 ∗ 10−1 3.02 ∗ 10−1

1.19 ∗ 10−2 1.10 ∗ 10−2 8.25 ∗ 10−2 2.89 ∗ 10−1

8.98 ∗ 10−3 2.31 ∗ 10−2 5.31 ∗ 10−3 4.07 ∗ 10−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

u1997 = [4.502 ∗ 10
−1

2.51 ∗ 10
−1

1.17 ∗ 10
−1

1.79 ∗ 10
−1],

v
�

1997
= [4.307 ∗ 10

−1
2.35 ∗ 10

−1
1.56 ∗ 10

−1
8.57 ∗ 10

−2
9.11 ∗ 10

−2],

T1997 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

6.86 ∗ 10−1 3.42 ∗ 10−1 1.61 ∗ 10−1 9.15 ∗ 10−2

1.9002 ∗ 10−1 3.74 ∗ 10−1 2.83 ∗ 10−1 1.24 ∗ 10−1

7.21 ∗ 10−2 1.83 ∗ 10−1 3.13 ∗ 10−1 2.27 ∗ 10−1

2.88 ∗ 10−2 6.13 ∗ 10−2 1.43 ∗ 10−1 2.24 ∗ 10−1

2.23 ∗ 10−2 3.88 ∗ 10−2 9.75 ∗ 10−2 3.32 ∗ 10−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Furthermore, the transition matrix of 1998

which does not contain revision effect can also be com-
puted. The third step was to use QP to find a feasible 
solution of the objective function with constraints (3) to 
(8) shows, then gave a estimated revision matrix:

Finally, multiplied the p.v. of 1997 u1997 with the esti-
mated revision matrix Â1997 gave the revisioned cohort 
p.v. of 1997

As we assumed the underlying distribution of the cohort 
at 1997 was Gamma distribution, using MLE to estimate 
expected value of the cohort by revisioned p.v. of 1997 
gave 2.219. Furthermore, the expected value of the cohort 
in 1997 estimated by the midpoint method was 2.056. In 
addition, we multiplied the estimated cohort revision 
matrix Â1997 with population p.v. of 1997

and got revisioned p.v.

since assuming that the revision effect was the same in 
population and cohort. By assuming the underlying dis-
tribution was Gamma, the estimated annual mean of 
population was 2.105 by MLE and 1.960 by the midpoint 
method.

A linear regression (MLE: R2 = 0.766 ; Midpoint 
method: R2 = 0.557 ) was fitted to the annual means esti-
mated by MLE and the midpoint method between 1998 
and 2008, and it is plotted in Fig.  5. The estimation of 
annual mean in 1997 by the linear regression is 2.240 via 
fitting to MLE estimated means and 2.056 via fitting to 
the midpoint method estimated means. Accordingly, the 
estimation of mean of 1997 based on VAM revised p.v. 
(MLE: 2.105; Midpoint method: 1.960) is much closer to 
linear regression estimation than the estimation based 
on unrevised p.v. (MLE: 1.626; Midpoint: 1.368). Fur-
thermore, the estimated mean based on VAM revised 
p.v. lies in the range of estimated means from 1998 to 

B1998 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

6.85 ∗ 10−1 2.88 ∗ 10−1 1.42 ∗ 10−1 9.503 ∗ 10−2 6.81 ∗ 10−2

2.001 ∗ 10−1 4.17 ∗ 10−1 2.64 ∗ 10−1 1.26 ∗ 10−1 7.84 ∗ 10−2

7.009 ∗ 10−2 1.94 ∗ 10−1 3.77 ∗ 10−1 2.85 ∗ 10−1 1.12 ∗ 10−1

2.45 ∗ 10−2 6.31 ∗ 10−2 1.42 ∗ 10−1 2.93 ∗ 10−1 2.205 ∗ 10−1

1.93 ∗ 10−2 3.67 ∗ 10−2 7.41 ∗ 10−2 1.99 ∗ 10−1 5.2004 ∗ 10−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Â1997 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

