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Abstract 

Background  There is increasing interest in clinical prediction models for rare outcomes such as suicide, psychiatric 
hospitalizations, and opioid overdose. Accurate model validation is needed to guide model selection and decisions 
about whether and how prediction models should be used. Split-sample estimation and validation of clinical predic-
tion models, in which data are divided into training and testing sets, may reduce predictive accuracy and precision of 
validation. Using all data for estimation and validation increases sample size for both procedures, but validation must 
account for overfitting, or optimism. Our study compared split-sample and entire-sample methods for estimating and 
validating a suicide prediction model.

Methods  We compared performance of random forest models estimated in a sample of 9,610,318 mental health vis-
its (“entire-sample”) and in a 50% subset (“split-sample”) as evaluated in a prospective validation sample of 3,754,137 
visits. We assessed optimism of three internal validation approaches: for the split-sample prediction model, validation 
in the held-out testing set and, for the entire-sample model, cross-validation and bootstrap optimism correction.

Results  The split-sample and entire-sample prediction models showed similar prospective performance; the area 
under the curve, AUC, and 95% confidence interval was 0.81 (0.77–0.85) for both. Performance estimates evaluated 
in the testing set for the split-sample model (AUC = 0.85 [0.82–0.87]) and via cross-validation for the entire-sample 
model (AUC = 0.83 [0.81–0.85]) accurately reflected prospective performance. Validation of the entire-sample model 
with bootstrap optimism correction overestimated prospective performance (AUC = 0.88 [0.86–0.89]). Measures of 
classification accuracy, including sensitivity and positive predictive value at the 99th, 95th, 90th, and 75th percentiles of 
the risk score distribution, indicated similar conclusions: bootstrap optimism correction overestimated classification 
accuracy in the prospective validation set.

Conclusions  While previous literature demonstrated the validity of bootstrap optimism correction for parametric 
models in small samples, this approach did not accurately validate performance of a rare-event prediction model 
estimated with random forests in a large clinical dataset. Cross-validation of prediction models estimated with all 
available data provides accurate independent validation while maximizing sample size.
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Background
There is growing interest in using prediction models 
to guide clinical care [1]. A key aspect of developing 
a clinical prediction model intended is validation, or 
assessing performance for observations outside of the 
original data used for model estimation [2]. Internal 
validation refers specifically to methods that use the 
same data available for model estimation to anticipate 
performance in new observations from the same under-
lying sample [3]. Accurate internal validation is impor-
tant to correctly guide both model selection (choosing 
an optimal model among several candidate prediction 
models) and decisions about whether and how a pre-
diction model should be used in clinical practice.

We considered the use-case of a prediction model to 
estimate suicide risk in the 90 days following an outpa-
tient mental health visit. Mental health providers are 
particularly interested in identifying patients at high 
risk of suicide at clinical encounters so that suicide 
prevention interventions can be made. In our dataset 
of over 13 million visits, suicide is a rare event—there 
are 23 events per 100,000 visits. The data also contain 
over a hundred predictors characterizing patient’s clini-
cal history, including mental health diagnoses, medica-
tions, and encounters. In this empirical evaluation, our 
goal was two-fold: first, to estimate the best possible 
suicide prediction model to optimize identification of 
high-risk patients and, second, to accurately estimate 
how well the prediction model will perform in future 
use.

Split-sample estimation and validation, in which the 
entire available sample is randomly divided into two sub-
sets, one used exclusively for model estimation (“train-
ing”) and another used for validation (“testing”), is 
common [4]. Using an independent validation set avoids 
overestimating model performance, [5] as occurs when 
performance is evaluated in the same sample used to 
the construct the model [6]. However, using only a frac-
tion of available observations exclusively for estimation 
and the remainder exclusively for validation reduces the 
statistical power of both tasks [7]. Using a smaller sam-
ple for training increases the risk that variable selection 
methods will miss an important predictor and estimated 
models will have greater variability [8]. Using a smaller 
sample for validation results in less precise estimates of 
performance [9]. Sample size limitations for estimation 
and validation are particularly important to consider 
when predicting a rare event, such as suicide.

