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Abstract 

Background  In the older general population, neurodegenerative diseases (NDs) are associated with increased dis-
ability, decreased physical and cognitive function. Detecting risk factors can help implement prevention measures. 
Using deep neural networks (DNNs), a machine-learning algorithm could be an alternative to Cox regression in tabu-
lar datasets with many predictive features. We aimed to compare the performance of different types of DNNs with 
regularized Cox proportional hazards models to predict NDs in the older general population.

Methods  We performed a longitudinal analysis with participants of the English Longitudinal Study of Ageing. We 
included men and women with no NDs at baseline, aged 60 years and older, assessed every 2 years from 2004 to 
2005 (wave2) to 2016–2017 (wave 8). The features were a set of 91 epidemiological and clinical baseline variables. 
The outcome was new events of Parkinson’s, Alzheimer or dementia. After applying multiple imputations, we trained 
three DNN algorithms: Feedforward, TabTransformer, and Dense Convolutional (Densenet). In addition, we trained two 
algorithms based on Cox models: Elastic Net regularization (CoxEn) and selected features (CoxSf ).

Results  5433 participants were included in wave 2. During follow-up, 12.7% participants developed NDs. Although 
the five models predicted NDs events, the discriminative ability was superior using TabTransformer (Uno’s C-statistic 
(coefficient (95% confidence intervals)) 0.757 (0.702, 0.805). TabTransformer showed superior time-dependent bal-
anced accuracy (0.834 (0.779, 0.889)) and specificity (0.855 (0.0.773, 0.909)) than the other models. With the CoxSf 
(hazard ratio (95% confidence intervals)), age (10.0 (6.9, 14.7)), poor hearing (1.3 (1.1, 1.5)) and weight loss 1.3 (1.1, 1.6)) 
were associated with a higher DNN risk. In contrast, executive function (0.3 (0.2, 0.6)), memory (0, 0, 0.1)), increased 
gait speed (0.2, (0.1, 0.4)), vigorous physical activity (0.7, 0.6, 0.9)) and higher BMI (0.4 (0.2, 0.8)) were associated with a 
lower DNN risk.

Conclusion  TabTransformer is promising for prediction of NDs with heterogeneous tabular datasets with numerous 
features. Moreover, it can handle censored data. However, Cox models perform well and are easier to interpret than 
DNNs. Therefore, they are still a good choice for NDs.
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Background
Neurodegenerative diseases (NDs) are a leading cause of 
disability in the older population [1]. Alzheimer’s disease 
(AD) and Parkinson’s disease (PD) are the two most com-
mon NDs, and their prevalence increases with increas-
ing age [2]. NDs have long prodromal periods that can 
manifest many years before the onset of the respective 
disease [3, 4]. Parkinson’s disease, Alzheimer and other 
types of dementia are diseases that have heterogeneity in 
their clinical presentation, physiological mechanisms and 
some predictors. However, recent evidence has shown 
that these diseases may share some relevant aspects, such 
as genetic susceptibility, underlying mechanisms and 
other predictors [5, 6]. Besides rare monogenic forms of 
these diseases, most cases with NDs are due to an inter-
play of genetic susceptibility factors and some environ-
mental risk factors [7, 8]. Identifying these risk factors is 
crucial for early intervention and can help delay disease 
onset.

It exists already research on the prediction of neurode-
generative diseases. For example, in a large cohort study, 
researchers have reported results on the prediction of 
NDs using traditional statistical analyses (hypothesis-
driven approaches) [9]. Another cohort study assessed 
14,066 older participants free of cognitive decline with 
a follow-up of 4.5 years. Using Cox models, they found 
that subjective cognitive decline and anxiety were inde-
pendently associated with mild cognitive impairment and 
dementia [10]. Cohort studies based on samples from 
the general population can providing information with 
less selection and recall bias than case-control studies 
[4]. Reinke et  al. studied dementia risk in a population 
with German claims data in 117,895 individuals during 
a 10-year follow-up. They performed three different ML 
algorithms obtaining moderated discriminate accuracy 
from 0.64 (random forests) to 0.7 (logistic regression and 
gradient boosting) [11]. However, prediction models of 
NDs in cohort studies (designed to answer specific ques-
tions and have subjective and objective for-purposed 
information) with participants from the general popula-
tion are not frequently performed due to the difficulty of 
obtaining funding, having an adequate sample size and 
an extended follow-up.