9.44 ∗ 10−1 1.75 ∗ 10−1 4.12 ∗ 10−3 7.88 ∗ 10−7

2.09 ∗ 10−2 7.78 ∗ 10−1 3.25 ∗ 10−1 8.32 ∗ 10−7

1.405 ∗ 10−2 1.25 ∗ 10−2 5.82 ∗ 10−1 3.02 ∗ 10−1

1.19 ∗ 10−2 1.101 ∗ 10−2 8.25 ∗ 10−2 2.89 ∗ 10−1

8.98 ∗ 10−3 2.31 ∗ 10−2 5.31 ∗ 10−3 4.07 ∗ 10−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

v1997 = [4.69 ∗ 10
−1

2.43 ∗ 10
−1

1.32 ∗ 10
−1

7.0008 ∗ 10
−2

8.39 ∗ 10
−2].

y1997 = [4.91 ∗ 10
−1

2.33 ∗ 10
−1

1.04 ∗ 10
−1

1.701 ∗ 10
−1]

z1997 = [5.05 ∗ 10
−1

2.26 ∗ 10
−1

1.22 ∗ 10
−1

6.63 ∗ 10
−2

7.97 ∗ 10
−2],
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2008 (MLE: [1.941, 2.220]; Midpoint method: [1.936, 
2.057]), which includes no revision effects. In addition 
to that, the difference between estimated mean of 1997 
based on revised p.v. and estimated mean of 1998 (MLE: 
0.115; Midpoint method: 0.076) lies in the range of dif-
ference of means between consecutive years from 1998 
to 2008 (MLE: [0.005, 0.125]; Midpoint: [0.003, 0.083]). 
On the contrary, the mean estimation based on unrevised 
p.v. in 1997 induces an irrational annual mean difference 
between 1997 and 1998 (MLE: 0.593; Midpoint: 0.668). 
In summary, the estimated mean based on revised p.v. is 
closer to the estimation by linear regression and lies in 
the range of means without revision effect in the follow-
ing years. This implies the estimation is reasonable. The 
mean estimations by multiple methods mentioned previ-
ously are all listed in Table 4.

The L infinity between revised 1997 p.v. and 1998 p.v. 
is 2.03%. As it is close to the range of L infinity between 
consecutive years from 1998 to 2008 ([0.2%, 1.6%]; shown 
in Table 1 column 5), we concluded that the estimate of 
response distribution is reasonable. In addition, the unre-
vised 1997 p.v. have a different sample space of response 
options, which is that the L infinity between it and 1998 
p.v. cannot be computed.

Assuming that there is a linear relationship between the annual 
relative frequency of each group and time, multiple linear regres-
sion lines ( R2 = [0.825, 0.928, 0.949, 0.037, 0.926] ) fitted to data from 
1998 to 2008 can be used to estimate the revisioned 1997 p.v. 
z1997 = [4.79 ∗ 10−1, 2.25 ∗ 10−1, 1.36 ∗ 10−1, 7.1 ∗ 10−2, 8.6 ∗ 10−2] , which 
is shown in Fig. 6 by dotted line. The L infinity between revisioned 
1997 p.v. estimated by VAM and by linear regression is 1.4%, which 

is a small value that can infer the feasibility of the estimation by 
VAM. The R2 of linear regression fitted to each group is close to 1 
except group 4, because the relative frequency of group 4 is approxi-
mately constant from 1998 to 2008.

The simulation study
In the simulation study, the expected value of under-
lying distribution at t1 is 3 and the mean of the 57000 
drawn samples is 2.982 (parameters of the simula-
tion are all listed in Table  3). The estimated sample 
mean is 1.908 and 2.978 by the midpoint method and 
MLE(Gamma), respectively. And the estimated sample 
mean of the three simulation datasets by VAM(MLE, 
Gamma) is 3.017, 3.017 and 3.043. In addition to that, 

Fig. 5  Estimation by VAM and linear regression. This figure depicts the estimation of annual mean in 1997 by VAM with the midpoint method and 
by VAM with gamma fitting via MLE, which are shown by a green dot and red dot, respectively. Annual means estimated by the midpoint method 
and MLE from 1998 to 2008 are illustrated by the orange line and green line. Estimated annual means are also fit to a linear regression which is 
shown by dotted lines, whereas the mean estimation in 1997 is not included

Table 4  Mean estimations based on MJ dataset. The mean 
estimations of annual LTPA duration in 1997 based on MJ 
dataset are listed in the column Estimated 1997 annual mean. The 
differences between mean estimation in 1997 and 1998 are listed 
in the column Difference of estimated annual means 

Estimated 
1997 annual 
mean

Difference of 
estimated annual 
means

Linear regression (Midpoint 
method)