Methods have been proposed that use the entire 
available dataset for both model estimation and vali-
dation. Using all available data for estimation requires 
validation methods that account for the potential for 
overfitting, that is, when a prediction model is accu-
rate in the sample used for estimation but not accurate 
for new observations. Overfitting causes optimism, or 
over-estimation of performance, when performance is 
assessed in the same data used for estimation. Opti-
mism is likely to be larger when the number of events 
is small relative to the number of predictors and when 
using more flexible prediction models [10, 11].

In this study, we considered two validation meth-
ods to adjust for optimism error when using the same 
sample for both prediction model estimation and vali-
dation: cross-validation and bootstrap optimism cor-
rection. Cross-validation [12] is typically employed to 
guide tuning parameter selection during the estima-
tion process, and out-of-fold predictions can also be 
used for model validation. In smaller samples or when 
the event is rare, performance estimates from each fold 
can be highly variable [13, 14], so cross-validation may 
need to be repeated (for e.g., 5 × 5-fold cross-validation 
where 5-fold cross-validation is repeated on 5 different 
splits of the dataset) to obtain stable estimates of model 
performance [13, 14].

Alternatively, some authors have advocated that 
applying an optimism correction estimated via boot-
strap sampling is the preferred method to obtain 
unbiased and efficient estimates of the predictive per-
formance of a model estimated in the entire sample [9, 
15–17]. However, demonstrations of bootstrap opti-
mism correction for continuous risk prediction have 
been limited to logistic regression models predicting 
relatively common events (prevalence at or above 1%) 
in small samples with a handful of predictors selected 
by stepwise methods [9, 18]. In this context, as sample 
size increases, both the risk of overfitting and relative 
efficiency gain from using bootstrap optimism correc-
tion over cross-validation and split-sample validation 
decline [19]. These settings do not reflect the current 
context of clinical prediction modeling in which a wide 
range of machine learning methods are used to esti-
mate prediction models with hundreds, or even thou-
sands, of predictors extracted from health records data 
on millions of patients [20].

Using the entire sample for both model estimation 
and validation is particularly appealing for predicting 
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rare events to address concerns about missing impor-
tant predictors, uncertainty in model estimation, and 
high variability in performance estimates that arise 
even in samples with millions of observations. While 
estimating a prediction model with the entire sam-
ple may result in better clinical performance, accurate 
internal validation that accounts for overfitting remains 
a concern; it is unknown whether optimism estimates 
obtained via bootstrap accurately correct for optimism 
when prediction models are constructed with data-
driven (or “data-hungry”) [21] machine learning tech-
niques with many predictors and a rare event.

We empirically evaluated spit-sample and entire-
sample methods for estimating and validating a random 
forest prediction model for risk of suicide following an 
outpatient mental health visit. Our analysis investigated 
two questions. First, we examined whether a suicide pre-
diction model estimated in the entire sample, instead 
of a subset of data, improved risk prediction as evalu-
ated in a prospective validation set. Second, we assessed 
whether three internal validation approaches adequately 
adjusted for overfitting to produce accurate performance 
estimates by comparing validation estimates from each 
approach—(1) validation in an independent testing set 
of the prediction model estimated with the split-sample 
approach and, for the prediction model estimated in the 
entire sample, (2) cross-validation and (3) bootstrap opti-
mism correction —to prospective performance.

Methods
Data
Our sample included all outpatient mental health spe-
cialty visits for patients age 13  years or older at seven 
health systems (HealthPartners; Henry Ford Health Sys-
tem; and the Colorado, Hawaii, Northwest, Southern 
California, and Washington regions of Kaiser Perma-
nente) between January 1, 2009 and September 30, 2017 
(or the latest date cause of death data were available, 
Table S1). The predicted outcome was suicide within 
90 days following the visit. Suicides were identified from 
state mortality records indicating definite or probably 
suicide [22, 23]. A person who died by suicide may have 
had multiple visits in the 90 days preceding suicide; thus, 
a single suicide may be attributed to more than one visit 
in the sample.

Predictors of suicide were extracted from clinical 
records and insurance claims data. Predictors included 
demographics (age, sex, race, ethnicity, insurance type); 
3-month, 1-year, and 5-year history of mental health 
and substance use diagnoses, prescriptions, and encoun-
ters (inpatient, outpatient, and emergency department); 
comorbidities (measured by Charlson Comorbidity Index 
categories); [24] prior suicide attempts; and responses to 

the 9-item Patient Health Questionnaire (PHQ-9), [25] 
a patient-reported measure of depressive symptoms, 
including thoughts of suicide and self-harm (Table S2). 
Calendar time is not included as a predictor of suicide 
risk, as this prediction model is intended for prospective 
use in clinical care. Additional information about data 
collection methods can be found in Simon et al. 2018 [26] 
and at www.​github.​com/​MHRes​earch​Netwo​rk.