In the last years, researchers started to use data-driven 
approaches with machine learning (ML) for NDs predic-
tion [12]. A potential advantage of ML models over tra-
ditional statistical analysis in prediction is the ability to 
handle high dimensional data [13]. Despite this evidence, 
it is unclear whether ML algorithms would have a supe-
rior discriminative ability in predicting NDs in cohort 
studies compared to traditional statistical methods. 
Among ML algorithms, deep neural networks (DNNs) 
have advantages over other methods. DNNs are more 

flexible and able to include images and any input data. 
In addition, they can easily handle missing data, model 
non-linear and complex relationships [14]. DNNs also 
can handle survival time if the DNN algorithm is tailored 
to censored data by with the appropriate censoring unbi-
ased loss functions [15–17]. The disadvantages are that 
most DNNs do not perform appropriately with heteroge-
neous tabular data [18]. Researchers have recently devel-
oped algorithms with different structures that can deal 
with tabular-heterogeneous data to fill this gap [18] Still, 
these algorithms have not been widely investigated yet to 
time-to-event outcomes.

This study aims to test different algorithms for NDs 
prediction in the older general population using Cox 
models with a selection of variables and deep learning 
techniques. Another objective is to discover predictors 
for NDs that can be informative for public health preven-
tion of these diseases.

We hypothesized that DNNs fitted for tabular data 
would perform better than other neural networks in pre-
dicting neurodegenerative diseases and perform as well 
as regularized Cox models.

Methodology
Participants, inclusion criteria and study design
We analysed participants of the English Longitudinal 
Study of Ageing (ELSA) [19], an ongoing cohort study 
representative of the general population over 50 years of 
age living in England. ELSA collects health data, includ-
ing socio-economic, cognitive, behavioural, psychologi-
cal, and lifestyle information. Participants are assessed 
every 2 years (waves) with computer-assisted interviews 
and self-reported questionnaires. Each biennial assess-
ment is called a “wave”. In addition, every 4 years, par-
ticipants undertake a physical exam and provide blood 
samples. The data collection goes from wave 1 (baseline 
for the ELSA study, performed in 2002–2003) to wave 9 
(2018/− 2019). Ethical approval was obtained from the 
Multicentre Research and Ethics Committee [20].

Eligibility criteria
We included participants 60 years and older at wave 2 
(2004–2005) because some crucial variables were meas-
ured from wave 2 (nurse visit) and not in people younger 
than 60. We excluded all participants that, at wave 2 (the 
baseline of this study), had a diagnosis of NDs (PD, AD 
or dementia) or had a score < = 1 in questions about the 
date from the Mini-Mental Status Examination score. At 
the moment of the analysis, the last available assessment 
was wave 8. Consequently, we followed up on the partici-
pants’ outcomes from wave 3 to wave 8.
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Study design
This study is an observational retrospective longitudinal 
secondary analysis of ELSA and no formal written analy-
sis plan exists. We analysed a period of 12 years of follow-
up from 2004 to 2005 (wave 2, baseline of this analysis) to 
2016–2017 (wave 8).

Outcome
The outcome was any new event of NDs during the 
follow-up. The composite variable “NDs” was defined 
as ever reported PD or AD, dementia or high memory 
impairment. The question was as follows: “Has a doctor 
ever told you that you [have/have had] any of the condi-
tions in this card? (PD, AD, dementia or high memory 
impairment)”. Dementia was additionally defined with 
the questions about the date of the Mini-Mental Sta-
tus Examination score 16 less or equal to 1 (0 worst, 
4 = best).

Features
Based on the literature [7, 8], we chose possible predic-
tors (features) of NDs that were available in the ELSA 
Wave 2 dataset. We selected 95 baseline variables (fea-
tures) associated with the occurrence of NDs or expected 
outcomes. We identified 27 comorbidities, 15 psychoso-
cial, 11 biomarkers, 9 symptoms, 7 lifestyle, seven envi-
ronmental, 6 physical functioning tests, 6 disability, 4 
cognition tests and three demographic variables (Supple-
mentary Table 1). Eleven of the 13 risk factors for demen-
tia reported by the Lancet commission for dementia 
prevention [21] are among the 91 features. The two not 
included features (traumatic brain injury and air pollu-
tion) are unavailable in wave 2 of the ELSA study. Among 
the 95 selected features, four variables with variance 
inflation factor (VIF) > 10 were excluded from the analy-
sis. We analysed and selected 91 features in our five final 
models (input of the models).

Statistical analysis
Missing data
We checked missingness in every variable of interest. 
Assuming a missing at-random mechanism, a complete-
case analysis would introduce bias [22]. Consequently, 
we applied multiple imputations to deal with the miss-
ing data issue. We imputed only the baseline predictor 
variables and not the outcome. We built the imputation 
model with the full dataset by selecting the best miss-
ing data predictors. The function “Quickpred” from the 
“mice” R package allows a selection of predictors accord-
ing to correlations and usable cases. We selected the best 
predictors among the available variables with the func-
tion “Quickpred” and included the outcome and possible 

confounders such as age and sex [23]. To decide the num-
ber of imputations, we used the maximum percentage of 
observed missing data [24]. Then, we checked the impu-
tations by comparing imputation with non-imputation 
means and calculating the percentage of bias. A value of 
5% or less is considered acceptable [25].

