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Abstract 

Background  Propensity score analysis is increasingly used to control for confounding factors in observational stud-
ies. Unfortunately, unavoidable missing values make estimating propensity scores extremely challenging. We propose 
a new method for estimating propensity scores in data with missing values.

Materials and methods  Both simulated and real-world datasets are used in our experiments. The simulated datasets 
were constructed under 2 scenarios, the presence (T = 1) and the absence (T = 0) of the true effect. The real-world 
dataset comes from LaLonde’s employment training program. We construct missing data with varying degrees 
of missing rates under three missing mechanisms: MAR, MCAR, and MNAR. Then we compare MTNN with 2 other 
traditional methods in different scenarios. The experiments in each scenario were repeated 20,000 times. Our code is 
publicly available at https://​github.​com/​ljwa2​323/​MTNN.

Results  Under the three missing mechanisms of MAR, MCAR and MNAR, the RMSE between the effect and the true 
effect estimated by our proposed method is the smallest in simulations and in real-world data. Furthermore, the 
standard deviation of the effect estimated by our method is the smallest. In situations where the missing rate is low, 
the estimation of our method is more accurate.

Conclusions  MTNN can perform propensity score estimation and missing value filling at the same time through 
shared hidden layers and joint learning, which solves the dilemma of traditional methods and is very suitable for 
estimating true effects in samples with missing values. The method is expected to be broadly generalized and applied 
to real-world observational studies.
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Introduction
In observational studies, propensity scores are increas-
ingly used to control for confounding [1, 2]. When the 
observed baseline characteristics are sufficient to cor-
rect for confounding bias and the propensity model is 
correctly constructed, a conditional exchange can be 
conducted between subjects with the same propensity 
score [3, 4]. Observational studies usually inevitably 
have covariates with missing values. Currently, estimat-
ing the propensity score in the presence of missing val-
ues is a challenge for studying causality [5–8]. Common 
approaches to dealing with missing values in propensity 
analysis include full-case analysis, adding missing indi-
cator variables to the propensity model, and multiple 
imputation [9–11]. Unfortunately, these methods are 
inherently flawed. For example, the missing indicator 
method introduces new biases [12]. There are studies 
using machine learning methods to replace traditional 
logistic regression [13–17]. However, they do not address 
the propensity score misestimation problem caused by 
overfitting. In contrast to hand-crafted models [18], 
neural networks can automatically learn interactions 
between variables. A multi-task neural network is a net-
work structure with multiple outputs. It has been widely 
used in the medical field. With a multi-task neural net-
work, propensity score computation and missing value 
filling can be performed jointly. By optimizing the global 
objective function, overfitting to the propensity score 
calculation task can be prevented, while the estimation 
problem of missing value [19] is effectively solved. This 
study develops a new pipeline for calculating propensity 
scores in samples with missing values based on a multi-
task neural network. To evaluate the accuracy of our 
model in estimating the true effect, we conduct experi-
ments on simulated and real-world data separately, and 
compare our method with traditional methods.

Data and methods
Propensity score
In a study, individual subjects may have multiple covari-
ates. Propensity scoring is a way of simplification mul-
tiple covariates [20]. It condenses multiple covariates 
into a single variable (propensity score), whose meaning 
is the conditional probability of being assigned to the 
experimental group depending on the covariates [21]. A 
propensity score can be viewed as a function of the origi-
nal multiple covariates, so the propensity score includes 
information about these covariates. Rosenbaum and 
Rubin demonstrated that the propensity score e(X) can 
be used to balance the distribution of a covariate between 
experimental and control groups when the covariate X 
meets the strong negligibility assumption [3].

Propensity score estimation
In complete data, logistic regression is the most com-
monly used method for estimating propensity scores 
under the conditions of binary treatment or exposure 
[22]. The propensity score is calculated by performing 
binary regression on covariates (i.e. potential confound-
ers) by treatment or exposure indicator variables, which 
can be written as:

where, X′ = (1, X1, X2, …, XK), β = (β0, β1, β2, …, βK)′, K is the 
number of covariates and n is the number of observa-
tions. An individual’s propensity score can be estimated 
as

In many situations, logistic regression may not be 
the best choice when estimating propensity scores. We 
assumed that the log probability of exposure was lin-
early related to covariates when using logistic regres-
sion to estimate exposure probabilities. However, this 
assumption is not always true. Logistic regression cannot 
estimate propensity scores accurately when covariates 
interact with each other or when covariates and treat-
ments are not linear. To solve the inherent problem of 
logistic regression estimation of propensity scores, some 
studies substitute machine learning algorithms for logis-
tic regression. These include decision trees, random for-
ests, Naive Bayes, support vector machines, etc. [13–15, 
23, 24] It is claimed that these methods can provide a 
more accurate estimate of propensity scores. Neverthe-
less, these conclusions have not been validated by sys-
tematic simulation studies.

