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Abstract 

Background  Diagnostic tests are important in clinical medicine. To determine the test performance indices — test 
sensitivity, specificity, likelihood ratio, predictive values, etc. — the test results should be compared against a gold-
standard test. Herein, a technique is presented through which the aforementioned indices can be computed merely 
based on the shape of the probability distribution of the test results, presuming an educated guess.

Methods  We present the application of the technique to the probability distribution of hepatitis B surface antigen 
measured in a group of people in Shiraz, southern Iran. We assumed that the distribution had two latent subpopula-
tions — one for those without the disease, and another for those with the disease. We used a nonlinear curve fitting 
technique to figure out the parameters of these two latent populations based on which we calculated the perfor-
mance indices.

Results  The model could explain > 99% of the variance observed. The results were in good agreement with those 
obtained from other studies.

Conclusion  We concluded that if we have an appropriate educated guess about the distributions of test results 
in the population with and without the disease, we may harvest the test performance indices merely based on the 
probability distribution of the test value without need for a gold standard. The method is particularly suitable for con-
ditions where there is no gold standard or the gold standard is not readily available.
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Background
Diagnostic tests are important means for the diagnosis 
of diseases. The reference range of a given marker, the 
test sensitivity (Se, the probability that a diseased person 

becomes test-positive) and specificity (Sp, the probabil-
ity that a disease-free person becomes test-negative) are 
important test performance characteristics [1]. Positive 
and negative likelihood ratios (LRs) are other test per-
formance indices used in clinical decision making [2]. 
Depending on the prior probability (prevalence, if no 
other information is available) of the disease (pr), posi-
tive (PPV) and negative (NPV) predictive values (the 
probabilities that a person with a positive and negative 
test results has the disease or not, respectively) are two 
other important test performance indices very useful for 
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clinicians. Area under the receiver operating characteris-
tic (ROC) curve (AUC) and number needed to misdiag-
nose (NNM) are other indices [3, 4].

No matter whether the test result is dichotomous 
(binary results, positive or negative) or continuous 
(where we need to use a cut-off value [also depending on 
the pr] to dichotomize the result) [4], measuring all the 
above-mentioned indices requires comparing our test 
results against the results of a gold-standard test. For cer-
tain disease conditions such as prostate cancer, we have a 
well-defined pathological definition of the disease and the 
gold-standard test is thus available. There is however, no 
gold-standard test for the diagnosis of some diseases, as 
an example, latent tuberculosis infection [5]. Hyperten-
sion is another example — it is in fact not a well-defined 
disease; we just know that those with higher blood pres-
sure carry a higher risk of mortality and morbidity and 
thus we redefine the definition of hypertension periodi-
cally to minimize the risk incurred [6]. Sometimes, there 
is a gold standard, but it is invasive and costly or out of 
reach of many people, for example, pulmonary angiog-
raphy for the diagnosis of pulmonary emboli [7]. Herein, 
we would like to present a method that can possibly 
compute the above-mentioned test performance indices 
merely based on the shape of the test results distribu-
tion, without any need for a gold-standard test. We also 

present the results of application of the method to a data-
set of hepatitis B surface antigen (HBs Ag) measured in a 
representative sample of people residing in Shiraz, south-
ern Iran.

Theoretical background
Suppose that we know the probability distribution of a 

diagnostic marker in a group of disease-free and diseased 
people in a representative sample of a population (Fig. 1).

Knowing the distribution of the marker in disease-free 
people (gray curve, Fig.  1), we can easily determine the 
reference range of the marker, commonly defined as the 
interval between the 2.5th and 97.5th percentiles of the 
distribution of the marker (the interval between the ver-
tical solid lines, Fig. 1) in a healthy population [8].