The sample was divided into a development dataset 
containing all visits from January 1, 2009-September 
30, 2014 and a prospective validation dataset contain-
ing visits from January 1, 2015- September 30, 2017. The 
development dataset was used for prediction model esti-
mation and internal validation. The prospective valida-
tion dataset was used to evaluate future performance of 
prediction models estimated in the development dataset; 
we used this set-up to reflect predictive performance if 
models were applied in the same population and setting 
later in time [2].

Prediction model estimation and validation
First, we describe the general methodology we used to 
estimate random forest models with our dataset. We then 
describe the different approaches we evaluated for esti-
mating prediction models and validating performance.

Random forest prediction models
We used random forest models to estimate the prob-
ability of 90-day suicide [27]. Random forests have two 
hyperparameters that we selected for estimation: the 
minimum terminal node size, which dictates how deep 
each tree grows, and the number of predictors randomly 
selected for consideration at each split. Optimal mini-
mum terminal node size depends on sample size, so we 
considered different parameter values for the split-sample 
training set (10,000, 25,000, 50,000, 100,000, and 150,000 
visits) and for model estimation with the entire sample 
(50,000, 100,000, 250,000, and 500,000 visits). For num-
ber of predictors selected at each split, we considered 11 
predictors; this is the square root of the total number of 
predictors in the dataset (rounded down), the recom-
mended default for classification trees [11]. We also con-
sidered 22 and 5 predictors, twice and half as many as the 
recommended default, respectively. With each sample 
used for model estimation, 5-fold cross-validation was 
used to select the tuning parameter combination that 
optimized out-of-fold area under the curve (AUC), Table 
S3 [28]. Additional specifications of random forest pre-
diction models are described in supplementary materials.

Evaluation of prediction model performance
We selected measures of prediction model performance 
that reflected how our health system partners plan to use 

http://www.github.com/MHResearchNetwork
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suicide prediction models to inform mental health care. 
From our experience, health system leaders choose a 
threshold of the continuous risk score to classify patients 
as “high-risk” (i.e., risk score at or above the threshold). 
Suicide prevention interventions are then offered at vis-
its classified as high-risk. To evaluate possible thresh-
olds, health system stakeholders need to know whether 
each binary categorization of risk scores identifies people 
in need of suicide prevention (sensitivity) while limiting 
unnecessary interventions (specificity). At each thresh-
old, the intensity and cost of suicide prevention inter-
ventions must also be balanced against the event rate 
in those flagged as high-risk (positive predictive value 
[PPV]). Thresholds are selected based on classification 
accuracy as well as health system capacity and interven-
tion effectiveness.

To inform health system decisions about whether and 
how to implement a suicide prediction model, we focus 
prediction model evaluation on measures of classification 
accuracy (sensitivity, specificity, and PPV) at thresholds 
under consideration—the 99th, 95th, 90th, and 75th per-
centiles of the suicide risk score distribution. (Negative 
predictive value [NPV] was not included in our presenta-
tion; because suicide is a rare event, NPV is nearly one at 
all percentiles examined). Prediction model performance 
was also evaluated using area under the curve (AUC), 
as this measure summarizes sensitivity and specificity 
across the range of all possible thresholds.

Split‑sample prediction model estimation and internal 
validation
For the split-sample approach, we divided the develop-
ment dataset into a training set containing all visits from 
a random sample of half of the people in the dataset. All 
visits from the remaining 50% comprised the testing set 
used for internal validation. 5-fold cross-validation was 
done in the training set to identify the tuning parameter 
combination that optimized out-of-fold AUC. After tun-
ing parameters were selected, the final split-sample pre-
diction model was estimated with all visits in the training 
set.

The split-sample prediction model was then applied to 
obtain suicide risk predictions for all visits in the testing 
set. AUC and classification accuracy of the split-sample 
prediction model was evaluated in the testing set Clas-
sification accuracy was calculated for thresholds defined 
at percentiles of the suicide risk prediction distribution 
in the training set (that is, they were determined inde-
pendently of the distribution of predictions in the test-
ing set). We constructed 95% confidence intervals (CIs) 
of performance measures in the testing set via 1,000 
bootstrap samples [16]. Bootstrap resampling was done 
at the person-level [29] and stratified by event status 

(person with suicide following any visit vs. person with-
out suicide).

