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Abstract 

Background COVID-19 is a new multi-organ disease causing considerable worldwide morbidity and mortality. While 
many recognized pathophysiological mechanisms are involved, their exact causal relationships remain opaque. Better 
understanding is needed for predicting their progression, targeting therapeutic approaches, and improving patient 
outcomes. While many mathematical causal models describe COVID-19 epidemiology, none have described its 
pathophysiology.

Methods In early 2020, we began developing such causal models. The SARS-CoV-2 virus’s rapid and extensive spread 
made this particularly difficult: no large patient datasets were publicly available; the medical literature was flooded 
with sometimes conflicting pre-review reports; and clinicians in many countries had little time for academic con-
sultations. We used Bayesian network (BN) models, which provide powerful calculation tools and directed acyclic 
graphs (DAGs) as comprehensible causal maps. Hence, they can incorporate both expert opinion and numerical 
data, and produce explainable, updatable results. To obtain the DAGs, we used extensive expert elicitation (exploiting 
Australia’s exceptionally low COVID-19 burden) in structured online sessions. Groups of clinical and other specialists 
were enlisted to filter, interpret and discuss the literature and develop a current consensus. We encouraged inclusion 
of theoretically salient latent (unobservable) variables, likely mechanisms by extrapolation from other diseases, and 
documented supporting literature while noting controversies. Our method was iterative and incremental: systemati-
cally refining and validating the group output using one-on-one follow-up meetings with original and new experts. 
35 experts contributed 126 hours face-to-face, and could review our products.

Results We present two key models, for the initial infection of the respiratory tract and the possible progression to 
complications, as causal DAGs and BNs with corresponding verbal descriptions, dictionaries and sources. These are 
the first published causal models of COVID-19 pathophysiology.

Conclusions Our method demonstrates an improved procedure for developing BNs via expert elicitation, which 
other teams can implement to model emergent complex phenomena. Our results have three anticipated applica-
tions: (i) freely disseminating updatable expert knowledge; (ii) guiding design and analysis of observational and 
clinical studies; (iii) developing and validating automated tools for causal reasoning and decision support. We are 
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developing such tools for the initial diagnosis, resource management, and prognosis of COVID-19, parameterized 
using the ISARIC and LEOSS databases.

Keywords COVID-19, Pathophysiology, Bayesian network, DAG, DBN, Causal model, Expert elicitation, Decision 
support, Experimental design

Introduction
COVID-19 is a new multi-organ disease, caused by the 
highly infectious SARS-CoV-2 virus, resulting in con-
siderable worldwide morbidity and mortality. While 
many recognized pathophysiological mechanisms are 
involved—coagulation and inflammatory cascades, pul-
monary exudation and respiratory compensation, endo-
vascular and renal injury—the exact causal relationships 
between them remain opaque. A better understand-
ing of these causal processes is urgent and important 
for predicting their progression, targeting therapeutic 
approaches and improving patient outcomes. To this end, 
the worldwide pandemic generated a flood of research, 
but much of the early output was unfiltered, sometimes 
conflicting, and of reduced reliability [1]. In contrast, no 
large patient datasets were publicly available, and even 
now, their data remains limited.

In this project, we used online tools to enlist inde-
pendent medical experts to interpret and iteratively dis-
cuss the evolving literature, providing us with consensus 
views. This process resulted in the elicitation of several 
detailed graphical causal models of the pathophysiol-
ogy underlying the clinical manifestations of COVID-19 
disease, using the kind of iterative, incremental method 
widely recommended for model building  [2], but rarely 
realized in expert knowledge elicitation. From these the-
oretical products, simplified models can be constructed 
for practical application that are parameterized using 
available data, e.g., for predicting the probability of a 
patient’s future need for intensive care given their current 
signs, symptoms and laboratory results.

In this paper, we make freely available our expert-elic-
ited models. While there has been considerable prior 
work developing causal models of the transmission of 
SARS-CoV-2 within populations   [3–11], ours are the 
first causal models of the COVID-19 disease process 
within individuals. We anticipate that these models will 
serve three purposes for our team and other research-
ers. First, they will aid communication and theoretical 
understanding, providing a common causal knowledge 
base which can be readily updated to incorporate new 
knowledge and hypotheses. Second, they will guide the 
design and analysis of both observational and clinical 
studies into COVID-19, by identifying potential media-
tors, confounders and potential sources of biases and 

errors. Importantly, this includes informing the design 
of data collection studies and standards, supporting their 
ability to produce data that is suitable for statistical and, 
particularly, causal analysis. Third, they are provided to 
all in the hope that they be used to derive, develop and 
validate bespoke parameterized models and practical 
tools for causal reasoning and decision support, both in 
clinical and policy settings.

It is critical to understand how the causal models 
described here can achieve these three purposes. We 
expect the manner in which they provide a common 
causal knowledge base should be readily apparent from 
the description of the models in Results. The ways in 
which they support empirical studies and also the devel-
opment of practical parameterized models require their 
own discussion, and are described in  Discussion and 
conclusion. While the full development of any particular 
parameterized model is beyond the scope of this paper 
(involving many additional techniques around develop-
ment, analysis and validation), we do outline how such 
models can be (and have been) derived from the causal 
models towards the end of this paper, using examples 
from our own subsequent work1.

Causal Bayesian networks
Bayesian networks (BNs) were designed to model proba-
bilistic causal systems. Formally, a BN [2, 12, 13] includes 
a directed, acyclic graph (DAG), (e.g., Fig. 1), which con-
sists of nodes connected by arcs (pointing from ‘parent’ 
to ‘child’) that never point in a continuous sequence from 
a node back to itself2. In addition, in a BN each node rep-
resents a random variable with multiple possible states, 
and each arc represents a direct probabilistic depend-
ency, quantified by a conditional probability table (CPT) 
or equation specifying the probability distribution of the 
child given the states of all its parents. In causal DAGs 
and BNs, these arcs also represent direct causal influ-
ences—hence they can also predict the effects of deci-
sions regarding interventions.