Let set a cut-off value of d (the vertical dashed line, 
Fig.  1). Then, any test value ≥ d is considered a positive 
test result (T +), and according to the definition, the Se 
is [4]:

where f2(x) is the probability density function of the 
marker distribution in diseased people (Fig.  1) [4]. In a 

(1)Se(d) =

+∞

d

f2(x) dx

Fig. 1  Probability distribution of a diagnostic marker (x) with continuous values (arbitrary unit) in disease-free (gray curve) and diseased (red curve) 
populations. Vertical solid lines outline the reference range of the marker values in the disease-free population. Any value equal to or greater than 
the cut-off value (the vertical dashed line) is considered test-positive; otherwise, it is test-negative. The pink area is equivalent to the sensitivity (Se); 
the blue area, specificity (Sp) [4]. Note that the curves are density functions (area under each curve is equal to 1)
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similar way, if f1(x) is the probability density function of 
the marker distribution in the disease-free people (Fig. 1), 
it can be shown that the Sp of the marker is [4]:

There is a trade-off between the test Se and Sp. Given 
the test Se and Sp corresponding to each cut-off value, 
we can construct an ROC curve which is a graphical 
representation of this trade-off [4]. Knowing the prob-
ability distributions ( f1 and f2, Fig. 1), we can also com-
pute the likelihood ratios (LRs) for a certain value of the 
marker, say x = r as follows [2]:

where D + and D – represent presence and absence of the 
disease. We may also calculate the LR for a range of the 
marker value, say for values between s and r, using the 
Eq. [2]:

and for a positive and negative test results [2], assuming a 
cut-off value of d:

(2)Sp(d) =

d
∫

−∞

f1(x) dx

(3)LR(r) =
P
(

x = r|D+
)

P
(

x = r|D−
) =

f2(r)

f1(r)

(4)LR(�) =
P
(

s � x < r|D+
)

P
(

s � x < r|D−
) = −

Se(r)− Se(s)

Sp(r)− Sp(s)

Using the theory of finite mixture model, we may com-
bine the two above-said distributions of the marker in 
the disease-free and diseased populations with different 
weights to construct the distribution of the marker in 
the general population [9]. For example, if we combine 
the two distributions with weights of 0.85 and 0.15 (cor-
responding to a disease pr of 15%), we would compute 
the probability distribution of the marker in the general 
population (Fig. 2, the yellow curve) using the following 
equation:

Reversing the process
Suppose that we have the distribution of a diagnostic 
marker in the general population (i.e., the yellow curve, 
Fig. 2). If we have a biologically plausible educated guess 
about the number and shape of the latent subpopula-
tions (in our example, two components of disease-free 
(gray curve, Fig. 2) and diseased (red curve, Fig. 2) sub-
populations), we may find the subpopulations. If we 

(5)
LR(+) =

P
(

x � d|D+
)

P
(

x � d|D−
) =

Se(d)

1− Sp(d)

LR(−) =
P
(

x < d|D+
)

P
(

x < d|D−
) =

1− Se(d)

Sp(d)

(6)Density = 0.85 f1(x)+ 0.15 f2(x)

Fig. 2  Probability distribution of the marker in the general population (yellow curve). The distribution was computed by mixing the two 
components using a weight of 0.85 for disease-free and 0.15 (i.e., pr) for diseased distributions (Eq. 6).
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succeed, we can then compute all the test performance 
indices, as described above. Let us examine the method 
through its application to the distribution of HBs Ag 
in a representative sample of people residing in Shiraz, 
southern Iran.

Methods
Source of data
We analyzed the HBs Ag values taken from the database 
of a general clinical lab in Shiraz, southern Iran. The lab 
performs an average of 9000 tests each day on samples 
taken from about 850 people referred to the lab in dif-
ferent health states coming from various parts of Fars 
province. Data were those measured in samples received 
between March 2019 and March 2021 using electro-
chemiluminescence immunoassay (Elecsys HBsAg II, 
cobas® e 411 analyzer, Roche Diagnostics, Switzerland). 
The measured HBs Ag was reported as cut-off index 
value, equal to test signal/cut-off.