Missing data
In realistic observational studies, individual covariates 
may have large amounts of missing data, which may lead 
to both loss of efficiency and biased estimates. Based on 
the degree to which confounding factors are related to 
outcome and exposure, the magnitude of bias varies.

Type of missing data
There are three types of missing data depending on the 
mechanism of missing: missing completely at random 
(MCAR), missing at random (MAR), and missing not at 
random (MNAR) [25, 26]. MCAR refers to missing data 
when a random subset of the study population has the 
same probability of being missing. In contrast to MCAR, 

e(Xi) = Pr (Ti = 1|Xi )

logit(pi(T = 1)) = X′β , i = 1, 2, . . . , n

pi =
eX

′
iβ

1+ eX
′
iβ
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the term MAR is counterintuitive. MAR occurs when the 
probability of missing is dependent only on the observed 
information. Missing data are denoted by MNAR when 
their probability depends on the unobserved data, such 
as the observation value itself.

Methods for handling missing values
Complete case analysis is the easiest way to deal with 
incomplete confounding data, which restricts the analysis 
to cases where all variables are complete. If the absence 
of covariates is independent of treatment and outcome, 
then this approach provides unbiased estimates of group 
effects. Another simple method is the missing indicator 
method [27]. Before incorporating confounding into a 
propensity score model, add a “missing” category to par-
tially observed categories. Continuous confounders are 
set to a specific value, such as 0, and both the confound-
ing factor and missingness indicator (a variable that indi-
cates whether the variable is observed) are included in 
the propensity score model. In many cases, this approach 
leads to biased results. Missing pattern analysis is a gen-
eralization of the missing index method. This method is 
used when all individuals are grouped together according 
to different missing patterns. Then, propensity scores are 
estimated in each group separately. As a practical matter, 
this method fails when the number of participants with 
missing patterns is lower than the number of observed 
covariates. It usually occurs when there are a lot of miss-
ing patterns in the data. Multiple imputation is a method 
of using chain equations to impute incomplete data, in 
which the missing covariates are imputed with plausible 
values based on the predicted distribution of the missing 
covariates in a set of observed data many times to create 
complete datasets [28, 29]. We used MICE (version 3.3.0) 
in R (version 3.6.3) to perform multiple imputation. A 
Bayesian linear regression was used for the mice model. 
It is commonly used when covariates and outcomes are 
continuous. Other parameters are set as defaults.

Inverse probability weighting
Inverse probability weighting (IPW) uses the inverse of 
the propensity score as weights to create a synthetic sam-
ple in which the baseline covariate distribution is inde-
pendent of treatment assignment [30]. In this study, we 
use IPW to estimate the true effect. Unlike propensity 
score matching, IPW uses all individuals in both groups, 
thus avoiding sample waste. A high level of statistical 
power was maintained in all cases to detect effects. IPW 
was more sensitive to erroneous propensity score estima-
tion. This limitation emphasizes the importance of care-
fully defining model selection before applying propensity 
score weighting. Multi-task neural networks can over-
come this limitation.

Multi‑task neural network
Neuronal networks are excellent function approxima-
tors, which can estimate linear and nonlinear functions. 
It uses data samples with known outcomes as examples 
for supervised training. In this process, a nonlinear func-
tion model is built to predict the output data based on 
the input data. Figure  1 (a) shows three independent 
neural networks. All networks have the same inputs and 
outputs. Back-propagation is used to train each net sepa-
rately. There is no connection between the three nets, so 
the information that one learns cannot help the others. 
This is known as single-task learning (STL). Figure 1 (b) 
shows a single net with the same inputs as those on the 
left, but three outputs corresponding to the learning task. 
Each of the 3 outputs is connected to the same hidden 
layer. Three of the MTL outputs undergo parallel back-
propagation. These results share a hidden layer, mean-
ing the internal representation of one task is available for 
other tasks. The core idea of multitask learning is to share 
knowledge learned from different tasks and to train them 
simultaneously.