1 This work is to be published. An initial report can be found at https:// osf. io/ 
mdve7/.
2 In mathematical graph theory, where early work focused on polyhedra, 
these are traditionally called ‘vertices’ connected by ‘directed edges’; but 
common and equivalent terms are ‘nodes’ connected by ‘directed links’, 
‘arrows’ or ‘arcs’.

https://osf.io/mdve7/
https://osf.io/mdve7/
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Readily available software3 allows users to enter exact 
or uncertain evidence about any variables, which is then 
efficiently propagated to update the probability distribu-
tions for all variables. Thus, causal BNs can support and 
perform prognostic (predictive), diagnostic (retrodic-
tive), explanatory and decision-oriented probabilistic 
reasoning.

In a BN, all arcs and nodes—even ‘latent’ ones, i.e., not 
directly observable—may be defined in a semantically 
meaningful way (as in Figs. 1 and 2), and this will always 
be so when the BNs represent knowledge elicited from 
humans. This transparency is in stark contrast to the 
opaque “black boxes” of neural networks, where latent 
nodes are usually connected and parameterized based 
on a large dataset and do not have any readily discernible 
semantic or causal interpretation.

One important consequence is that an elicited BN can 
be readily updated to reflect new human knowledge, 

which is often derived from more than just a new dataset. 
Since it is clear which nodes the new knowledge relates 
to, we can usually identify a few locations where changes 
are needed while leaving the remainder of the network 
untouched. This can be extremely useful for complex 
emergent phenomena, where understanding is advancing 
rapidly while datasets remain small.

Another important consequence is that the BN struc-
ture and its inferences are potentially explainable, pro-
vided that the important aspects of a complicated BN 
or inference can be identified and clearly articulated. In 
medicine, for example, for ethical and practical reasons 
it is better if the recommendations of an AI tool are 
explainable and justifiable [15, 16]. Algorithms for auto-
matically generating such explanations, which supple-
ment basic BN software by distilling complex inferences 
into a concentrated essence more palatable for human 
consumption, are a continuing focus of research, e.g., 
[16–20]. These explanations are often better expressed 
in causal terms [21], including those supporting medical 
diagnoses [22].

Any causal BN entails a partial time order for its vari-
ables: parents precede their children. But a BN’s capacity 
to represent time is limited, since cycles are prohibited 
and each variable usually appears only once, thus making 

Fig. 1 Causal DAG excerpt. These are the initial nodes of the Respiratory causal DAG provided in Additional file 1. The node ‘Pulmonary 
capillary leakage’, for example, has three ‘parents’ that jointly influence it, and two ‘children’ it influences. In the BN, provided in [14], 
the variable it represents has states and a CPT that are not shown in the DAG. All the nodes are named, numbered, and color coded for ease of 
reference, and corresponding definitions for variables and arcs are given in the associated Dictionary, Additional file 3, an excerpt from which is 
provided in Fig. 2

3 We used the GeNIe BN software tool [58] to elicit the BNs presented here, 
and Netica [59] to develop and parameterize subsequent models from data-
sets. Other widely-used commercial BN software tools include Hugin [60], 
AgenaRisk [61], and BayesiaLab [62]. In addition, research software and tools 
include Elvira [63], R BN libraries [24], BNT [64], SamIam [65], and BayesPy 
[66].
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it difficult to represent both feedback loops and time 
series. A dynamic Bayesian network (DBN) [2] is a BN in 
which a variable can be represented multiple times at dif-
ferent discrete time steps, and at any step T it may have 
parents at T, T − 1 , T − 2 , T − 3,  ... Hence, DBNs can 
model any complex multivariate time series, including 
feedback loops. If the structure of the network remains 
constant over time, the DBN can be compactly and 
cleanly represented as a network “snapshot” at a time step 
showing each variable’s connections to all its parents.

We present our models as non-dynamic causal DAGs 
by focusing on the first instance at which each variable 
becomes involved, but have noted some feedback loops 
to facilitate their possible conversion to DBNs for mod-
eling disease progression over longer time scales.

Building BNs by eliciting expert opinions
Given a large and representative numerical data-
set, preferably supplemented by expert guidance on 
some causal directions, machine learning algorithms 
have been developed to find the sparsest causal BNs 
that could produce the observed dependencies, e.g., 
PC  [13], CaMML [23], and R libraries such as bnlearn 
[24]. In the absence of such a dataset, BN structure and/
or parameters—unlike those of opaque models—can be 
obtained entirely through knowledge elicitation from 
domain experts. This may be more time consuming, 
but has the essential advantage that expert knowledge 
usually represents a synthesis of multiple sources that 
can supplement and help interpret limited local data. 
Since domain experts usually have no prior exposure 

Fig. 2 BN Dictionary excerpt. In the Dictionaries, descriptions of the variables and arcs are provided, with selected supporting references. The 
variables are numbered, named and color coded as in the causal DAGs and BN files. The full Dictionaries are provided as Additional files 3  & 4
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to BNs or training in causal inference, they need to be 
assisted by an expert BN modeler, who helps to express 
the knowledge in appropriate terms and highlight any 
important or missing pieces.

It is common to use multiple opinions rather than 
relying on only one source, with the hope of obtain-
ing a larger pool of information and greater reliabil-
ity from aggregated opinions, and perhaps benefiting 
from mutual feedback via discussion. Group elicitation 
of BNs has been particularly popular in some domains, 
such as reliability assessment [25, 26] and environmental 
research [27].