Statistical analysis
R software version 4.2.0 (R Project for Statistical Com-
puting) was used for data analysis. To eliminate outli-
ers, we only included the samples having HBs Ag values 
between 0.05 and 1.2. Using the default values of the R 
density function, the probability density curve for the 
HBs Ag values was constructed. The function uses by 

default a Gaussian kernel, 512 bins, and a bandwidth cal-
culated according to the Silverman’s rule [10].

Educated guess
Examination of the probability distribution of HBs Ag 

obtained from our dataset (green curve, Fig. 3), revealed 
that we may assume that there were two latent subpopu-
lations — one for those without the disease, and another 
for patients with the disease. Visual examining the distri-
bution of HBs Ag implied that it might be a mixture of 
at least two normally distributed latent subpopulations. 
We used fviz_nbclust function from factoextra R package 
and clara function from cluster package to determine the 
optimal number of latent subpopulations (eFig 1, Sup-
plementary Materials), which confirmed the presumed 
number of two subpopulations. The functions also pro-
vided the first estimates for initializing the curve fitting 
function. We thus assumed a Gaussian mixture model 
with two components with the following parametric 
equation [11]:

where, µ1, σ1, µ2, and σ2 represent mean and the standard 
deviation (SD) of HBs Ag in the disease-free and diseased 

(7)
y(x) = (1− pr)N

(

µ1, σ
2
1

)

+ prN
(

µ2, σ
2
2

)

=
(1− pr)

σ1
ϕ

(

x − µ1

σ1

)

+
pr

σ2
ϕ

(

x − µ2

σ2

)

Fig. 3  Probability distribution of HBs Ag in the studied population (green curve), and the two Gaussian components derived from curve fitting 
procedure. The gray curve is the distribution of HBs Ag in disease-free population; the red curve, diseased population; and the yellow curve is the 
superposition of the two curves, the best fit to the probability distribution of HBs Ag (the green curve)
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people, respectively; pr represents the prior probability 
(prevalence, if no other information is available) of the 
disease; and φ represents the probability density function 
of the Gaussian distribution.

A nonlinear curve fitting function (nlsLM from min-
pack.ml package for R) was used to compute the opti-
mal values of parameters of a binormal equation (Eq. 7) 
best fit to the probability distribution. The function 
works based on the Levenberg-Marquardt nonlinear 
least-squares algorithm [12]. Constraints were imposed 
on the parameters σ1, and σ2 in Eq. 7 — they could only 
assume non-negative values; pr, the prior probability (or 
the prevalence) of the disease, could only assume values 
between 0 and 1, inclusive.

Having the distributions’ parameters, we can then cal-
culate all the test performance indices — the reference 
range, and test Se, Sp, and LRs. Assuming a binormal dis-
tribution (Eq. 7), then Eqs. 1 and 2 become:

and

where Φ represents the cumulative distribution func-
tion of the standard normal distribution. We can con-
struct the ROC curve and calculate the AUC. The prior 
probability of the disease (pr) can be directly derived 
from the fitting procedure. Given the pr, we may also cal-
culate the PPV and NPV [11].

Results
The studied dataset included 14 222 records. Excluding 

records with HBs Ag ≤ 0.05 (considered the lower limit 
of detection of the assay in our lab) or > 1.2 (leading to 

(8)

Se(d) =

+∞
∫

d

f2(x) dx

=
1

σ2

+∞
∫

d

ϕ

(

x − µ2

σ2

)

dx

= 1−�

(

d − µ2

σ2

)

(9)