In this study, we propose a novel pipeline using a multi-
task neural network (MTNN) to estimate propensity 
scores. There are three parts to our task set: reconstruct-
ing input covariates, estimating propensity scores, and 
predicting missing patterns. There is a close relationship 
between these tasks. The structure of MTNN is shown in 
Fig. 1. In order to achieve joint optimality across all tasks, 
the MTNN must correctly learn the relationship between 
covariates, covariates and absence, and covariates and 
exposure levels. Through joint learning and sharing hid-
den layers, MTNN reduces overfitting when estimating 
propensity scores. The detailed calculation procedure 
and more information about MTNN training can be 
found in Supplementary S1. Our tutorial and source 
code for MTNN are also available on github1 so readers 
can apply our method to real problems and gain a deeper 
understanding of it. Models for missing value imputation 
and estimation of propensity scores are determined from 
the convergence of the objective function. In all experi-
ments in this study, we chose the model for the last epoch 
after convergence.

Data
Simulation data
We adopted a data simulation generation process similar 
to that of Choi [7]. Two scenarios were considered, one in 
which the outcome was treatment-related (effect≠0), and 
one in which it was treatment-independent (effect = 0). 
In each scenario, we considered three different deletion 

1  https://​github.​com/​ljwa2​323/​MTNN.

https://github.com/ljwa2323/MTNN


Page 4 of 13Yang et al. BMC Medical Research Methodology           (2023) 23:41 

mechanisms. First, we generated 2 continuous covariates, 
X1 and X2, for each subject. X1 follows a normal distribu-
tion with mean 0 and standard deviation 1. X2 depends 
on X1.

In this way, the standard deviation of X2 is also 1, and 
the correlation between X1 and X2 is equal to 0.5. The 
treatment T was generated from the binomial distribu-
tion, with the probability for subject I to receive the treat-
ment being equal to:

By this equation, about 30% of subjects were treated.
We constructed 2 scenarios:

X2i = 0.5X1i + εi with εi ∼ N(0, 0.75)

logit(P(Ti = 1|X1i, X2i)) = −0.8+ 0.5X1i + 0.5X2i

Scenario 1: the outcome is affected by treatment: we 
assume, without losing generality, that treatment has an 
effect of 1 on the subject’s outcome.

Scenario 2: the outcome is unrelated to the treatment.

To test the effect of different missing rates on effect 
estimation in simulated datasets, we preset 7 missing 
rates, including 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8. Missing 
values in X2 are generated using three mechanisms:

(1)	 MCAR: In X2, a random proportion of observations 
is set to be missing.

Yi = X1i + X2i + Treati + εi, with εi ∼ N(0, 1)

Yi = X1i + X2i + εi, with εi ∼ N(0, 1)

Fig. 1  Structure diagram of multi-task neural network
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(2)	 MAR: The higher the value of X1, the more likely 
the value of X2 is missing. Taking M as the missing 
indicator of X2, the probability of missing X2 value 
is:

(3)	 MNAR: The higher the value of X2, the more likely 
the value is missing. The probability of missing an 
X2 value is:

C is a constant used to control the missing rate. As an 
example, if a missing rate of around 50% is to be con-
trolled, C can be set to 0.

Real‑world data
The real-world data come from a subset of the data from 
the treated group in the National Supported Work Dem-
onstration (NSWD) and the comparison sample from 
the Population Survey of Income Dynamics (PSID). The 
dataset has been used by many researchers to test the 
effects of different propensity score analysis methods [31, 
32]. There are 614 samples in this dataset (185 treatments 
and 429 controls). Each person has 9 variables. Table S1 
provides more details. Treat is the intervention variable, 
re78 is the outcome, and the other 7 variables are covari-
ates. Table S2 summarizes the distribution of covariates 
between different treatment groups. It shows that the dis-
tributions of the variables age, race, married, nondegree, 
re74, re75 differ between groups. Therefore, we need to 
correct the effect estimates with propensity scores.

Our experiments used the inverse probability-weighted 
effect size of the propensity score calculated from the 
complete data as the reference. Simulations were then 
performed to estimate the true effect under the three 
missing mechanisms. We made missing values occur in 
both variables re74 and re75. In each of these variables, 
missing values were constructed randomly. Similar to the 
setting we used for simulated datasets, we used 7 missing 
rate settings for real-world datasets: 0.2, 0.3, 0.4, 0.5, 0.6, 
0.7, and 0.8.