Entire‑sample prediction model estimation and internal 
validation
All visits in the development dataset were used for the 
entire-sample prediction model estimation and internal 
validation. 5-fold cross-validation within the entire devel-
opment dataset was used to identify the tuning param-
eter combination that optimized out-of-fold AUC. The 
final entire-sample prediction model was estimated using 
all visits in the development sample and the selected tun-
ing parameters.

Cross‑validation for internal validation
Cross-validation was used to estimate entire-sample 
model performance. Following cross-fold validation to 
select the optimal tuning parameters for the entire-sam-
ple prediction model, out-of-fold predictions for chosen 
hyperparameters were saved. Performance metrics were 
calculated in the out-of-fold predictions. For measures 
of classification accuracy, prediction thresholds were 
defined in the distribution of in-sample predictions in 
the entire development sample. Quantile-based 95% CIs 
around performance measures were estimated in 500 
event-stratified person-level bootstrap samples. (Boot-
strapping resampling was only repeated 500 times for 
both entire-sample validation methods to reduce compu-
tational burden. Moving estimates of the mean and 95% 
CI were monitored to ensure estimate stability, Figs. S1, 
S2).

Bootstrap optimism correction for internal validation
Bootstrap sampling was also used to produce optimism-
corrected estimates of all validation metrics. [9] Let m0 
denote the entire-sample prediction model and s0 denote 
all visits in the development dataset. Within each boot-
strap sample, s(b) , a random forest prediction model for 
suicide, m(b) , was estimated using the tuning parameters 
selected by cross-validation for the entire-sample model. 
Then, the optimism of each within-sample performance 
measure was calculated as follows, using AUC as an 
example:

where AUC(m, s) is the AUC of model m evaluated 
in sample s . For measures of classification accuracy, 
thresholds were defined at specified percentiles of the 
distribution of in-sample risk predictions for s0 in the 
entire-sample model when evaluating performance of 
m0 and with respect to the distribution of in-sample risk 

Optimism
(b)
AUC = AUC m(b)

, s(b) − AUC(m(b)
, s0)
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predictions for s(b) when evaluating the performance of 
the prediction model m(b).

A total of B = 500 event-stratified person-level boot-
strap samples were drawn from the development dataset. 
Optimism-corrected estimates were then calculated for 
each performance metric. For example, the optimism-
corrected, AUCcorrected , was calculated as follows:

Quantile-based 95% CIs were estimated from the dis-
tribution of optimism-corrected performance measures 
across bootstrap samples [30].

Prospective validation
Performance of prediction models estimated in the split-
sample training set and in the entire-sample develop-
ment dataset was evaluated in the prospective validation 
dataset. Quantile-based 95% CIs were estimated from 
1,000 person-level event-stratified bootstrap samples. 
Estimated prospective performance of the split-sample 
and entire-sample prediction models were compared to 
identify which model best predicted suicide in a prospec-
tive sample. Internal validation estimates for the split-
sample model and for the entire-sample model obtained 
by cross-validation and bootstrap-optimism correction 
were compared to estimated performance of each model 
in the prospective validation set to evaluate whether each 
method adequately adjusted for overfitting.

Further description of study methods can be found 
in the Additional Analytic Details in the Supplemental 
Materials.

Results
Data description
Our analysis included 9,610,318 visits in the develop-
ment dataset (2009–2014) and 3,754,137 visits in the pro-
spective validation dataset (2015–2017). Suicides were 
observed following 2,318 visits in the development data 
(a rate of 24 events per 100,000 visits) and following 710 
visits in the prospective validation data (19 events per 
100,000 visits) (Table S4).