Sp(d) =

d
∫

−∞

f1(x) dx

=
1

σ1

d
∫

−∞

ϕ

(

x − µ1

σ1

)

dx

= �

(

d − µ1

σ1

)

omission of the highest 1% of the data), left 9698 records 
for analyses. There were 5777 (59.6%) samples taken from 
females and 3921 (40.4%) from males. The mean age of 
study participants was 36 (SD 12) years. The probability 
distribution of HBs Ag had a clear bimodal distribution 
(green curve, Fig. 3). The technique used could correctly 
identify the two latent Gaussian subpopulations — one 
with a mean of 0.38 (SD 0.10) for disease-free people 
(gray curve, Fig. 3), another with a mean of 0.72 (0.05) for 
diseased people (red curve, Fig.  3). The reference range 
for HBs Ag was thus between 0.18 and 0.58 (µ1 ± 1.96 σ1, 
assuming the Gaussian distribution of the results; the 
region outlined by the two vertical solid lines, Fig. 3). The 
cut-off value corresponding to the maximum Youden’s J 
index (Se + Sp – 1) was 0.59 (vertical dashed line, Fig. 3) 
[4]. This cut-off value corresponds to a Se and Sp of 99.1% 
and 98.2%, respectively (Fig. 4).

The model could explain almost all the observed variance 
in the HBs Ag distribution (r2 =  0.997). The pr derived 
from the curve fitting on the subset of data (after omitting 
the outliers) was 11.6%, however, taking all the data into 
account, the pr corresponding to a cut-off value of 0.59 
was 10.1%. The pr corresponding to a cut-off value of 0.9, 
the value suggested by the manufacturer of the diagnostic 
kit, was 1.2%. The cut-off corresponds to a Se near to zero 
(many false-negative results) and a Sp of almost 1 (no false-
positive result).

Different types of LRs can be calculated — for a certain 
HBs Ag value (Fig. 5), for a given range of HBs Ag, and for 
a positive or negative test result. For example, according to 
Eq. 3, LR(HBs Ag = 0.7) is:

which means that the likelihood of observing an HBs Ag 
value of 0.7 is 260 times more likely to be observed in a 
diseased person as compared with a disease-free person 
(Fig. 5) [2].

To compute the LR for an interval of the test results, say 
0.6 ≤ HBs Ag < 0.7, we need to first calculate the Se and Sp 
corresponding to these values (Eq. 4), which can be done 
easily using Eqs. 8 and 9. The Se and Sp corresponding to 
a cut-off value of 0.6 is 98.7% and 98.5%, respectively; the 
values are 64.6% and 99.9%, respectively, for a cut-off of 0.7. 
Then:

(10)

LR(0.7) =
P
(

HBs Ag = 0.7|D+
)

P
(

HBs Ag = 0.7|D−
) =

f2(0.7)

f1(0.7)

=

1
σ2
ϕ

(

0.7−µ2
σ2

)

1
σ1
ϕ

(

0.7−µ1
σ1

)

=
6.91

0.03
≈ 260
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which means that the likelihood of observing an HBs 
Ag between 0.6 and 0.7 is 24 times more likely to be 
observed in a diseased person as compared with a dis-
ease-free person [2]. Finally, substituting the values for Se 
and Sp corresponding to a cut-off value of 0.59 in Eq. 5, 
the positive and negative LR are approximately 55 and 
0.01, respectively [2].

Assuming a cut-off of 0.59 (which corresponds to a pr 
of 10.1% in whole population), provides a PPV of 86% 
(the probability of presence of the disease if the test is 
positive), NPV of almost 100% (the probability of absence 
of the disease if the test is negative), and an NNM of 58.