2.05624 -0.01118

Linear regression (MLE) 2.24097 -0.02428

Midpoint method 1.36833 0.66870

MLE 1.62673 0.59378

VAM (Midpoint method) 1.96012 0.07691

VAM (MLE) 2.10535 0.11516
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the mean of the cohort at t1 is 2.994, and the estimated 
cohort mean is 1.901 and 2.981 by the midpoint method 
and MLE(Gamma), respectively. The estimated mean 
of the cohort based on the three simulation dataset by 
VAM(MLE, Gamma) is 3.009, 3.009 and 3.035. All the 
mean estimations based on simulation dataset are shown 
in Table  5. All the simulation dataset share the same 
true values, since the only difference between them is 
the time-related transition matrix B1 . Due to the same 
reason, the estimation by the midpoint method and 
MLE(Gamma) based on the three simulation datasets are 
the same. The estimation result shows that VAM(MLE, 
Gamma) and MLE introduced a lower estimation error, 

whereas the estimation error caused by the midpoint 
method is non-negligible. In addition, the estimation on 
simulation dataset 1 and 2 are almost  identical. Since 
both of them have similar estimated variable of similar-
ity α , which implies that the estimated revision-related 
matrix Â1 are similar. Furthermore, due to the scenario of 
selecting cohort is completely random, revision-related 
matrix A1 of all the observations is the same as the 
cohort; hence, the mean of all the observations estimated 
by VAM is close to the truth. Furthermore, there are two 
reasons which make the estimation by MLE reasonable. 
The first one is that the cohort was randomly selected 
from the samples; thus, the assumption of the underly-
ing distribution on cohort is definitely correct, and the 
estimation by Gamma fitting via MLE is unbiased. The 
second reason is that the effect of revision and response 
bias was not simulated. In addition, the Ideal Survey 
Response Model does not consider the response bias and 
the Gamma fitting via MLE does not consider it either. 
This coincidence makes Gamma fitting via MLE give a 
reasonable estimation.

Despite the error of estimated mean, we were also 
interested in the error of revisioned p.v. estimated by 
VAM. They are all listed in Table 6. L infinity between p.v. 
of all the observations estimated by VAM and the true 
p.v. is 0.38%, 0.38% and 0.55% in simulation dataset 1, 2 
and 3, respectively. The estimation error of cohort p.v. 
in L infinity is 0.085%, 0.085% and 0.49% in simulation 
dataset 1, 2 and 3, respectively. As the L infinity is small, 
we can infer that the estimation by VAM is reasonable. 
Moreover, we deduced that even if the probability vec-
tors came from the same underlying distribution, the L 
infinity between them can still be greater than 0. Thus, 
we conducted a simple bootstrap analysis to verify our 
deduction and the feasibility of the estimation by VAM. 

Fig. 6  Trend of each group’s relative frequency. The blue, orange, green, red, and purple lines depict the relative frequency of response options 1 
to 5, respectively. The dotted line depicts the linear regression fit to the relative frequency of each response option from 1998 to 2008. The dots at 
1997 represent the relative frequency estimated by VAM

Table 5  Mean estimations in simulation. The mean estimation 
of population based on simulation dataset and the true mean 
values are listed in the column Sample. The mean estimation 
of cohort are listed in the column Cohort. The estimation by 
VAM based on the three different simulation datasets are listed 
in the last six rows. *Cohort is randomly drawn from samples of 
population, thus, the underlying distribution of it is identical to 
population

Sample Cohort

True value (Expected value of underlying distribu‑
tion)