Characteristics of patients at the time of visit are pre-
sented in Table 1. The majority of visits in the develop-
ment set were for patients who were female (64.1%), 
White (69.0%), non-Hispanic (77.3%), had commer-
cial insurance (75.7%), and had a depression (75.5%) or 
anxiety (70.1%) diagnosis or  antidepressant prescrip-
tion (67.9%) in the 5  years preceding the visit. Some 
changes in characteristics were observed over time, as 
is anticipated in the course of routine clinical care. Vis-
its in the prospective sample were more likely to be made 

AUCcorrected = AUC(mo, s0)−
1

B

B
∑

b=1

Optimism
(b)
AUC

by patients with Medicaid insurance (11.0% vs. 4.2% in 
development data) and were more likely to have a PHQ-9 
recorded in the past year (43.3% vs. 13.5% in development 
data). Increases in PHQ-9 utilization and the proportion 
of respondents reporting no suicidal ideation (6.1% in the 
development data vs. 19.8% in the prospective validation) 
were expected because PHQ-9 use was by discretion in 
the earlier study years (and providers typically used it 
with patients with more severe symptoms) and, in later 
years, routine administration for all visits was recom-
mended by some data-contributing health systems.

Comparison of methods for prediction model estimation 
and internal validation
As a reminder, we have two classes of approaches: The 
split-sample approach only uses a subset of the devel-
opment dataset to construct our prediction model 
and evaluates performance on the remaining subset; 
the entire-sample approach constructs our prediction 
model on the entirety of our development dataset and 
uses fivefold cross-validation or the bootstrap to evalu-
ate performance. These two classes of approaches differ 
both in the prediction model they estimate and how they 
evaluate performance. This is important in interpret-
ing the results, as we are interested in selecting a strat-
egy that both a) results in a strong prediction model, as 
demonstrated with good performance on the prospective 
validation set, as well as b) gives an accurate internal esti-
mate of the prospective validation performance. We first 
report performance of the split-sample and entire-sample 
suicide prediction models in the prospective dataset; we 
then present optimism of internal validation estimates 
compared to prospective performance.

Prediction models estimated with a subset of the 
development data and in the entire development data-
set showed similar discrimination in the prospective 
validation dataset. The split-sample model had an AUC 
of 0.814 (95% CI: 0.771–0.851) in the prospective vali-
dation set, and the entire-sample model had an AUC of 
0.811 (0.768–0.849) (Table  2). Sensitivity (Table  3) and 
PPV (Table 4) of the split-sample and entire-sample mod-
els were also similar in the prospective validation set. For 
example, at the 90th percentile, prospective sensitivity 
was 52.0% (41.7–61.1%) for the split-sample prediction 
model and 53.0% (43.0–62.3%) for the entire-sample pre-
diction model. At the same threshold, PPV was 7.9 events 
per 100,000 visits (5.8–10.5 events per 100,000 visits) for 
the split-sample model and 9.1 events per 100,000 visits 
(6.7–12.0 events per 100,000 visits) for the entire-sample 
model. Prospective performance of the two models was 
also similar for specificity (Table S5).

Internal validation estimates obtained in the split-sam-
ple testing set and cross-validation in the entire-sample 
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Table 1  Characteristics of mental health specialty visits for development sample (January 1, 2009 – September 30, 2014) and 
prospective validation sample (January 1, 2015—September 30, 2017)

Characteristic Development dataset (N = 9,610,318 visits) Prospective validation dataset 
(N = 3,754,137 visits)