(1)	 MCAR: In both variables re74 and re75, randomly 
selected given proportion of observations are set to 
be missing.

(2)	 MAR: The missing rate is assumed to be propor-
tional to a linear combination of age and educa-
tion. These 2 variables were chosen arbitrarily with-
out loss of generality, as there were correlations 
between the covariates (table S8). To facilitate set-
ting the probability of missing, we normalize the 
age and years of education so that the mean is 0. Let 

logit(P(Mi = 1)) = X1i + C

logit(P(Mi = 1)) = X2i + C

M1 and M2 represent the missing indicators of re74 
and re75, respectively, then their missing probabil-
ity is:

(3)	MNAR: The higher the value of a variable, the more 
likely that value is missing. Similar to age and years of 
education, we also normalize re74 and re75. Then the 
probability of re74/re75 missing is:

Estimation of the true effect
The first step is to deal with missing values in the 
samples. As MTNN computes propensity scores and 
imputation values simultaneously, it does not require 
separate missing value processing. When propensity 
scores were estimated by logistic regression, multiple 
imputation and missing indicator methods were used to 
handle missing values. We estimate propensity scores 
using age, education, race, marital status, education, 
and re74 and re75 as covariates. These 7 covariates are 
also included in the regression analysis used to estimate 
effect. Lastly, we estimated the effect using an inverse 
probability-weighted regression analysis of the propen-
sity score, in which subjects receiving treatment were 
weighed 1/propensity score and subjects not receiving 
treatment were weighed 1/(1 - propensity score). Fig-
ure  2 shows the workflow for estimating the effects of 
the three methods.

Evaluation
There are 2 kinds of effects in the experiments with simu-
lated data, and three mechanisms for handling missing 
values, i.e., 6 scenarios for generating simulated data, 
and 3 methods for handling missing values. In experi-
ments with real-world data, there are three missing 
mechanisms, namely three scenarios. For each scenario, 
the same process of missing value imputation, propen-
sity score calculation, and effect estimation was repeated 
20,000 times before evaluating the results of the different 
methods. Comparisons are conducted based on standard 
deviations (SD) and root mean square errors (RMSE), 
which is defined as:

logit(P(Mi1 = 1)) = agei + educi + C

logit(P(Mi2 = 1)) = agei + educi + C

logit(P(Mi1 = 1)) = re74i + C

logit(P(Mi2 = 1)) = re75i + C
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Where β̂ is the estimate and β is the true value.

RMSE =
1

n

n

i=1

β̂i − β
2

Result
Analysis results on simulation datasets
Figure  3 shows the RMSE of the true effect esti-
mates under 2 true effect scenarios and three missing 

Fig. 2  Flowchart of the three methods for estimating effect. a the missing index method; b the multiple imputation method; c multi-task neural 
network method. MTNN, multi-task neural network

Fig. 3  Root mean square error of the true effect estimated by different methods under three missing mechanisms in the simulation dataset. (a), (d) 
are under MCAR, (b), (e) are under MCAR, (c)-(f ) is under MNAR. For a, b and c, the true effect is 0; for d, e and f, the true effect is 1. MCAR, missing 
completely at random; MAR, missing at random; MNAR, missing not at random
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mechanisms. The smallest RMSE for all 6 data sce-
narios is achieved with MTNN. Thus, MTNN seems 
to be the best method over the other two. In addition, 
regardless of the choice of method used, the higher the 
missing rate, the higher the RMSE. When the missing 
rate was increased from 0.2 to 0.8, the RMSE for any of 
the three estimation methods nearly doubled. Table  1, 
Table S3  and Table S4  present more detailed informa-
tion on the estimation results for the three methods. 
In all scenarios of data, we find that MTNN is not only 
optimal in estimation of true effect deviation, but also 
that the standard deviation of its estimation results is 
the smallest. This shows that MTNN provides the most 

accurate estimation, as well as being more stable than 
other methods.

Analysis results on real‑world datasets
We first calculated the propensity score by logistic 
regression from the complete data, and then used the 
inverse probability-weighted regression equation to cal-
culate the effect to be 712.743 (Table S7). Since the true 
effect of real-world data is unknowable, we use it as a ref-
erence standard to compare the performance of different 
methods.