When group knowledge is pooled effectively, whether 
by collation, consensus, averaging, or another form of 
amalgamation, then it tends to outperform individual 
knowledge [28–33]. However, unstructured group inter-
actions also bring well-documented problems, e.g., diffu-
sion of responsibility, anchoring, “groupthink”, deference 
to social status, and unproductive disputes [34–38]. Such 
problems can be reduced by using structured protocols, 
e.g., collecting independent opinions from all partici-
pants prior to discussion, and also by using a modera-
tor, e.g., to focus discussion on the most pressing issues, 
encourage only constructive contributions, and help 
establish a consensus where possible. A BN modeler with 
appropriate skills may also take the role of the moderator 
who leads discussion, which is the approach we used.

Software tools have recently been developed to support 
group elicitation of BNs, and the BARD tool [20] includes 
multiple options to support highly structured protocols, 
including a strict version of the widely used Delphi tech-
nique [39, 40]. However, we needed to make the elicita-
tion interactions as easy and quick as possible for our 
experts, so using only a videoconferencing tool (Zoom) 
with a modeler/facilitator who followed structured but 
flexible protocols was the most appropriate choice.

The way BNs are defined in Causal Bayesian networks 
might suggest that we build them in the same logical 
stages, like a waterfall: (i) define all the variables, so that 
we can (ii)  specify all the arcs between them, and then 
(iii)  estimate all the parameters this structure requires. 
However, for complex BNs this would require uncanny 
foresight. In contrast, as noted in  [20], proposed meth-
odologies for BN elicitation recommend proceeding 
iteratively and incrementally  [2, 41–43]. More specifi-
cally, ([2], Part III) suggests beginning with a small local 
structure around a target variable of interest, rather than 
attempting to exhaustively consider every possible factor 
relevant to the target. Subsequent iterations can pick up 
a few additional factors at a time, preferably with some 
form of validation in each iteration (e.g., feedback from 
an independent expert).

Another recommended strategy is to break down 
complex models into sub-models, and reuse common 
structures or elements when appropriate, dubbed “idi-
oms” [44], “templates” [42] and “network fragments” [41]. 
These incremental approaches adapt similar ideas long 
used in software engineering, such as “spiral prototyping” 
or “agile model building” [45], and reusing common local 
structures is fundamental to “object-oriented” program-
ming  [46]. An expert modeler/moderator can manage 
this workflow flexibly and efficiently as issues emerge.

If probabilities are elicited, then there is usually some 
degree of uncertainty and disagreement about them. 
Instead of a single point estimate for each probability, 
more thorough protocols have been designed to elicit 
several points (e.g., maximum, minimum, and best esti-
mates) from each of multiple experts and combine this 
information [47–50]. Here, we are concerned principally 
with causal structure, with probabilities to be determined 
later from numerical datasets—although frequently 
experts provide rough indications of influence along with 
the variables and causal arcs, which can be captured by 
‘indicative’ BN parameters and used for  structure valida-
tion (see  Elicitation sequences).

Our contributions
This paper makes two kinds of novel contributions to 
prior literature: in method and in results. In Methods, 
we demonstrate a structured approach that is only feasi-
ble using online tools, which manages to combine large-
scale group expert elicitation with BN building that is 
iterative, incremental, and includes validation. In Results, 
we present detailed causal DAGs and BNs (with indica-
tive parameters), together with comprehensive associ-
ated documentation, that capture our experts’ theoretical 
understanding of the corresponding COVID-19 patho-
physiological processes. In Discussion and conclusion, 
we explain how researchers can use both our methods 
and results, and how we are currently doing so.

Methods
Our elicitation process was organized very quickly, rela-
tive to its scale and to similar projects with which any 
of the present authors have been involved. Organiza-
tion included our initial planning for which models we 
wanted to develop, and hence what information we 
needed to elicit.

The process was exceptionally intensive, with many 
experts involved, a high degree of interest, and more 
detail captured in the expert models than usual. Centered 
in Australia, with its exceptionally low COVID-19 bur-
den, we managed to obtain a very large number of con-
sultation hours—mostly from experts around Australia, 
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but supplemented by experts overseas. Many of these 
clinical experts therefore had little direct experience in 
treating COVID-19, with the exception of some overseas 
recruits with firsthand experience. Nevertheless, since 
their role was to interpret the available literature in the 
context of their existing domain knowledge rather than 
contribute original material, their expertise was adequate 
for our purposes. Furthermore, in high incidence set-
tings, few experts would have had the time to participate.

There was a high degree of consensus about what was 
currently established, except when discussing immune 
processes. However, knowledge in this area was evolving 
rapidly as new evidence emerged, so as expert opinion 
was revised we needed to update our causal DAGs.

Social roles for elicitation
There are three major specialist roles people performed 
during the elicitation process, which we will refer to as 
follows:

Modelers are our team’s technical experts in BN and 
other computational modeling and causal inference, 
which encompasses model construction, refinement, 
comparison, learning via expert elicitation, machine 
learning from data, validation, and application.

Medical Experts are the domain experts we enlisted to 
contribute their time and knowledge, which here means 
medical specialists in a relevant subsystem, who agreed 
to participate in any of our elicitation activities.

Coordinators are people on our team with some com-
bination of general medical knowledge, general mod-
eling knowledge, and medical contacts, who facilitated 
interaction between modelers and experts, and searched 
the available literature to support the model-building 
process.

Since both medicine and modeling are highly technical, 
our cross-disciplinary coordinators played a vital role in 
translating knowledge from one sphere to the other. Also, 
they ensured that the modeling decisions our team made 
were always informed by general medical expertise even 
where we did not elicit specialist medical opinions on the 
issue.

Some members of our team (YW, TS and SM) had pre-
vious experience in building causal models for infectious 
disease pathophysiology, including both a generalizable 
basic structure and adaptations for specific cases such as 
pneumonia. Based on a preliminary literature review, we 
adapted this generalizable model to form a preliminary 
model for COVID-19.