N % N %

Female 6,081,526 64.1 2,406,695 64.1

Age

  17 or younger 1,048,533 10.9 417,977 11.1

  18–29 1,562,616 16.3 670,337 17.9

  30–44 2,453,898 25.5 948,716 25.3

  45–64 3,510,438 36.5 1,242,067 33.1

  65 or older 1,034,813 10.8 475,040 12.7

Race

  White 6,627,544 69.0 2,511,547 66.9

  Asian 448,590 4.7 192,284 5.1

  Black 836,479 8.7 324,852 8.7

  Hawaiian/Pacific Islander 108,410 1.1 32,803 0.9

  Native American 92,312 1.0 35,824 1.0

  More than one 3,298 0.03 1,788 0.1

  Other race recorded 48,800 0.5 20,879 0.6

  Not race recorded 1,444,885 15.0 634,160 16.7

Ethnicity

  Hispanic 2,183,742 22.7 987,061 26.3

Insurance type

  Commercial group 7,275,199 75.7 2,544,926 67.8

  Individual 325,139 3.4 141,234 3.8

  Medicare 1,409,742 14.7 572,476 15.2

  Medicaid 406,606 4.2 413,007 11.0

  Other 193,632 2.0 82,494 2.2

PHQ-9 9th item response1

  0, Not at all 590,468 6.1 743,288 19.8

  1, Several days 121,483 1.3 153,671 4.1

  2, More than half the days 43,697 0.5 46,977 1.3

  3, Nearly every day 31,408 0.3 32,410 0.9

  Not recorded 8,823,262 91.8 2,777,791 74.0

  PHQ-9 recorded in the previous year 1,296,856 13.5 1,623,943 43.3

Diagnoses in past 5 years, including index visit

  Depression 7,257,525 75.5 2,852,694 76.0

  Anxiety 6,734,366 70.1 2,967,524 79.0

  Bipolar depression 1,317,629 13.7 474,897 12.6

  Schizophrenia 400,713 4.2 154,590 4.1

  Other psychosis 537,050 5.6 221,351 5.9

  Dementia 96,751 1.0 54,782 1.5

  Attention deficit disorder 1,151,179 12.0 485,877 12.9

  Autism spectrum disorder 131,900 1.4 65,795 1.8

  Personality disorder 1,961,027 20.4 603,400 16.1

  Alcohol use disorder 1,561,302 16.2 553,027 14.7

  Drug use 1,654,129 17.2 588,481 15.7

  Post-traumatic stress disorder 845,842 8.8 400,959 10.7

  Eating disorder 350,320 3.6 144,204 3.8

  Traumatic brain injury 312,516 3.3 140,940 3.8
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better reflected prospective performance than using 
bootstrap optimism-correction. The cross-validation 
estimate of AUC in the entire-sample model (0.832, 
95% CI:0.812, 0.851) was closest to the prospective AUC 
(Table 2), indicating that this internal validation approach 
best estimated future model performance. The spit-sam-
ple testing estimate of AUC (0.846, 95% CI: 0.817–0.870) 
was farther from the prospective AUC of the split-sample 

model, but the 95% CIs for each overlapped. In contrast, 
the bootstrap optimism-corrected estimate of AUC in 
the entire-sample model (0.878, 95% CI: 0.861–0.890) 
over-estimated prospective discrimination.

Interval validation estimates of sensitivity (Table  3) 
and specificity (Table S5) also show that split-sample 
testing and entire-sample cross-validation better esti-
mate prospective performance than bootstrap optimism 

1 The PHQ-9 9th item asks patients about the frequency of thoughts of suicide or death in the prior 2 weeks

Table 1  (continued)

Characteristic Development dataset (N = 9,610,318 visits) Prospective validation dataset 
(N = 3,754,137 visits)

N % N %

Prescription fills in past 5 years

  Antidepressants 6,521,196 67.9 2,559,147 68.2

  Benzodiazepines 4,536,960 47.2 1,641,900 43.7

  Hypnotics 1,427,849 14.9 381,353 10.2

  2nd generation antipsychotics 2,035,084 21.2 799,401 21.3

Encounters in prior 5 years with mental health diagnosis

  Inpatient 2,296,579 23.9 859,640 22.9

  Outpatient 8,789,642 91.5 3,431,776 91.4

  Emergency department 3,167,119 33.0 1,347,840 35.9

  Suicide attempt in prior 5 years 381,591 4.0 172,329 4.6

Charlson comorbidity index

  0 7,133,017 74.2 2,719,729 72.4

  1 1,402,435 14.6 565,038 15.1

   > 1 1,074,866 11.2 469,370 12.5

Suicide death within 90 days of visit 2318 24 per 100,000 710 19 per 100,000

Table 2  Estimated AUC of prediction models from split-sample and entire sample estimation approaches in the development dataset 
and prospective validation dataset

Prediction model estimation Internal validation approach AUC​ (95% CI)

Development dataset Prospective dataset

Split-sample Validate in testing set 0.846 (0.817, 0.870) 0.814 (0.771, 0.851)

Entire-sample Cross-validation 0.832 (0.812, 0.851) 0.811 (0.768, 0.849)

Bootstrap optimism correction 0.878 (0.861, 0.890)

Table 3  Sensitivity (95% CI) of prediction models from split-sample and entire sample estimation approaches in the development 
dataset and prospective validation dataset

Split-sample prediction model Entire-sample prediction model

Risk percentile 
cutpoint

Testing set, Development Prospective validation 5-fold cross-validation, 
Development