Data pre‑processing
Categorical predictors were dichotomized into 0, and 
1. To deal with numerous continuous predictors with a 
skewed distribution, we transformed them with loga-
rithms to the base 2 + 1 with the following formula: 
y = log2 (x) + 1. y = transformed predictor; x = original 
non-transformed predictor. We used logarithms to the 
base 2 because of its binary nature, which makes the 
computation of machine learning more performant.

Nested cross-validation was carried out to reduce the 
risk of model overfitting. In the nested cross-validation, 
we used two repeated 5-fold cross-validation in each of 
the datasets obtained from the multiple imputation stage 
to have ten datasets to train (80% of data) the model and 
ten datasets to test (20% of data) the model. Then, we 
performed feature selection and hyper-parameter tuning 
only on the training datasets. We normalized the training 
and test data using the minimum and maximum values 
for each variable computed from training data during the 
analysis.

The time at risk was defined from the baseline (wave 
2) in 2004/2005 to the follow up (wave 8) in 2016/2017. 
We tested the proportional hazard assumption by using 
Schoenfeld residuals. Using VIF” (“rms” R package), we 
sequentially removed the variables with high multi-col-
linearity (VIF > 10). The set of baseline variables that were 
not removed in this process was modelled as predictors 
in Cox models and was the input of the DNNs models 
(Supplementary Table 1).

After the standard processes of selecting variables, 
multiple imputations and pre-processing, the analytical 
approaches are presented separately.

Cox models
We generated two different Cox models.

Cox models with elastic net regularization (CoxEn)
Regularisation is a machine learning technique that 
penalises coefficients that deviates from zero. It may help 
avoid overfitting and increase computation performance 
and interpretability of the results [26]. Lasso (L1 regulari-
sation that restricts the size of the coefficients) and Ridge 
(L2 regularisation that restricts the square of the magni-
tude of the coefficients) regressions are two well-known 
regularisation techniques [27]. Elastic Net is a technique 
which combines both Lasso and Ridge techniques for 
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better performance [28]. Using the pre-selected features 
as predictors, we performed Elastic Net regularization. 
The process that we used has two tuning parameters: the 
regularization parameter lambda and the mixing param-
eter alpha for moderating between Lasso and Ridge [29]. 
The optimal model should specify alpha and lambda, for 
which the two repeated 5-fold cross-validated penal-
ized log-likelihood deviance is minimal after comparing 
all the training datasets from 40 imputed datasets. The 
“c060” and “glmnet” R packages provided parameter tun-
ing and C-index computing functions.

Cox models with selected features (CoxSf)
We applied Elastic Net regularisation in 10 randomly 
chosen training datasets from each of the 40-imputed 
datasets. We kept the features selected (i.e. having 
coefficients not equal to 0) at least eight times from 
the 10 training datasets of each imputed dataset. We 
selected the variables according to how often each vari-
able appeared in the imputed datasets. We computed the 
number of imputed datasets that a variable appeared. We 
wanted to use the variables that occurred in at least 30 
imputed datasets in a Cox model. For example, a vari-
able “x” appeared in all 40 imputed datasets. In conse-
quence, it was kept for the Cox model. In contrast, a 
variable “y”, which occurred only in 24 imputed datasets, 
was excluded from the model. Using the variables that 
occurred in 30 to 40 imputed datasets, we applied Cox 
regression models to each imputed dataset and pooled 
them with Rubin’s rules (pool function from the “mice” R 
package) [23]. The pooled models with different variables 
were compared using the Wald test (pool.compare func-
tion from the “mice” R package). We kept the variables in 
the model with the lowest p-value compared to the other 
models.

Deep neural networks
TensorFlow API 2.3.0 [30] allowed the development and 
training of the three DNN models (Feedforward neural 
network, Densely Connected Convolutional Network and 
TabTransformer neural network). We used a loss based 
on the negative log of Breslow approximation partial like-
lihood that allows accounting for censored data. The data 
architecture of the five models (Cox models with Elastic 
Net regularization, Cox models with selected features, 
Feedforward neural network, Densely Connected Convo-
lutional Network and TabTransformer neural network) is 
shown in Fig. 1.

Feedforward neural network (FeedForward)
Feedforward is a DNN where the information moves in 
only one direction, from the input layer, through the hid-
den layers and to the output layer [31]. We included one 

input layer (the pre-selected variables), four fully con-
nected hidden layers and one output layer. Each hidden 
layer had 32 neurons, followed by a dropout layer with 
a dropout rate = 0.2 and a Gaussian Noise layer which is 
used to mitigate overfitting. The output was a single node 
with a linear activation that estimates the log-risk func-
tion in the Cox model. We used Scaled Exponential Lin-
ear Units (SELU) as the activation function and Adaptive 
Moment Estimation (Adam) with a learning rate = 0.0001 
for the gradient descent algorithm.