3 3*

True value (Sample mean) 2.98246 2.99449

Midpoint method 1.90892 1.90185

MLE 2.97855 2.98106

Simulation dataset 1 VAM (Midpoint method) 2.71968 2.71013

VAM (MLE) 3.01784 3.00904

Simulation dataset 2 VAM (Midpoint method) 2.71968 2.71015

VAM (MLE) 3.01784 3.00904

Simulation dataset 3 VAM (Midpoint method) 2.7375 2.72794

VAM (MLE) 3.04389 3.03518
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The underlying distribution was set as Gamma(1,3), the 
sample size was set to 57000 and 20000, and the num-
ber of samples was set to 1000, these parameters were 
the same as the simulation parameters. By generating 
two groups of 1000 samples(p.v.), 106 L infinities can be 
computed between samples in the two groups, then a 
95% confidence interval (CI) can be established. The 95% 
CI of the 57000 sample size is [0.0012, 0.0068], and the 
estimation error of all the observations by VAM falls in 
this interval. We can deduce that the estimation error is 
tolerable. In addition, the 95% CI of the 20000 sample 
size is [0.00204, 0.0116], and the cohort estimation error 
of simulation dataset 3 lies in the interval. However, the 
estimation error of simulation dataset 1 and 2 does not 
lie in the 95% CI. Since lower estimation error implies 
smaller distance between estimation and the true value, 
the estimation of simulation dataset 1 and 2 are reason-
able. In summary, the estimation error of VAM can be 
calculated by L infinity, and it is smaller than 1%, which 
is negligible. Furthermore, as [15] used KL divergence as 
the distance measurement method between vectors, we, 
too, computed the 95% CI in KL divergence. The 20000 
sample size 95% CI is [ 2.4 ∗ 10−5 , 5.6 ∗ 10−4 ] and the 
57000 sample size is [ 8.5 ∗ 10−6 , 1.9 ∗ 10−4 ]. The esti-
mation error in KL divergence of all the observations 
is 7 ∗ 10−5 and 7 ∗ 10−5 based on simulation dataset 1 
and 2. They all lie in the 95% CI. However, the estima-
tion error based on simulation dataset 3 do not lie in the 
95% CI, thus a drift in the parameter of the underlying 
distribution in the bootstrap analysis is performed for 
measuring the amount of the error. When the param-
eter of one of the underlying distributions is drifted to 
Gamma(1, 3.02) and the other remains to be Gamma(1, 
3), the 95% CI change to [ 10−5 , 0.00024]. As the drifted 

95% CI includes the estimation error of simulation data-
set 3, we deduced that the estimated p.v. is more likely 
to be drawn from Gamma(1, 3.02). Since the amount of 
drifting is small, the estimated p.v. is feasible. The esti-
mation error in KL divergence of the cohort is 5 ∗ 10−6 , 
5 ∗ 10−6 and 0.00017 based on the simulation datasets. 
They are reasonable, as all of them lie in the 95% CI or 
smaller than the lower endpoint of the 95% CI. According 
to the bootstrap analysis above, distances between prob-
ability vectors drawn from identical distribution are not 
0. Moreover, the distribution of those distances can form 
a 95% CI, representing a range in which most of the dis-
tances appear. Most of the estimation errors from VAM 
in L infinity and KL divergence lie in the 95% CI. We can 
deduce that the estimation error is reasonable, as their 
underlying distribution can be proved to be the same by 
bootstrap analysis.

Discussion
We found a serious issue with the grouped data col-
lected in the MJ dataset, which is that the big gap of 
estimated annual mean occurs when the revision hap-
pens. The method that a previous study [5] suggested 
also did not consider the revision effect and caused the 
same issue. We proposed that there are some systematic 
errors included in the estimation result, which were dif-
ferent when different versions of the questionnaire are 
used to collect the grouped data. Hence, when conven-
tional methods are used to analyze the data collected 
by different versions of the questionnaire, the result is 
unreasonable and includes unexpected errors. Accord-
ing to the result of the MJ dataset, the systematic error 
corresponding to the loss of information in the underly-
ing distribution and the group with infinite upper bound 
caused MLE to have a more severe underestimation on 
the mean of grouped data collected by the 1997 question-
naire than the data collected by the 1998 questionnaire. 
However, in the simulation study, there is no obvious gap 
between MLE’s estimation on the grouped data collected 
by the 1997 questionnaire and by the 1998 questionnaire, 
which means that there are some differences between the 
simulation by the proposed Ideal Survey Response Model 
and the underlying survey response scenario in the MJ 
dataset. As the simulation study referred to the Survey 
Response Model defined earlier, which assumed an ideal 
response process, we inferred that irrational responses or 
response bias may be one of the reasons that cause the 
difference; for example, respondents will tend to avoid 
answering an option with an extreme value [3]. As the 
response bias is not the same in different versions of a 
questionnaire, the systematic error induced is different 
and the estimated mean is inconsistent.