Bootstrap optimism cor-
rection, Development

Prospective validation

 ≥ 99% 12.2% (7.5%, 17.8%) 19.9% (10.9%, 30.1%) 11.6% (8.4%, 15.2%) 17.5% (8.8%, 24.6%) 15.1% (7.5%, 24.2%)

 ≥ 95% 42.1% (32.6%, 51.0%) 40.1% (30.1%, 50.2%) 33.9% (27.1%, 40.5%) 47.2% (40.1%, 52.9%) 39.2% (28.7%, 50.5%)

 ≥ 90% 54.0% (45.4%, 62.1%) 52.0% (41.7%, 61.1%) 50.5% (43.3%, 57.2%) 63.2% (56.3%, 67.8%) 53.0% (43.0%, 62.3%)

 ≥ 75% 78.5% (72.9%, 83.4%) 75.1% (67.0%, 82.3%) 75.1% (70.4%, 79.8%) 84.4% (81.0%, 86.9%) 72.1% (63.8%, 79.7%)
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correction. For example, at the 90th percentile, split-sam-
ple testing and entire-sample cross-validation estimates 
of sensitivity (54.0% and 50.5%, respectively) are similar 
to the prospective sensitivities (52.0% and 53.0%, respec-
tively) while the bootstrap optimism correction estimate 
(63.2%) over-estimated sensitivity of the entire-sample 
model.

Because the overall event rate was lower in the prospec-
tive validation set, all internal validation methods over-
estimated PPV. As seen in other performance metrics, 
overestimation was greatest for the bootstrap optimism 
corrected estimate of PPV for the entire-sample model 
and more modest for the split-sample testing and entire-
sample cross-validation estimates of PPV (Table 4).

Discussion
In this case study, we empirically evaluated approaches 
for prediction model estimation and internal validation 
in the context of predicting risk of suicide following an 
outpatient mental health visit. Our first aim was to com-
pare performance of a prediction model estimated with 
random forests in a 50% randomly sampled training sub-
set of a development dataset containing all visits from 
January 20,019- September 2014 from seven health sys-
tems (split-sample prediction model) to that of a random 
forest model estimated in the entire development dataset 
(entire-sample model). We found that performance of the 
entire-sample and split-sample prediction models were 
comparable in the prospective validation dataset contain-
ing all visits from 2015–2017; using all visits in the devel-
opment dataset for estimation conferred no advantage 
with respect to risk discrimination or classification accu-
racy. In these analyses, the different performance met-
rics examined agreed on the relative performance of the 
models being compared. In practice, this is not always the 
case, thus we recommend study teams select a primary 
performance metric that reflects both how the prediction 
model will be used in a clinical setting as well as the pri-
orities of stakeholders before conducting analyses so that 
conclusions may focus on that measure of performance.

Our second aim was to evaluate whether three vali-
dation approaches adequately adjusted for overfitting. 

Internal estimates of prediction model performance were 
compared to prospective performance to assess opti-
mism. While we expect performance in future data may 
degrade somewhat due to non-random differences in pat-
terns of care (like those seen between the development 
and prospective development samples in Table  1), the 
internal validation approach that minimizes optimism is 
preferable. Overestimation was greatest for optimism-
corrected estimates of performance for the entire-sample 
model obtained via the bootstrap. Optimism was mean-
ingfully smaller for cross-validated estimates of entire-
sample prediction model performance and split-sample 
model validation in the testing set.

While both approaches are preferable to bootstrap 
optimism correction, we identified two benefits of cross-
validation for the entire-sample model over testing set 
validation for the split-sample model. First, using the 
entire sample to assess performance via cross-validation 
results in more narrow confidence intervals than evalu-
ating performance in only a subset of observations. For 
example, the 95% CI for the split-sample model AUC 
evaluated in the testing set was 36% wider than the cross-
validated 95% CI for the AUC of the entire-sample model 
(Table  2). Second, the AUC estimated in the testing set 
of the split-sample model was greater (and, accordingly, 
more optimistic) than the cross-validated AUC for the 
entire-sample model. A disadvantage of split-sample pre-
diction model estimation and validation is that, because 
data are divided into training and testing sets only once, 
estimates of performance elicited from the testing set 
may be more sensitive to random variation in the data 
splitting.