Densely connected convolutional network (DenseNet)
DenseNet is a DNN and consists of a series of pre-con-
nected layers (dense layers) connected to the previous or 
next layer. Information from all previous layers is used 
as input for each layer, and therefore all the information 
is propagated through the whole model to limit gradient 
vanishing [32]. We used a 4-layer dense block. The input 
and the hyper-parameters of the dense layer were the 
same as those for FeedForward. Each dense layer outputs 
8 features (growth rate), which were used as the input of 
the next layers.

TabTransformer neural network (TabTransformer)
The TabTransformer is a deep tabular data modelling 
neural network. It uses contextual embedding, and it is 
based on the self-attention mechanism [33]. We chose an 
embedding size of 64 neurons followed by a stack of six 
Transformer Layers with eight heads each. The inputs of 
TabTransformer were the same that for all models. We 
modified TabTransformer to use a Cox layer as the out-
put layer and a censoring unbiased loss function based 
on the negative log of Breslow approximation partial like-
lihood that allows accounting for censored data [16, 34]. 
Gradient descent optimization with adaptive moment 
estimation was performed with a learning rate of 0.0001.

Model evaluation
The output of the three DNNs is the predicted values of 
new events of NDs for each participant. Then we used 
these values to calculate the assessment measures.

C-statistics (or C-index) measures a model’s goodness 
of fit, giving the probability that an individual that expe-
rienced the event has a higher score than an individual 
that did not experience the event. Harrell’s C- statistics 
is a type of c-statistics with a rank correlation method for 
censored data. Uno’s C-statistics has an advantage over 
Harrell’s C- statistics as it does not depend on the study-
specific censoring distribution [35]. We evaluated the 
performance of the models in the test datasets by meas-
uring Uno’s C-statistics with 95% confidence intervals 
calculated with 100 replications of bootstrapping. We 
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assessed the following time-dependent measures: AUC, 
balanced accuracy, sensitivity and specificity.

We assessed the overfitting of DNNs by plotting the 
loss function over epochs in each of the imputed training 
and test datasets. The stability of the models was assessed 
by calculating confidence intervals with bootstrapping 
with the Uno’s C-statistic in each of the 40 imputed data-
sets. Finally, we calculated the power of our sample size 
for the categorical CoxSf model final predictors.

We assessed the feature importance of the three DNNs 
using Shapley additive explanations (SHAP) analysis, 
showing the top ten most important features for each 
model [36]. We analysed the possible shared features 
among the three DNNs and the Cox model using visual 
methods.

Data analyses were performed in R version 4.0.0 using 
R packages “mice”, “survival”, “glmnet”, “c060” and, “sur-
vivalROC”. Sample split and Uno C-statistics calculations 
were performed with Python.

This study is reported as per the Transparent reporting 
of a multivariable prediction model for individual prog-
nosis or diagnosis (TRIPOD).

Results
From 9432 participants at baseline, we excluded 3999 
younger than 60 years or had a NDs diagnosis. We 
included 5433 participants (Supplementary Fig.  1) who 
experienced 691 (13%) NDs events during the 12-year 
follow-up. The median follow-up was 10 (interquartile 
range (IQR) 1) years. Participants with NDs at baseline 

Fig. 1  Model architecture developed for prediction of new events of neurodegenerative diseases. Time of follow-up: from 2004 to 2005 to 
2016–2017. Population: The English Longitudinal Study of Ageing. Cox models with Elastic Net regularisation are in salmon, and Cox models with 
selected variables are in blue. The FeedForward model is in yellow, the Densenet model is in green and the TabTransformer model is in blue-violet. 
In the deep neural network models (Feedforward, Densenet and TabTransformer), the input was the baseline data (91 features) and the log-risk 
function is the output of the network
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were older, less frequently married, less qualified, more 
frequently sedentary, with slower walking speed, with 
a higher frequency of falls, more regularly affected by 
cardiovascular disease and had lower cognitive scores. 
(Table 1).

Missing data were observed in 1 (< 1.0%) to 1818 
(33.5%) participants (Supplementary Table  1). In the 
imputation model, we included age, sex, time-to-event 
and outcomes. We created 40 imputed datasets with 
20 iterations using chained equations [24]. The imputa-
tions were values considered as plausible and with a low 
percentage of bias (Supplementary Table  2). We also 
observed a distribution of imputed data similar to the 
original non-imputed values (Supplementary Figs. 2 to 4).

All models had as initial input the 91 pre-selected 
variables described in the methods section. After hav-
ing verified the proportional hazard assumption was 
not violated, we generated the CoxEn models with 
Elastic Net regularization. We used alpha = 0.84 and 
lambda = 0.0093, which gave the lowest partial likelihood 
deviance.