However, due to the recent emergence of the disease, 
compounded by its inherent novelty and complexity, it 
quickly became clear that obtaining the necessary causal 
knowledge would be a massive challenge. First, there was 
insufficient data available in the published literature to 
infer causal mechanisms, and the available literature was 
highly specialized and fragmented. Second, there was 
insufficient raw data available to infer causal structure 
more directly using machine learning techniques (such 
as those mentioned in Building BNs by eliciting expert 
opinions). Third, there was insufficient certainty amongst 
experts to rely on any individual source of authority; it 
would be more reliable to build an understanding from 
a group consensus, such as a group of experts in respira-
tory medicine. Fourth, the disease involves multiple areas 
of specialist knowledge, so we would need to elicit opin-
ions from multiple groups of medical experts. Fifth, the 
logistical challenge of enlisting and managing multiple 
groups would only be compounded by needing to con-
duct all meetings online, due to the social effects of the 
very disease under discussion. Lastly, several models of 
specific subsystems would need to be synthesized into a 
single, general master model to provide the theoretical 
foundation for developing clinical tools. Nevertheless, we 
took on this difficult challenge.

Initial models
How to divide the problem into manageable models and 
associated groups of experts was not obvious, since medi-
cal expertise is differentiated by more than one dimen-
sion. Some medical specialists focus on particular body 
systems, and here early clinical experience indicated that 
COVID-19 strongly affected the respiratory and immune 
systems, with frequent complications, often involving the 
hematological, cardiovascular and renal systems. Clini-
cians, however, are familiar with the processes of diagnosis 
and prognosis, which need to synthesize the most impor-
tant information from all these physiological systems.

Informed by our previous modeling experience and 
preliminary literature review, we initially divided the 
problem into four submodels: Core Mechanism, Com-
plications, Immune Response, and Diagnosis. (This divi-
sion was eventually revised substantially, as described 
in Models produced.) Our Core Mechanism submodel 
was focused on the respiratory system, so we primar-
ily enlisted respiratory and infectious disease specialists 
to help create it. Immune Response details were elicited 
from clinical immunologists and other domain experts 
in human immunology. In contrast, to discuss Complica-
tions, we enlisted a more varied group of clinicians and 
other domain experts, including cardiologists, intensiv-
ists, and renal specialists. Our experts for Diagnosis were 
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also more varied, including emergency and primary care 
physicians, and medical microbiologists.

To help orient our medical specialists, we provided a 
simple schematic Overview model indicating how these 
four submodels were related. However, in addition to 
developing the four submodels, we needed to actu-
ally synthesize them into a unified model with a view to 
developing practical tools to facilitate clinical reasoning 
and decision-making. This task was performed by our 
modelers in parallel, i.e., as the submodels were refined, 
so was the unified model.

We were able to leverage the insights from submodel 
workshops to connect the submodels appropriately, and 
to prioritize the most important features and omit less 
important ones. We did not use separate elicitation ses-
sions for developing the unified model, because it was 
constrained to be consistent with the four submodels, it 
was too complex to address in a single workshop, and it 
also involved decisions based on modeling expertise.

Elicitation sequences
Figure 3 illustrates our use of several types of elicitation 
session in a specific sequence, and how these sessions 
mapped to the sequence of steps needed to develop a 
model.

Our first elicitation session to develop a particular 
expert causal model was a 2 hour group workshop, with 
7–12 experts each attending for 1–2 hours. The main 
goal here was to develop a causal structure and refine it 
through interactive discussion.

Despite the fact that we did not formally elicit param-
eters at this stage, after the workshops it was already 
possible from the discussion, the literature, and our 
understanding to roughly indicate the expected rela-
tionships (e.g., respiratory infection is highly likely 

to activate the immune system) with ‘indicative’ BN 
parameters. These were useful for follow up discussion, 
and ensured that we specified the states of the variables 
properly and consolidated our understanding. We also 
identified some typical clinical scenarios (e.g., common 
ways the disease progresses).

We followed up with one-on-one sessions as needed, 
either with the same experts or supplementary experts 
with additional expertise. The goals were to clarify and 
refine the causal structure by discussing it directly, but 
also to perform a particular kind of validation exercise: 
checking that the proposed structure with indicative 
parameters accounted for the typical scenarios.

We then presented the model to independent experts 
in one-on-one sessions. The stated goals were the same 
as the previous sessions, but if the new experts’ answers 
did not substantially differ from those of the previous 
experts, then this also provided a more thorough form 
of validation.

Finally, we sent the refined models to all the par-
ticipating experts for inspection before publication. 
The goals were to verify widespread endorsement as a 
broader form of validation, and also to show partici-
pants that their efforts had yielded (if endorsed) a fin-
ished product.

Overall, 35 different experts contributed a total of 126 
hours of face-to-face time to the group workshops and 
one-on-one meetings, with some additional activities 
also assisting in model development. A more detailed 
quantitative breakdown is as follows:

• 2 subject-matter surveys were sent out prior to 
early group workshops, which were answered by 
approximately 55 different experts.

Fig. 3 Model development process. Typical steps in our model development, and their relationship to our elicitation sessions
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• 7 group workshops were held in which 26 differ-
ent experts participated (some attending more than 
one), contributing a total of 106 hours.

• 15 one-on-one follow-up meetings were held (occa-
sionally two experts attended a meeting) in which 
15 different experts participated, contributing a 
total of 20 hours. Where one-on-one meetings 
focused on reviewing a model produced in a group 
workshop (11/15 meetings), these almost always 
(10/11) involved new experts who had not already 
participated in developing the model discussed.

• After the structures of the expert BNs had been 
determined, there were subsequent meetings (11 
meetings involving 35 different experts contribut-
ing a total of 85 hours) focused mainly on param-
eterization of our Progression model via available 
databases, which provided as a byproduct some 
additional degree of detail and validation for the 
experts’ theoretical causal BNs presented here, e.g., 
for the definitions of some of the variable states.