Table 6  Estimation error of probability vector by VAM in 
simulation. The 95% CI is computed by sampling from identical 
distribution (Gamma(1, 3)) and compute the distances between 
the samples. The estimation error of population are listed in the 
column Sample. The estimation error of cohort are listed in the 
column Cohort. The estimation error based on the three different 
simulation dataset are listed in the last six rows

Sample Cohort

95% CI in L infinity [0.0012, 0.0068] [0.00205, 0.0116]

95% CI in KL divergence [8.5 ∗ 10−6, 0.00019] [2.4 ∗ 10−5, 0.00056]

Simulation dataset 
1

L infinity 0.00384 0.00085

KL divergence 0.00007 5 ∗ 10−6

Simulation dataset 
2

L infinity 0.00384 0.00085

KL divergence 0.00007 5 ∗ 10−6

Simulation dataset  
3

L infinity 0.00557 0.00490

KL divergence 0.00024 0.00017
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Future research
VAM has taken all the effects caused by revision into 
account, which included information loss and response 
bias, and finally estimated a revision matrix which repre-
sents the revision effect. The implicit meaning and struc-
ture of the revision matrix is still under study. Further 
research can focus more on the pattern of response bias 
in real survey responses, and adjust the Survey Response 
Model by considering its effects, which can make the 
simulation closer to real survey response scenarios.

Some conditions need to be satisfied before using 
VAM. First, a sufficient cohort size is required to elimi-
nate errors that occur when estimating cohort transi-
tion matrices. Then, an assumption that the cohort and 
the population have similar behaviors on revision is 
required, which implies that the population and cohort 
revision-related matrices are similar. Future studies 
can examine whether the revision matrix of different 
grouped data describing the same behavior shares the 
same value or not.

The core of VAM is using different transition matrices 
to denote different transitions related to different factors 
that affect the distribution of survey responses. The order 
of the transition matrices is arbitrarily decided in this 
study: we assumed the revision-related transitions first 
affect p.v. and then the time-related transitions affect p.v. 
In the scenario of the MJ dataset, the order of the transi-
tions we used made the decomposed time-related matrix 
have the same dimension as the transition matrices in the 
future, which does not include the effect of revision. The 
revision occurs between 1997 and 1998, so the transition 
matrices between 1998 to 2008 can be estimated, and it 
only consists of time-related transitions. Therefore, the 
transition matrices in the future can be a reference to the 
current time-related matrix. In the MJ dataset, there were 
no observations before 1996, and the 1996 questionnaire 
was not a grouped data type scale; thus, the transition 
matrix between 1996 and 1997 can not be estimated. 
Thus, if we use the opposite order of the matrices, the 
dimension of the decomposed time-related matrix is the 
same as the transition matrix before 1997. Then, there is 
no reference to the time-related matrix during the VAM 
estimation, the estimation error becomes higher and the 
estimation becomes unreasonable. In the future, when 
using VAM in other datasets with complete observations 
where the transition matrices before and after revision 
can be estimated directly, another order of the transition 
matrices can be considered, and comparing the results of 
different orders will be interesting to study.

In this study, the assumption to the underlying distri-
bution is fixed to Gamma distribution, because it has 
the greatest likelihood computed via MLE. [4] proposed 
that the underlying distribution of a grouped data can be 

multimodal. The PDF can be composed of multiple linear 
density functions of each group, and the response cor-
responding to the upper limit option can be assumed to 
follow a Pareto distribution. However, the problem is that 
it will generate a discontinuous density function; thus, 
a comparison of estimation obtained by the method we 
proposed and the method [4] proposed can be an inter-
esting task for the future.

The distance measurement method we used in VAM 
was L infinity, as we assumed that when the maximum 
relative frequency difference is small enough, the p.v. 
and transition matrices were similar. However, L infin-
ity does not take into account the difference of the shape 
of distribution; hence, only when L infinity is close to 0, 
the difference of distributions can be considered as neg-
ligible errors. In contrast, when L infinity is not close to 
0, it may not be a proper measurement method, because 
greater L infinity does not guarantee a greater dissimilar-
ity. Accordingly, it is reasonable to use KL divergence on 
p.v.’s distance measurement, as it considers the difference 
of the entire distribution. However, KL divergence has 
some disadvantages; for example, it doesn’t satisfy the 
commutative property and the outcome is an undefined 
value when some cell in p.v. is 0. It will be interesting to 
study other measurement methods in the future.

The generalizability of VAM has not been verified 
because the simulation process and most simulation 
parameters were referenced from the MJ dataset. As 
noted earlier, there were some differences between 
the simulation dataset and the MJ dataset, which can 
be observed by the estimation of MLE. The reason was 
that the revision matrix that generates in the simula-
tion is ideal, which means that it did not contain some 
systematic errors that occurred in the MJ dataset. The 
method of extracting the transitions that cause these 
systematic errors from the revision matrix can be 
studied in the future.