Figure  4 compares RMSE between different methods 
under three distinct missing mechanisms. According to 

Table 1  Estimation of the true effect in the simulated datasets using three different methods under the MCAR mechanism

SD, standard deviation; RMSE, root mean square error; MCAR, missing completely at random; MAR, missing at random; MNAR, missing not at random

Missing rate Method True effect =0 True effect =1

Mean SD RMSE Mean SD RMSE

0.2 Missing indicator 0.119 0.059 0.131 1.119 0.059 1.12

Multiple imputation 0.11 0.071 0.128 1.11 0.071 1.112

Multi-task neural network 0.091 0.052 0.103 1.077 0.055 1.079

0.3 Missing indicator 0.146 0.063 0.157 1.146 0.063 1.147

Multiple imputation 0.136 0.076 0.153 1.136 0.076 1.138

Multi-task neural network 0.107 0.057 0.12 1.12 0.052 1.121

0.4 Missing indicator 0.173 0.061 0.182 1.173 0.061 1.174

Multiple imputation 0.192 0.089 0.209 1.192 0.089 1.195

Multi-task neural network 0.138 0.05 0.146 1.139 0.058 1.141

0.5 Missing indicator 0.206 0.069 0.216 1.206 0.069 1.207

Multiple imputation 0.214 0.078 0.226 1.214 0.078 1.216

Multi-task neural network 0.173 0.058 0.181 1.169 0.06 1.17

0.6 Missing indicator 0.234 0.071 0.243 1.234 0.071 1.236

Multiple imputation 0.228 0.076 0.239 1.228 0.076 1.23

Multi-task neural network 0.2 0.064 0.208 1.198 0.06 1.199

0.7 Missing indicator 0.242 0.081 0.254 1.242 0.081 1.244

Multiple imputation 0.248 0.08 0.259 1.248 0.08 1.251

Multi-task neural network 0.207 0.078 0.219 1.204 0.071 1.206

0.8 Missing indicator 0.258 0.061 0.264 1.258 0.061 1.259

Multiple imputation 0.26 0.074 0.269 1.26 0.074 1.262

Multi-task neural network 0.226 0.053 0.232 1.224 0.057 1.225

Fig. 4  RMSE of the true effect estimated by different methods under three missing mechanisms in the real-world dataset. a MCAR, b MAR, c MNAR



Page 8 of 13Yang et al. BMC Medical Research Methodology           (2023) 23:41 

the analysis results of simulated data, MTNN exhibited 
the smallest RMSE under different missing mechanisms 
and missing rates. The difference is that in the real-
world dataset, the missing rate is less influential on the 
RMSE of the estimated result. Table 2, Table S5 and Table 
S6 provide further details of the estimation results for the 
various methods. It is clear that the standard deviation 
of the MTNN estimation results is lower than that of the 
2 other methods. Figures 5,  6 and 7 show the between-
group standardized mean differences (SMD) of each 
covariate adjusted by the propensity scores estimated by 
the three methods under the three missing mechanisms.

Discussion
In this study, we develop a novel method for calculating 
propensity scores with multi-task neural networks that 
can calculate propensity scores directly for samples with 
missing values. On simulated and real-world datasets, we 
compare the proposed method with two commonly used 
ones. Under the three missing mechanisms, the RMSE 
of our proposed method for estimating the true effect is 
the smallest. In addition, the standard deviation of the 
true effect estimated by MTNN is the smallest, indicating 
that it is more robust than the other two methods. While 
previous studies have demonstrated smaller RMSEs for 

machine learning algorithms, our study confirms these 
findings in scenarios with missing values [33–36]. We 
also found that under lower missing rate conditions, the 
RMSE of the missing indicator method is better than 
multiple imputation for all 3 missing mechanisms. This 
result is consistent with the previous study [7].

Recent studies have used autoencoders to reduce the 
dimension of high-dimensional features and then calcu-
late propensity scores using the reduced features [17]. 
It leverages the ability of neural networks to deal with 
high-dimensional data. However, they did not consider 
reconstruction and computation of the propensity score 
as joint tasks. Instead, we train the model together with 
reconstruction of the input, prediction of missing pat-
terns, and estimation of propensity scores as joint tasks 
to prevent overfitting. It causes propensity scores to be 
close to zero or one, resulting in biased estimates of the 
effects.