To find the best list of features for the final CoxSf, we 
generated models on 40 imputed datasets using 7, 8 and 
9 selected variables, respectively and pooled them by fol-
lowing Rubin’s rules. Nine variables appeared in at least 
30 imputed datasets, eight in at least 31 imputed data-
sets and seven in all 40 imputed datasets (Fig. 2 Panel A). 
Using the Wald test, the model with eight variables had 

Table 1  Description of 5433 participants in the English Longitudinal Study of Ageing at wave 2 (baseline 2004–2005) stratified by the 
apparition of events during the follow-up

a Imputed data and if SD, it was calculated according to Rubin’s rules
b No graduation certificate (primary or secondary studies)
c Defined as BMI > = 30 kg/m2
d Defined as self-reported infarction, stroke or heart failure
e Self-reported medical diagnosis
f Defined as a score > =4 of the 8-item Center for Epidemiological Studies-Depression (CES-D). Abbreviations: NDs Neurodegenerative diseases, IQR Interquartile range, 
SD standard deviation, BMI Body mass index, pp. Per point

Characteristic All sample (n = 5433) No NDs events (n = 4742) NDs events (n = 691)

Age, median (IQR), years 70 (12) 69 (10) 75 (13)

Sex, No. (%)

  Male No. (%) 2408 (44) 2123 (45) 285 (41)

  Married or cohabiting (%)a 3339 (61) 2948 (62) 391 (57)

  Education non-qualified a, b 2928 (54) 2511 (53) 417 (60)

  Former smoker (%)a 2773 (51) 2422 (51) 351 (51)

  Current smoker (%)a 691 (13) 606 (13) 85 (12)

  Sleep disturbance, No. (%)a 2274 (42) 1971 (42) 303 (44)

  BMI, mean (SD), kg/m2 a 28 (5) 28 (5) 28 (5)

  Obesity, No. (%) a, c 1546 (28) 1361 (29) 185 (27)

  Weight loss (%) 956 (18%) 809 (17) 147 (21)

Physical activity, No. (%)a

  Low level or inactive 1941 (36) 1626 (34) 315 (46)

  Moderate or vigorous 3492 (64) 3116 (66) 376 (54)

Gait speed, mean (SD), m/s a 0.84 (0.30) 0.85 (0.30) 0.74 (0.30)

Falls, No. (%)a 1789 (33) 1519 (32) 270 (39)

Systolic blood pressure, mean (SD), mmHga 138 (31) 138 (33) 139 (32)

Diastolic blood pressure, mean (SD), mmHga 74 (15) 74 (15) 73 (16)

Cardiovascular disease, No. (%)d 750 (14) 635 (13) 115 (17)

Stroke, No. (%) 344 (6) 289 (6) 55 (8)

Diabetes, No. (%) a, e 512 (9) 442 (9) 70 (10)

Hypertension, No. (%)e 2646 (49) 2294 (48) 352 (51)

Depression, No. (%)a, f 1765 (32) 1489 (31) 276 (40)

Cognition (executive), mean (SD), ppa 12 (3) 12 (3) 11 (3)

Cognition (memory), mean (SD), ppa 15 (4) 15 (4) 12 (4)

Psychiatric diagnosis, No. (%)e 425 (8) 369 (8) 56 (8)
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the highest significant difference compared to the other 
models (Fig. 2 Panel B). The final model CoxSf included 
variables associated with higher risk: older age (haz-
ard ratio (95% confidence intervals)) (10.0 (6.9, 14.7)), 
poor hearing (1.3 (1.1, 1.5)) and weight loss (1.3 (1.1, 
1.6)). Executive function (0.3 (0.2, 0.6)), memory func-
tion (0.03, (0.02, 0.05)), increased gait speed (0.2, (0.1, 
0.4)), vigorous physical activity (0.7, (0.6, 0.9)) and higher 
BMI (0.4 (0.2, 0.8)) were associated with a lower ND risk 
(Fig. 2 Panel C). The DNNs models were generated with 
the described methodology.

The performance of the models from the highest to 
the lowest Uno’s C-statistic was (mean (95% confidence 
intervals) 0.757 (0.702, 0.805), 0.734 (0.694, 0.772), 
0.732 (0.689, 0.771), 0.706 (0.651, 0.752), 0.708 (0.653, 
0.754) for TabTransformer, CoxSf, CoxEn, Densenet and 
FeedForward respectively (Fig.  3 and Supplementary 
Table 3). Uno’s C-index from the TabTransformer model 
was significantly higher than the other models (Fig.  3, 
Tukey’s test adjusted p < 0.001). Uno’s C-index was not 
significantly different between CoxEn and CoxSf mod-
els (p = 0.07) and between Densenet and Feedforward 
(p = 0.13).