We believe that when designing the grouped data type 
scale, increasing the number of options and narrowing 
the interval of each option may be able to reduce the sys-
tematic error. More research still needs to be conducted 
to find the best number of options and the best inter-
val of each option. In addition, the option with an infi-
nite upper bound can add extra space for respondents to 
answer their actual value, which may reduce the system-
atic error due to lower information loss.

VAM with various grouped data as input
Many grouped data do not share the same scenario with 
the MJ dataset. Some scenarios make estimation by VAM 
more accurate, but others can make a worse estimation 
or even make VAM unavailable. Fortunately, by making 
some additional assumptions, VAM can still estimate the 
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unacceptable data. We list some of the scenarios below, 
and provide suggestions on estimation for the data that 
cannot be analyzed by VAM.

There is a type of data where all observations at revi-
sion are included in the cohort. Thus the assumption that 
cohort and all the observations have the same revision 
behavior can be discarded, which makes the estimation 
result more accurate. Another type of data, which con-
tains similar cohorts in every year, improves the estima-
tion of VAM. Given that the observations at t1 collected 
by Q1 need to be revisioned and the observations at t2 
are collected by Q2 . Assume the demographic of the two 
cohorts at t1 and t2 are similar, the transition matrix B1 
and B2 estimated by them is similar, because they have 
similar behavior after reading the health screening report, 
then the L infinity between the two transition matri-
ces is close to 0. Furthermore, assume the demographic 
between cohorts at t2 and t3 are also similar, which means 
that B2 and B3 are similar. As B1 , B2 , and B3 are estimated 
from the cohorts with similar demographic, the L infinity 
of B1 and B2 is close to L infinity of B2 and B3 , this rela-
tionship improves the rationality of referencing L infinity 
between different time-related transitions matrices.

On the other hand, when the dataset does not include 
any cohort information, the cohort transition matrix can-
not be estimated directly, VAM can not revise the incon-
sistent observations. Then MLE can be used because it is 
the most robust method to analyze grouped data, and the 
estimation error is lower when the number of groups are 
large and relative frequency of the infinite boundaries are 
not high. Another situation is where the dataset includes 
cohort information, but only the cohort information 
at the target revision time is missing; then, VAM is not 
applicable to this dataset. A solution is to assume that the 
time-related transition matrix is similar between the time 
that revision occurs and the consecutive time without 
revision. Then, multiply the transition matrix with the 
p.v. to obtain the estimated revisioned p.v. If the p.v. that 
we want to reduce the revision effect does not have com-
patible dimension with the referenced transition matrix 
in the consecutive time, then the transition matrix needs 
to be inverted. The inverse matrix may contain nega-
tive numbers and may not satisfy the basic property of 
transition matrix, and the estimated p.v. may not satisfy 
the basic property of the probability vector either, then 
MLE is the proper method. Another type of dataset only 
contains cohort at the time t1 when revision occurs and 
another time t2 without revision, then assuming T1 and 
T2 are close is a choice. Accordingly, shrinking the vari-
able β to the smallest value possible in the estimation 
procedure of VAM is required, and the estimation error 
may be greater as there is no reasonable reference of the 
distance between T1 and T2 . In a more extreme situation 

where the dataset only contains cohort at the time t1 that 
revision occurs, then VAM is not available, the MLE is a 
proper method.

Limitations
One limitation of this study is that we only use one data-
set. The long-term time series data is difficult to obtain; 
hence, VAM did not apply to various datasets to verify 
its performance, and the generalizability of VAM was not 
realized. Another limitation is that the MJ dataset did not 
have valid data before 1997, which limited the order of 
matrices after decomposition. Thus, if a complete data-
set is made available, then another order of matrices after 
decomposition can be considered, and the performance 
of both matrix orders can be compared.

Conclusion
Using the proposed VAM, we modeled questionnaire 
revision as transitions between stochastic processes to 
align the revision-related difference in responses and 
reduce the inconsistency introduced by it. Our findings 
are important in the longitudinal study with a long length 
grouped data type scale, which has high probability to 
include a revision. Additionally, the inherent informa-
tion loss in grouped data type scale is not the only factor 
that causes revision effect. Response bias is another fac-
tor that causes the revision inconsistency. Examining the 
separate effects caused by the two factors is an interest-
ing future research direction.
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