Figure  4 illustrates the same sequence of elicitation 
session types (left column), and how they relate to two 
more detailed elicitation procedures. To maximize the 
value of each session, a sequence of associated tasks 
was performed before and after the session itself (mid-
dle column). This work was most extensive for the 

group elicitation session, and is detailed below, but 
the work was repeated to a lesser extent for each of the 
one-on-one sessions.

To conduct a group session, we followed a particular 
elicitation procedure (right column) guiding the intro-
duction, efficient elicitation questions for causal struc-
ture, and the kinds of interjections from experts we 
encouraged. In contrast, for each one-on-one session, a 
customized agenda was followed with the issues and sce-
narios to address via more flexible interactions.

Procedure around group workshop
1.  Literature review: Coordinators searched for and 
reviewed relevant articles in the literature. They identified 
areas of expertise required and some controversial issues. 
This work continued in parallel to the next two steps.

2. Expert survey and recruitment: TS leveraged exist-
ing clinical and research networks to enlist contributions 
from domain experts. We directly emailed individuals 
as well as a national infectious diseases clinical mail-
ing list, inviting them to complete a web-based survey 
(via the Survey Monkey tool). This served multiple pur-
poses. First, it elicited initial information on the poten-
tial causal model. Since we expected many people would 
not fully complete the survey, we shuffled blocks of ques-
tions randomly so that we obtained a similar number 
of responses to all questions. Second, at the end of the 

Fig. 4 Nested BN elicitation procedures. Overall, we proceeded from group workshops to final endorsement (left column). For each type of session, 
several tasks were performed before and after it (middle column), with more work usually required for the earlier types of session. Within the group 
workshops, an efficient cooperative protocol was used consistently, encompassing introductions, stimulus questions, and ad hoc responses (right 
column)
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survey, we asked if respondents wished to participate fur-
ther in group workshops, so it functioned as a prepara-
tory exercise for any participants of the workshop. Third, 
since it was a long survey (100 questions over 5 pages), 
the amount participants managed to complete was taken 
to be an implicit measure of their engagement. We then 
used other techniques to increase engagement before the 
workshop, such as distributing recent model diagrams 
and descriptions (or important excerpts), and asking a 
few more open-ended questions.

3.  Workshop scheduling: Each week, we collectively 
decided which workshop to schedule next by review-
ing our progress and identifying the most pressing need. 
We invited suitable experts with limited notice (2 weeks) 
but achieved good participation rates, which we attrib-
ute to a strong motivation to contribute to the pandemic 
response as well as, in some cases, existing relationships 
with our team. Since not everyone who was willing to 
contribute could be available at any given time, we invited 
more people than we could optimally accommodate, and 
anyone who could not attend was invited to validate 
the model in a subsequent round. We scheduled 2 hour 
timeslots, since in our experience this is the minimum to 
introduce experts to the technology and to the problem 
and still have adequate time to elicit their opinions. This 
is also the maximum time that most of our experts could 
contribute (due to limited time or attention), and most 
indicated a preference for shorter sessions. We tried to 
run the sessions as efficiently as possible, but used the full 
2 hours in every case.

4.  Pre-workshop preparation: Prior to each work-
shop, we gave participants background material that 
identified issues and summarized features of the model 
to be discussed and developed during the workshop. We 
used the literature review to prepare a starting template 
for the model. This gave our experts something to cri-
tique and expand upon, rather than starting from a blank 
slate, and hence expedited discussion and elicitation. We 
also presented a schematic overview of how each sub-
model would fit in with the others, and an explanation of 
the goals of our project.

5.  Elicitation workshop: We began each workshop 
with a short presentation that included “housekeep-
ing” such as introductions and the format of the session, 
a summary of the problem space and the goals of the 
workshop, the starting template for the model, and any 
other supporting materials. We raised the general issue 
of what question the model is trying to answer, and tried 
to achieve an expert consensus on this. We then pro-
ceeded to a standard set of questions for eliciting causal 
structure, applied in an adaptive and iterative fashion. We 
asked about which factors (variables) are relevant, and 
only asked about their possible states if it was important 

to help define them. Experts frequently suggested clarifi-
cation of the concepts intended to be captured by exist-
ing variables or modification of their names as elicitation 
progressed, and sometimes suggested merging and sepa-
rating variables. We asked about the causal relationships 
between them, usually focusing on one variable at a time 
and asking which other variables are direct causes and 
which are direct effects (a localized version of the “bow 
tie” method used for risk analysis [51]). When new vari-
ables were added and connected, we also asked if this 
superseded any prior direct connection between a par-
ent and a child of the new variable. Experts sometimes 
pointed out that a relationship could be bidirectional, 
which we noted, but in this initial non-dynamic graph we 
displayed only one direction. We chose a direction that 
created no cycle, and was either the initial influence, or 
the more immediate (i.e., with less time delay), or the 
strongest, as deemed most informative for disease pro-
gression or most pertinent to a submodel’s goal. We also 
noted any other comments, such as which connections 
were more important, unusual, or controversial. Experts 
sometimes clarified the basis for their suggestions by 
referring to the literature or their own opinion. The pri-
mary outcome of the workshop was a causal DAG (in the 
GeNIe BN software) that a high proportion of experts 
agreed captured the most important underlying patho-
physiological processes.

6.  Post-workshop review: After the workshop, our 
team had a debrief discussion (30–60 min), for feed-
back on their own performance and to consolidate their 
understanding. Subsequently, the modelers cleaned up 
any loose ends in the model or documentation, mak-
ing sure all the knowledge elicited was understood and 
documented correctly, and simultaneously looking for 
gaps that would need further clarification. This included 
indicative parameters and typical scenarios, as described 
above. The whole workshop, conducted remotely by web-
based videoconference (Zoom), was recorded as video, 
and the audio later transcribed into text. This allowed 
us to review any part of the elicitation as required. Our 
transcripts and video recordings, the “raw data” of these 
elicitation sessions, have been retained and securely 
stored. We used our newfound understanding to choose 
and schedule subsequent elicitations and actions. These 
included emailing questions to specific experts that were 
present or to other experts with different skill sets or 
knowledge, and then if needed, scheduling one-on-one 
elicitation sessions.