Figure  4 and Supplementary Tables  4 to 7 (in each 
imputed dataset) show the evolution of the time-
dependent measures over time (time-dependent AUC, 
balanced-accuracy, sensitivity and specificity at 4, 8, 10 
and 12 years of follow-up). TabTransformer shows better 
balance accuracy, specificity and much better sensitivity 
after 8 years than the other models.

Using time-dependent AUC the best model was the 
CoxSf in the 8th year of follow-up, All models showed 
the highest AUC in the 8th year of follow-up and were 
(mean (95% confidence intervals)) 0.894 (0.874, 0.913), 
0.892 (0.872, 0.912), 0.870 (0.845, 0.894), 0.874 (0.849, 
0.898), and 0.884 (0.863, 0.905) for CoxSf, CoxEn, 
Densenet, FeedForward and TabTransformer respectively 
(Supplementary Table 4 and Fig. 4). In the 12th year, all 
models showed a decrease in AUC values (mean decrease 
between 10 and 12th year: 10.1%).

The best-balanced accuracy values were observed in 
the 4th year. They were (mean (95% confidence inter-
vals)) 0.833 (0.780, 0.888), 0.828 (0.775, 0.884), 0.819 
(0.761, 0.877), 0.816 (0.762, 0.873) and 0.834 (0.779, 
0.889) for CoxEn, CoxSf, FeedForward, Densenet and 
Tabtransformer respectively (Supplementary Table 5 and 

Fig. 2  Cox model with selected features and pooled Cox regression model of new events of neurodegenerative diseases. Panel A: The number 
above the columns shows the number of features appearing in different numbers of imputed datasets (from 30 to 40). Seven variables appeared 
in 32 to 40 imputed datasets, 8 variables in 31 datasets and 9 variables in 30 datasets. Panel B: P values from the Wald test on the pooled Cox 
regression models with different numbers of variables. P values < 0.05 are shown in bold. The model with eight variables showed the most 
significant difference (smallest p value) compared to the other models. Panel C: Hazard ratios and 95% confidence intervals in Cox regression 
model with eight selected variables (CoxSf ) pooled according to the Rubin’s rules. All the selected variables were significantly associated with 
neurocognitive disorders
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Fig. 4). In the 12th year, all models showed a decrease in 
balanced accuracy values (mean decrease between 10 
and 12th year: 9.5%).

The highest sensitivity values were in the 4th year of 
follow-up. They were (mean (95% confidence intervals)) 
0.832 (0.716 0.949), 0.833 (0.704, 0.957), 0.834 (0.688, 
0.966), 0.837 (0.686, 0.965) and 0.818 (0.688, 0.936) for 
CoxSf, CoxEn, FeedForward, Densenet, and TabTrans-
former respectively (Supplementary Table  6 and Fig.  4). 

In the 12th year, all models decreased balanced accuracy 
values (mean decrease between 10 and 12th year: 16.1%).

The best specificity value was obtained in the 4th year 
by TabTransformer (0.855 (0.0.773, 0.909)). The high-
est specificity values were observed in the 10th year in 
the other models. They were (mean (95% confidence 
intervals)) 0.847 (0.754, 0.909), 0.840 (0.755, 0.903), 
0.808 (0.716, 0.882), 0.811 (0.723, 0.883), 0.823 (0.754, 
0.887), for CoxEn, CoxSf, FeedForward, Densenet and 

Fig. 3  Assessing the models for predicting new events of neurodegenerative diseases from 2004 to 2005 to 2016–2017. The English Longitudinal 
Study of Ageing. Bootstrapping results of the mean (and 95% confidence intervals) of Uno’s C-statistics on the 40 imputed test datasets. Panel 
A shows Cox regression model with eight selected variables (CoxSf ). Panel B shows Elastic Net regularised Cox regression model (CoxEn). 
Panel C shows FeedForward neural network model (Feedforward). Panel D shows DenseNet neural network model (Densenet). Panel E shows 
TabTransformer neural network (tabTrans). Panel F The difference of Uno’s C-statistic among the five models was significant (Tukey’s test adjusted 
p < 0.001)
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TabTransformer respectively (Supplementary Table  7 
and Fig. 4).

We found that the TabTransformer showed a slightly 
wider separation between the validation and test curves 
compared with the Densenet and FeedForward models, 
which suggests that TabTransformer could experience 
more overfitting than the other models (Supplementary 
Fig. 5).

All models showed a stable variation of confidence 
intervals in the bootstrapping. However, TabTransformer 
tends to have slightly more irregular sizes of confidence 
intervals than the other models (Fig. 3).