As the variable dimension increases in observational 
studies, the relationship between variables will be more 
complex, and missing will be more difficult to avoid. It 
also becomes increasingly difficult to manually determine 
propensity models for high-dimensional variables. The 
neural network has the ability to model complex models, 
so there is no need to manually specify the so-called cor-
rect model, and the neural network can learn adaptively 
by observing the data. Multiple imputation is expensive 
for large datasets. In contrast, for the MTNN model, the 
computational cost of this process is smaller. Further-
more, Compared to multiple imputation [37], MTNN 
does not require any prior assumptions about the distri-
bution of the data. It automatically learns the correlations 
between variables, thus impute their missing values.

In practice, a missing rate of greater than 30% is gener-
ally considered too high to make a reliable inference, but 
we want to thoroughly test the MTNN model’s stability 
and performance under different missing rate scenarios. 
Due to this, we have created a list of missing rates that 
are relatively high. We found that even when the missing 
rate is high, MTNN still performs well. It shows that the 
correlation between variables can be captured and uti-
lized very effectively. Even though an increase in missing 
rates decreases the performance of the MTNN model, it 
still outperforms other methods.

Limitations
Our study also has some limitations. First, there is a slight 
difference in performance between simulated and real 
data for the MTNN model. The reason for this phenom-
enon is that in real-world data, relationships between 
variables are more complex. It is difficult to simulate 
these unknowable complex connections manually. Due to 
the fact that our experiments simulate only the simplest 

Table 2  Estimation of the true effect in the real-world datasets 
using three different methods under the MCAR mechanism

SD, standard deviation; RMSE, root mean square error; MCAR, missing 
completely at random; MAR, missing at random; MNAR, missing not at random

Missing rate Method Mean SD RMSE

0.2 Missing indicator 352.262 250.792 431.108

Multiple imputation 198.329 276.932 576.882

Multi-task neural network 672.620 121.163 121.075

0.3 Missing indicator 395.330 283.958 415.239

Multiple imputation 403.878 309.952 425.198

Multi-task neural network 718.292 144.233 136.098

0.4 Missing indicator 316.312 226.881 450.458

Multiple imputation 277.395 247.175 493.797

Multi-task neural network 736.417 146.882 140.491

0.5 Missing indicator 240.517 266.086 534.726

Multiple imputation 341.053 279.437 455.591

Multi-task neural network 683.922 112.963 110.333

0.6 Missing indicator 339.664 233.459 433.169

Multiple imputation 171.271 191.980 570.923

Multi-task neural network 623.39 140.996 160.172

0.7 Missing indicator 323.533 202.261 433.415

Multiple imputation 318.219 232.415 451.292

Multi-task neural network 587.779 116.185 166.178

0.8 Missing indicator 328.838 128.502 402.568

Multiple imputation 395.226 123.355 338.146

Multi-task neural network 640.485 167.939 174.043
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Fig. 5  Between-group standardized mean differences under MCAR for covariates adjusted for propensity scores calculated by three different 
methods
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Fig. 6  Between-group standardized mean differences under MAR for covariates adjusted for propensity scores calculated by three different 
methods
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Fig. 7  Between-group standardized mean differences under MNAR for covariates adjusted for propensity scores calculated by three different 
methods
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possible case, there is a slightly different result between 
the 2 types of data. Second, we cannot know the true 
effect of real-world data. Our model aims to establish 
a more accurate method for estimating model param-
eters when missing values are present. For this purpose, 
a complete real data modeling process is used as a stand-
ard of evaluation. It is our goal to prove that the proposed 
method can estimate the parameter value with the miss-
ing value as close as possible to the parameter value esti-
mated without the missing value. Therefore, “true effect” 
should actually mean “effect estimated from full data” in 
real-world data. Third, MTNN assumes that input varia-
bles are correlated. Using the joint learning technique and 
the shared hidden layer, this correlation is used to esti-
mate propensity scores and fill in missing values. When 
the input variables are independent or weakly correlated, 
MTNN may be unable to provide accurate estimates.

Conclusion
In this study, we propose a novel method for estimating 
propensity scores in data with missing values. It is based 
on a multi-task neural network, where missing value 
imputation and propensity score estimation are jointly 
trained as related tasks. Through the experimental results 
of simulated data and real-world data, we prove that our 
model has the smallest error in estimating the true effect 
under different missing mechanisms and different miss-
ing rates, and the standard deviation of the effect esti-
mate is also the smallest. This shows that our method 
has good applicability in real-world observational studies 
with missing values.
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