7.  Translation to application models: As a result 
of our various expert elicitation sessions, we produced 
multiple “expert models” that represented different body 
subsystems, and sometimes represented alternative per-
spectives put forward by different experts. Our approach 
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here was exploratory, avoiding premature judgments on 
what would be important for practical applications, so we 
tried to capture this theoretical expert knowledge com-
prehensively. However, our ultimate aim is to develop 
practical tools powered by customized “application mod-
els”, the first of which will be to support clinical reasoning 
in the prognostication for COVID-19. The expert mod-
els will provide a theoretical rationale for, and increase 
confidence in, the validity of the application models. Our 
modelers decide which aspects of the expert models are 
most relevant and should be included in an application 
model, given its purpose and required outcomes. In some 
respects an application model may be simplified, e.g., by 
combining several latent variables. In other respects, it 
may be more sophisticated, e.g., by creating a DBN rep-
resenting the whole system based on multiple expert BNs 
representing subsystems. The application models we have 
already developed are currently being independently vali-
dated by experts, both structurally and quantitatively, as 
well as validated by their fit to the data.

Adaptive, spiral processes
Although we depict our methods as several linear 
sequences, our description should make clear that in 
combination these formed a spiral process, as widely 
recommended for model building: i.e., our sequences 
of steps were iterated to produce successive improve-
ment. Most obviously, the sequence depicted in Fig. 3 is 
designed to successively refine and validate elements of 
the model through repeated elicitation.

In the same vein, we also used an adaptive elicitation 
procedure, i.e., we used the outcomes of elicitation and 
modeling exercises to help decide what sort of elicita-
tion and modeling should be done next. So, to some 
extent, we learned and refined our methods over the 
course of the project.

One example of adaptive elicitation was modifying 
our pre-workshop material for participants. For our 
early workshops, we prepared surveys on issues where 
we identified disagreement in the literature. We aimed 
to engage and prepare participants, and obtain a pre-
liminary understanding of their views. However, despite 
the assistance of our coordinators, we found it difficult 
to design survey questions that our modelers felt were 
relevant to the modeling choices, yet were framed and 
expressed in a way that most medical experts felt they 
could respond to. For example, experts often felt the 
answers were dependent on unstated contextual details.

For subsequent workshops, we simply gave partici-
pants background material that identified such issues 
of disagreement, and summarized features of the model 
to be discussed and developed during the workshop. 

In our video conferences, where elicitation and model 
building were more coordinated and interactive, we 
found that modelers and medical experts had much less 
difficulty in translating medical knowledge to models 
and vice versa.

Another example of adaptive elicitation was adding 
post-workshop supplementary meetings. After hold-
ing 2 hour elicitation workshops with groups of medical 
experts to generate a consensus BN, it became clear that 
follow-up one-on-one meetings would be useful, with 
some of the workshop participants and sometimes with 
other experts who had different expertise. These meet-
ings allowed experts who wanted additional time to give 
more detailed feedback on the model, and they were also 
a better forum for resolving persistent points of disagree-
ment or uncertainty.

Results
Models produced
Figure 5 illustrates the history of our model development 
in a cladogram. The four models we commenced with, 
as described in Methods, did not survive in their initial 
forms. As an adaptive, generative process in a complex, 
novel domain, our progress was inevitably evolutionary: 
new model variants were created, crossbred and adapted 
for each environmental niche, with many now extinct 
and a few still extant.

Our Core Mechanism model centered mainly on the 
respiratory system from the outset; as the multi-system 
nature of COVID-19 became apparent we decided to 
rename it the Respiratory model and focus on the initial 
infection process in that system. It is presented below.

Our Complications model largely begins where the Res-
piratory model’s story of pathophysiology ends, capturing 
for more severe cases the knock-on effects to other organ 
systems and body functions. After a period of work on 
both this and the Respiratory model, key ideas were iden-
tified from both that would form the basis of an applica-
tion model, called the Progression model.

This Progression model subsequently came to incor-
porate ideas from further expert models, including the 
Immune System, Vascular System and Background mod-
els, and it became clear that this BN would need to be 
transformed into a DBN, which can better represent 
longer-term system dynamics by replicating variables at 
different time steps (see Causal Bayesian networks), in 
order to track the longer-term progression of COVID-
19 and ultimately assist with prognosis. The parameter-
ized Progression model changes shape depending on the 
data set and setting, so it is not presented here; we are 
currently preparing the detailed presentation it requires. 
However, the expert Complications model on which it is 
most closely based is presented below.
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We invested considerable effort in modeling the 
Immune System response, which proved to be a complex 
and contentious topic with much uncertainty and little 
that could be confidently extrapolated from other infec-
tions. However, after this investigation we concluded that 
much of the exact detail of the mediators of the immune 
response might be unnecessary for the purposes of diag-
nosis and prognosis where we ultimately aimed to con-
tribute practical tools. Hence, we deferred work on this 
model and it is not presented here.

After some work eliciting details for our Diagnosis 
model, we made the judgment that, with the emergence 
of sensitive and specific diagnostics, diagnosis of patients 
was not a task for which our models were likely to pro-
vide much assistance, with the exception of the specific 
task of managing COVID-19 testing in the commu-
nity. We therefore discontinued modeling most of these 
details, and continued modeling the remainder in our 
Testing model. We have already published this as a causal 
BN [52], and will not reproduce it here.

We detail these procedural missteps and ‘dead-ends’ to 
accurately describe a method of modeling, whereas omit-
ting or rewriting this history might give the misleading 
impression that the two models presented below were 
always exactly the intended output.