The most critical features represented in the three 
DNNs were: age, memory function index, and vigorous 

physical activity (First row, Supplementary Fig. 6). Older 
age, lower values of memory function and a low reported 
vigorous physical activity were associated with a higher 
risk of NDs. Inversely, younger age, higher values of 
memory function and highly reported vigorous physi-
cal activity were associated with a lower risk of NDs. The 
highest impact for the models was older age and lower 
values of memory function (See second row, Supple-
mentary Fig. 6). In addition, in Supplementary Fig. 7, we 
show which variables are present in more than one of all 
models (DNN and CoxSf). Age, memory function index 
and vigorous physical activity were present in all models. 
Poor hearing, gait speed and weight loss were present 
in three of four models. Chair rise outcome, executive 

Fig. 4  Time-dependent assessment of models predicting new events of neurodegenerative diseases. The curves represent the evolution of the 
performance assessed with time-dependent AUC, balanced accuracy, sensitivity and specificity for each of the five models. Panel A: The average of 
AUC from 40 imputed test datasets in 4, 6, 8, 10 and 12 years after the enrolment. Panel B: The average of balanced accuracy from 40 imputed test 
datasets in 4, 6, 8, 10 and 12 years after the enrolment. Panel C: The average of sensitivity from 40 imputed test datasets in 4, 6, 8, 10 and 12 years 
after the enrolment. Panel D: The average of specificity from 40 imputed test datasets in 4, 6, 8, 10 and 12 years after the enrolment
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function index, literacy score, measured hypertension 
and sleep quality were present in two of four models.

Discussion
This study found that the TabTransformer compared to 
other DNN (Densenet and FeedForward) and regularized 
Cox models showed a superior discriminative ability to 
predict NDs events in an older general population. Due 
to the attention-based layers, TabTransformer performs 
well with heterogeneous data, particularly in managing 
categorical input, which is not the case with other neu-
ral networks [18]. In time-dependent assessment, Tab-
Transformer, compared to the other models, performed 
similarly in AUC and balanced accuracy, slightly worse 
in sensitivity and better in specificity at the 4th and 6th 
years of follow-up. The prediction of NDs in the mid and 
long term is relevant because these conditions have long 
prodromal periods.

To our knowledge, this is the first time that Tabtrans-
former was used with censored data and multiple impu-
tations for dealing with missing data for predicting an 
event in the general population.

We found that regularized CoxSf and CoxEn models 
performed better than FeedForward and Densenet. We 
used Elastic Net, an ML technique, for variable selection 
in our Cox models. Elastic Net improves the performance 
by choosing the most predictive variables, avoiding the 
issue of limiting the number of variables by the number 
of events. These findings agree with Spooner et al., which 
showed that variable selection with gradient boosting or 
Elastic Net improved the performance of Cox models 
[13].

A previous study has investigated prediction models of 
NDs. This study compared Cox models with a recurrent 
DNN to predict AD and found that the models with pre-
dictors as repeated measures performed better (C statis-
tics =0.910) [37]. We observed a lower performance than 
that obtained by Kim et al., which may be due to different 
characteristics of the sample and because our outcome 
was a composite of PD, AD and dementia.

Another study proposed a wide-deep neural network to 
predict progression from mild cognitive impairment to 
Alzheimer’s disease and had a C index = 0.78 [38]. This 
analysis combined a deep component (image as input) 
with complex latent analysis and a linear component (cat-
egorical data). They used a loss function to consider that 
data were censored and had a loss to follow-up. Although 
our objective was to predict neurodegenerative disease 
and not the transition, we used the same methodology, 
the use of a loss function, which is an extension of Cox 
proportional hazard models [39], for dealing with right 
censored events.

Cremers et al. validated a disease state index in a gen-
eral population cohort to predict cognitive decline. They 
found that the best predictor was chronological age [40]. 
The model’s performance was an AUC = 0.78 for all 
included variables (images, epidemiologic and genetic 
data). We also found that chronological age was the best 
predictor in the CoxSf model and we had a similar dis-
criminative ability to predict NDs.

We found that self-reported poor hearing was one of 
the final predictors for NDs in the CoxSf model. A case-
control study in Taiwan showed a 39% higher risk of AD 
in those participants with hearing loss [41]. Some pos-
sible mechanisms that could explain this association are 
decreased cognitive stimulation due to an acoustically 
impoverished environment and a critical interaction of 
hearing loss with cognitive function in the medial tempo-
ral lobe [42]. In PD, hearing loss is recently considered as 
another non-motor symptom [43]. A study showed that 
people with hearing loss have a 77% higher risk of devel-
oping PD [44].

We found that a higher BMI was associated with a 
lower NDs risk. While some studies show an associa-
tion between obesity in middle age and a higher risk of 
dementia, other studies show that being overweight is 
protective of cognition in older people [45]. A recent 
meta-analysis found that the pooled hazard ratio (95% 
confidence intervals) for PD in underweight participants 
was 1.20 (1.10, 1.30), for dementia in underweight and 
overweight participants was 1.23 (1.05, 1.45) and 0.88 
(0.83, 0.94), respectively [46].