In this study, optimism-corrected performance esti-
mates obtained via bootstrap did not adequately adjust 
for overfitting when evaluating performance of a predic-
tion model estimated with the entire development data-
set. When developing a prediction model to be used in 
clinical care, it is imperative to have accurate internal 
validation of predictive performance to guide decisions 
about whether, and how to, implement it. Moreover, 
relying on bootstrap optimism correction for internal 
validation would lead researchers to incorrectly conclude 

Table 4  Positive predictive value per 100,000 visits (95% CI) of prediction models from split-sample and entire sample estimation 
approaches in the development dataset and prospective validation dataset

Split-sample prediction model Entire-sample prediction model

Risk percentile 
cutpoint

Testing set, Development Prospective validation 5-fold cross-validation, 
Development

Bootstrap optimism cor-
rection, Development

Prospective validation

 ≥ 99% 27.5 (16.7, 39.3) 27.6 (14.3, 46.3) 30.0 (21.9, 39.3) 41.7 (21.0, 58.9) 23.7 (11.4, 40.7)

 ≥ 95% 19.3 (13.3, 26.5) 12.6 (8.6, 17.5) 16.0 (12.4, 19.7) 22.6 (19.8, 25.2) 13.9 (9.4, 19.9)

 ≥ 90% 12.2 (9.0, 15.9) 7.9 (5.8, 10.5) 12.0 (9.9, 14.4) 15.2 (13.8, 16.3) 9.1 (6.7, 12.0)

 ≥ 75% 7.1 (5.8, 8.7) 4.8 (3.9, 5.9) 7.2 (6.3, 8.2) 8.1 (7.8, 8.4) 4.9 (3.9, 6.0)
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that the prediction model estimated in the entire sample 
better predicted suicide risk than the model estimated 
and validated with a split-sample approach. Researchers 
typically evaluate several possible prediction models and 
select the model with the best validation performance. 
Correct internal estimates of prediction model perfor-
mance are needed to inform this decision.

Our findings stand in contrast with prior research 
demonstrating the validity of bootstrap optimism correc-
tion for internal validation of logistic regression predic-
tion models estimated with a relatively small sample size 
and number of predictors. Characteristics of this study 
vary from that context in several ways: we used several 
million observations and over one hundred predictors to 
estimate random forest models to predict a rare event. 
Our study was not designed to identify which of these 
elements (modeling method, event rate, sample size, or 
number of predictors) is the reason that bootstrap opti-
mism correction failed in this setting. We expect that 
bootstrap optimism correction did not adequately quan-
tify prediction model optimism because each bootstrap 
sample contains, on average, 63.2% of the observations 
in the original sample. So, comparing the in-sample 
performance of a prediction model estimated with the 
bootstrap sample to its performance in the original 
sample does not provide an out-of-sample assessment. 
Other bootstrap-based optimism correction approaches, 
including the 0.632 method [15] and the 0.632 + method, 
[13] also incorporate in-sample observations when esti-
mating performance and, as such, may overestimate per-
formance in this setting. By comparison, cross-validation 
and using an independent testing set for validation each 
ensure no observations are used for both model estima-
tion and validation.

Data-driven machine learning methods designed to 
balance bias and variance can fit very complex models 
(incorporating interactions and non-linear relations). 
As datasets grow in size, these methodologies learn 
increasingly complex models. In contrast, the com-
plexity of simple parametric models, like linear logistic 
regression does not change (as there is no bias/variance 
tradeoff ). The example explored here suggests that this 
difference is key: while bootstrap optimism correction 
is adequate for simpler non-adaptive models, internal 
validation with out-of-sample observations (either a 
split-sample approach or cross-validation on the entire 
sample) may be needed for more complex models that 
are trained to balance bias and variance. While consid-
ering only one example dataset and a single machine 
learning method are limitations of our study, the unde-
sirable properties of bootstrap optimism correction in 
this case study point to limitations of the method not 
previously explored in the clinical prediction modeling 

literature. There is an opportunity for future study of 
internal validation methods for other non-parametric 
modeling approaches, such as boosting and artificial 
neural networks.

Conclusions
This case study illustrates an example where bootstrap 
optimism correction did not provide accurate internal 
validation. While we cannot conclude this method is 
inaccurate for a broad class of problems (e.g., any non-
parametric model), we suggest caution if using bootstrap 
optimism correction in a similar setting and recommend 
comparing optimism-corrected performance estimates 
to those obtained from an out-of-sample method, such as 
cross-validation.
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