Method of presentation
Since COVID-19 pathophysiology is complex, we devel-
oped several models for different subsystems; here we 

present our two main products. Our Respiratory BN con-
cerns the detailed pathways that link the initiating infec-
tion to respiratory pathophysiology and the beginning of 
complications, and hence it focuses primarily on the lungs. 
Our Complications BN concerns higher-level interactions 
and how the disease may progress after complications have 
begun, and hence it includes other organs that become 
important later in the progression of a severe case.

We present the models in three complementary types 
of file:

1. Causal DAGs and BNs in which we specify the causal 
structures in static graph diagrams (Additional files 1 & 2) 
and in GeNIe BN files (source models files can be accessed 
via our Open Science Framework page (OSF) project page 
[14]). GeNIe can present the structures simply as causal 
DAGs, or more dynamically: variables can be displayed 
with their states and indicative probabilities, and the states 
of variables can be specified to explore how this changes 
the probability distributions over other variables’ states.

2.  BN descriptions and issues which summarize the 
processes these graphs represent (see Respiratory BN 
description  and Complications BN description), and 
discuss a few unusual or controversial features (see 
Respiratory BN issues and Complications BN issues).

3.  BN dictionaries with references which give the defi-
nitions of variables and states, and also cite some of the 

Fig. 5 Model cladogram from April to December 2020. Some model lines primarily concerned prognosis (top family), other lines primarily 
concerned diagnosis (middle), and one line concerns Naïve Bayes (NB) and related variants adapted for preliminary parameterization and data 
exploration using available data (bottom)
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research literature that supported specific BN features. 
We present illustrative examples in Fig. 2, discuss some 
general features in BN Dictionaries with references, and 
provide the complete documents (Additional files 3  & 4).

Limitations of our models
While there are still unknowns and competing hypoth-
eses in the literature, the differences are not profound 
enough to require presentation as competing DAGs; 
our list of issues is sufficient to indicate which structural 
components would differ. Some disagreements only con-
cern the degree of impact of alternative pathways, which 
corresponds to differing numerical parameterizations of 
the BNs, and no parameterizations are included here.

Both our causal DAGs do not include important 
background factors such as age, comorbidities and vac-
cination status, that strongly influence the probability 
of more serious COVID-19 outcomes (and each other). 
Knowledge about their role in the COVID-19 process 
was too limited: although they are known to directly 
influence some of our variables (e.g., vaccination reduces 
the chance of initial infection), not all of their direct 
influences are clear (e.g., vaccination also decreases the 
chance of infection developing into severe COVID-19, 
probably by influencing multiple variables along these 
pathways). Fortunately, these theoretical models are use-
ful and valid without them. According to our experts’ 
assessment, the distinctive COVID-19 causal structure 
depicted is unlikely to change for any particular speci-
fication of background factors. Rather, such factors will 
affect the parameters, e.g., how strongly some variables 
influence others. When adequate data is available to 
adjust these parameters depending on background fac-
tors, then these factors can be appended by researchers 
to the DAGs we present here as additional causes4.

Many variables involved in these processes are latent, 
but their probability distributions can be inferred from 
observed evidence, such as clinical signs, symptoms and 
laboratory measurements. Again, our BNs do not include 
all the relevant possible evidence available now or in the 
future, but our model is valid without them. Structurally, 
they can be appended as additional effects of some of the 
variables in our DAGs, without changing the existing 
DAG connections. As data becomes available (e.g., the 
false positive and false negative rates for a new test) then 
their CPT parameters can be estimated.

Feedback loops, i.e., variables that influence each other 
over time, are not included in these acyclic models. 
Some are, however, noted in the BN dictionary. Feedback 
loops, like background variables, are explicitly included 
in our parameterized Progression DBN for modeling 
longer-term COVID-19 trajectories. The details will be 
presented in a future publication on this model and asso-
ciated practical tools.

Respiratory BN description
Our Respiratory causal DAG (Additional file  1) models 
the physiological process underlying COVID-19 in the 
respiratory system, outlining multiple and often concur-
rent pathways from the initial replication of the virus 
to key downstream complications such as multi-organ 
failure.

We color-coded the nodes: pink for the Infection 
process, yellow for more detailed mechanisms relevant 
to the Pulmonary system, orange for those Complica-
tions that mainly arise directly from the respiratory sys-
tem, and cyan for a selection of Signs and Symptoms 
included only for illustrative purposes. “Virus” refers to 
SARS-CoV-2.

References have been omitted from the following 
description, but can be found in the associated variable 
entries in the BN dictionary.

Infection process
After an exposure event, the virus can enter the upper 
respiratory tract via the nasopharynx (Virus enters 
upper respiratory tract) and may replicate 
locally and cause inflammation at various locations in the 
respiratory system, including the epithelial cells of the 
upper respiratory tract (Upper respiratory tract 
epithelial infection) and the lower respira-
tory tract (Alveolar epithelial infection). 
Direct infection involving the alveoli without preceding 
or simultaneous infection involving the upper respiratory 
tract is possible, although it may be less likely.

The virus can first become established at one site 
then spread to or re-establish in another. For exam-
ple, Infection of olfactory epithelium 
following epithelial infection in the upper respiratory 
tract has manifested as Ageusia and/or anos-
mia in some patients. The virus may spread from epi-
thelial to endothelial cells in alveoli, causing Alveolar 
endothelial infection. During all infection pro-
cesses, the virus may enter the bloodstream (Viremia) 
and potentially spread to other parts of the body (not 
included here).

Viral replication at any site may activate Systemic 
immune and inflammatory response, which 

4 We implemented this procedure in the subsequent development of our 
parameterized Progression DBN. We conducted a survey and group elicitation 
session dedicated to background factors, where we asked experts which of the 
Progression variables (which do not include all the theoretical variables here) 
would be affected.
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often results in the release of pro- and/or anti-inflamma-
tory blood markers from immune-related cells.