We observed that weight loss was associated with a 
higher NDs risk. A study including 2,815,135 participants 
from the general population and free of PD at the base-
line, showed a prospective association of variations of 
weight loss and incidence of PD [47]. Weight loss is also 
associated with a higher risk of AD (45)32. The probable 
reason for this association is that weight loss may indi-
cate illness.

Our results confirm the association of lower gait speed 
with NDs [48]. A study with 8699 participants over 
60 years showed an increased risk of developing demen-
tia when simultaneously decreased gait-speed and cogni-
tion (pooled hazard ratio, 6.28 [95% CI, 4.56–8.64]) [49]. 
A possible explanation may be the shared brain areas of 
cognition and mobility [50].

Memory function was the second most important fea-
ture analysed with SHAP after age for all DNN models 
and showed, in addition, the strongest protective associa-
tion for NDs in the CoxSf model. We found that mem-
ory function was the best predictor of NDD after age, 
and its association with NDDs events was more robust 
than that observed with executive function. The possible 
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explanation could be differences in whether memory or 
executive function precede each other in the onset of 
NDs [51].

We also found that self-reported vigorous physical 
activity was associated with a lower incidence of NDs. 
Our findings are in line with previous studies. The pos-
sible mechanisms related to these potential neuropro-
tective effects of physical activity for preventing NDs are 
reducing neuro-inflammation, insulin resistance, stress 
and anxiety [52].

Goerdten et  al. performed a systematic review of sta-
tistical methods for dementia prediction. They described 
the most common weakness of studies on dementia 
prediction [53]. One of the weaknesses in prediction 
with ML studies was the use of data from populations 
with a more significant proportion of cases. Our study’s 
data source is a representative sample of older people in 
England. Therefore, it was not oversampled with cases. 
Another issue of many studies was the poor assump-
tion of the Cox models. Again, our analysis verified these 
assumptions. Finally, they described the lack of external 
validation. In this latter case, this study was not validated 
in a different dataset.

The feature importance results showed features in com-
mon with the three DNNs and Cox models. In all mod-
els (DNNs and CoxSf), memory function and vigorous 
physical activity were the most crucial variables to pre-
dict NDs after age. In the case of memory function index, 
the best association with the outcome was with a lower 
memory function index associated with a higher risk of 
NDs rather than a high value associated with a lower risk, 
which suggests the importance of reporting lower mem-
ory index values in the population at risk of NDs. Nota-
bly, vigorous physical activity was one of the ten features 
in the DNNs models. These results agree with studies 
on preventing Parkinson’s [54] and Alzheimer’s disease 
[55]. The mechanisms are likely due to a lower decline 
in microstructural brain temporal areas [56]. Moreover, 
other features assessing physical functioning were rep-
resented in the models, such as gait speed and chair rise 
outcome, which supports the role of physical functioning 
in evaluating the risk in the general older population.

Our study has several strengths, as (i) we analysed the 
ELSA study, which is high quality and well-suited for our 
objectives, (ii) we analysed three DNNs models using a 
reproducible methodology and (iii) the model assess-
ment was comprehensive, including time-independent 
and time-dependent measures, overfitting, stability and 
robustness.

This study has some limitations. We could not analyse 
the outcomes separately to achieve acceptable robust-
ness due to the available sample size and the number of 
ND events in the ELSA study. Therefore, the selected 

features are a proportion of the selected diseases. The 
consequence is that our model is only applicable in the 
general older population with an equal balance of the 
analysed NDs. In addition, there was a loss to follow-up, 
and we had no information about its causes. However, 
we used methods to deal with this issue (Cox models and 
loss function in NL models). Another limitation was that 
the predictors and the outcome were self-reported, and 
therefore, recall bias may be an issue. Another issue was 
that independent evaluations using other data sets or 
populations were not performed and are needed. Further 
limitations are that we analysed only baseline informa-
tion and no time-varying predictors and did not add a 
calibration measure for the prediction models.

Future research should focus on the external valida-
tion of these algorithms in larger datasets and combining 
different features from genetic data, surveys, images and 
sound.

Conclusions
We demonstrated that it is possible to predict NDs in 
the older general population and that performance of 
Tabtransfomer seems better than other NDD for tabular 
data. TabTransformer, a type of DNN, can be an alter-
native to Cox models for predicting ND in population 
cohort studies and is more suited for numerous features. 
In contrast, Cox models are easier to interpret but chal-
lenging to implement with many candidate predictors. 
TabTransformer combines the advantages of other struc-
tures such as convolutional and recurrent networks and 
improves modelling by considering the surrounding con-
text. Moreover, it can integrate categorical input in addi-
tion to numerical features and handle a loss to follow-up 
and participants’ dropout because it is modelled. These 
characteristics make this structure promising for com-
plex, heterogeneous data survival analyses where there 
are numerous features than can be considered potential 
predictors. Tabtransformer could be applicable and the 
preferred choice over Cox models for combining tabular 
and not tabular data (for example, images).
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