Discussion
Using the presented method, we could harvest the test 
performance indices for a diagnostic test (in our exam-
ple, HBs Ag) merely based on the shape of the frequency 
distribution of a biomarker with an acceptable accuracy, 
provided that we have an educated guess about frequency 
distributions of the test values in those with and without 

(11)

LR(�) =
P
(

0.6 � HBs Ag < 0.7|D+
)

P
(

0.6 � HBs Ag < 0.7|D−
) = −

�Se

�Sp

= −
64.6− 98.7

99.9− 98.5
≈ 24

the disease. The cut-off value of 0.59 derived from our 
model was less than that commonly used in practice. The 
manufacturer suggests that HBs Ag values < 0.9 be inter-
preted as non-reactive (negative test result); those > 1.0, 
positive; and those between 0.9 and 1.0, borderline or 
equivocal. The pr corresponding to a cut-off value of 0.9, 
the value suggested by the manufacturer of the diagnostic 
kit, was 1.2%, consistent with the pr of HBs Ag reported 
in various seroepidemiologic studies conducted in Shi-
raz, Fars province [14–16]. The cut-off corresponds to a 
Se near to zero (many false-negative results) and a Sp of 
almost 1 (no false-positive result) and it seems that the 
cut-off value of 0.59 derived by our model (correspond-
ing to a Se and Sp of 99.1% and 98.2%, respectively) is 
more reasonable (Fig. 4).

Seroprevalence studies commonly use diagnostic tests 
that are not perfect — the results may be false-positive 
or false-negative. Therefore, the pr calculated is just 
the apparent prevalence, not the true prevalence [17]. 
The important thing to be noted is that the pr derived 
through the method presented in this paper gives the 
true prevalence, not the apparent prevalence [18], which 
is an advantage of the metho presented.

This LR corresponding to each HBs Ag value is in fact 
the slope of the line tangent to the ROC curve at the 
point corresponding to that HBs Ag. This value could not 

Fig. 4  Receiver operating characteristic (ROC) curve constructed based on our dataset. The orange point corresponds to a cut-off value 0.59. The 
area under the curve (AUC), calculated according to DeLong, et al. [13], was 0.998
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usually be calculated readily in practice because the ROC 
curve is typically constructed based on a finite number of 
discrete values — the curve is thus not differentiable and 
the slope of the tangent line cannot be computed [2, 4]. 
Finding the parameters of the distribution components 
( f1 and f2) through curve fitting enables us to directly cal-
culate the slope and thus, the LR (Fig. 5), which is another 
advantage of the method proposed.

A cut-off value of 0.59, derived by the model, gave a 
PPV of 86%, an NPV of almost 100%, and an NNM of 58, 
which means that in average, one out of 58 independent 
tests performed would be either false-positive or false-
negative [3]. Given that the NPV is almost 100%, there 
would be no false-positive. Therefore, a false result is 
most likely false-negative.

The method has been applied to distributions of other 
biomarkers including the prostate-specific antigen and 
antibody against severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) with very good results [11, 18]. 
The only difference was that in previous works the vari-
ables were transformed to give a better fit result; for HBs 
Ag, no transformation was necessary.

The method presented heavily relies on the educated 
guess used in constructing the model. The shapes of the 

probability distributions of the latent subpopulations 
(not necessarily the same; they may have two completely 
different distributions) should be reasonable and biologi-
cally plausible. We may figure out the optimum number 
of latent subpopulations (as we did in our study), but 
the number ultimately chosen for the model should be 
biologically plausible too. For example, if we are going 
to study the distribution of hemoglobin in women, we 
expect to have three subpopulations — those with low 
(anemia), normal, and high hemoglobin concentration 
(polycythemia). Finally, it is important to emphasize that 
a model is neither correct nor wrong; it may be good or 
bad. A good model may be but not necessarily correct.

Conclusion
Based on the technique presented we could compute all 
test performance indices with clinically acceptable accu-
racy merely based on the distribution of the test value 
without the need for a gold-standard test. This technique 
could be of particular importance for disease conditions 
where no clear pathologic definition has been provided 
(e.g., hypertension). A diagnostic test is technically a 
binary classifier. The technique presented can have a 
wide range of applications in many scientific fields.

Fig. 5  Likelihood ratio (LR) corresponding to each value of HBs Ag. The vertical dashed line corresponds to an HBs Ag of 0.7. Note that the y axis has 
a logarithmic scale
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