Pulmonary system
The primary function of the respiratory system is to sup-
port the metabolic processes of the body by taking in 
oxygen and removing carbon dioxide; this occurs through 
gas exchange between air and blood at the delicate mem-
branes of the lung alveoli. Our Respiratory causal DAG 
(Additional file  1) models the initial pathophysiological 
process which is initiated by SARS-CoV-2 infection in 
this system.

The most notable large-scale feature is the three dis-
tinct pathways from the initial infection to involve-
ment of the respiratory system and then complications, 
although these pathways have interconnections and often 
contribute concurrently.

Mechanical pathway: Alveolar and systemic inflam-
mation can damage pulmonary capillaries causing the 
leakage of plasma (Pulmonary capillary leak-
age), leading to filling of the alveoli with exudate 
(Alveolar consolidation) that causes stiffening 
and reduced mechanical lung function (Reduced lung 
compliance), and results in Ventilatory insuf-
ficiency. Alveolar epithelial infection (and inflamma-
tion) can also directly reduce compliance, but to a lesser 
extent. Another possible cause of ventilatory insuffi-
ciency is a loss of muscle mass (Muscle wasting) 
which can be directly caused by catabolism as a result of 
the systemic immune response and may be affected by a 
range of background factors, such as nutritional status 
and immobility, not shown in this model.

Gas exchange pathway: Pulmonary capillary leak-
age and alveolar consolidation blocks the passage of air 
and reduces the alveolar surface area available for gas 
exchange, and this mismatch between ventilation and 
blood perfusion reduces gas exchange in the affected 
parts of the lungs (V/Q mismatch). At an extreme, 
local perfusion may occur in the absence of ventilation 
with oxygenated air (Shunt). Alveolar infection causes 
local Hypoxia which can trigger counteracting Pulmo-
nary vasoconstriction, an adaptive physiological 
response which helps to match regional perfusion to ven-
tilation in the lungs and thus reduces the extent of V/Q 
mismatch.

Coagulation pathway: Endothelial infection/inflam-
mation and possibly the presence of virus in the blood 
(viremia) may trigger a systemic immune and inflam-
matory response, and this may result in an abnormally 
high propensity to coagulation (Hypercoagulable 
state). This may begin locally in the small vessels of the 
lower airways (Pulmonary microthromboses), but 
can later manifest as macroscopic thromboses in larger 

vessels (Other thromboses). Both types of throm-
bosis can block vessels in the lungs (Pulmonary cir-
culatory blockage) and lead to V/Q mismatch, to 
which alveolar endothelial infection/inflammation can 
also directly contribute.

The direct consequences of impaired lung function, 
due to any of these pathways, include insufficient blood 
oxygenation (Hypoxemia) and excessive blood car-
bon dioxide (Hypercapnia), which can be measured 
using blood gas assays or by pulse oximetry for oxygen. 
Furthermore, pulmonary vasoconstriction caused by 
hypoxia and pulmonary circulatory obstruction caused 
by thrombosis can produce raised blood pressure in the 
pulmonary arteries (Pulmonary hypertension), 
which interacts with the rest of the system in a compli-
cated way that is not explicitly described here, but which 
can lead to Impaired cardiac output.

Complications
The Respiratory model includes and summarizes some 
key complications. The lungs interact most closely with 
the heart; so in addition to pulmonary hypertension, 
pulmonary thrombosis can directly cause impaired car-
diac output. Systemic immune response and insufficient 
oxygen in the blood (i.e., hypoxemia) can also lead to 
impaired cardiac output via Diminished myocar-
dial contractility.

Maintaining end organ tissue oxygenation relies on 
sufficient oxygen transport via the blood, so Hypoxia 
occurs where there is hypoxemia or insufficient blood 
perfusion due to impaired cardiac output. Hypoxia can 
directly cause organ failure, or Multi-organ fail-
ure if more than one is affected (which is often the case).

Other pathways that can eventually lead to multi-organ 
failure include virus in the bloodstream causing direct 
viral injury to organs, and an extreme systemic immune 
response (i.e., cytokine storm).

Several mechanisms can trigger the body’s sensor for 
insufficient oxygen, including reduced compliance (i.e., 
a mechanical failure of the lungs), hypoxemia, hypercap-
nia, and acidosis (both respiratory and metabolic). If the 
body senses there is insufficient oxygen supply (Per-
ceived need for air), it demands more oxygen 
intake, which manifests as Dyspnea, one of the most 
important symptoms for COVID-19.

Respiratory BN issues
We describe here four issues with our Respiratory model 
that seem noteworthy, either in themselves or as illus-
trative examples. Some issues involve modeling choices: 
even where the process being represented is entirely 
agreed upon, modeling sometimes involves choices about 
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how to represent it, and some of the options we chose 
here may need clarification or appear controversial. Some 
issues involve domain knowledge: there are some aspects 
of COVID-19 that are still not fully understood, about 
which there may be competing hypotheses. So, some of 
the options we chose here may need revision in future as 
further research resolves these controversies.

Upper respiratory tract mediation: One theoreti-
cal controversy, related to the diagnostic value of a dry 
cough, concerns three possible respiratory pathways by 
which the virus enters the body. Respiratory viruses are 
thought to typically infect the upper respiratory tract first 
(abbreviated as URT in the BN), then descend by con-
tiguous spread to the alveoli and (rarely) via the blood-
stream. COVID-19 may take this normal path, or may 
bypass the upper respiratory tract or the larger airways 
to infect the endothelium of the lower airways more 
directly via the ACE2 receptor, or less directly from the 
upper respiratory tract via the bloodstream. The data 
on this issue is currently limited so we have included all 
three pathways in the model, but our experts thought the 
typical path for respiratory viruses was less likely than the 
other two. Future findings may support this opinion and 
clarify their relative importance.

Vascular lung damage feedback loops: A high degree 
of vascular lung damage, caused by microthrombo-
ses in lung capillaries, appears to be a unique feature 
of COVID-19. Our Respiratory BN includes vascular 
involvement (in the Coagulation pathway) primarily as 
a mediator for the initial phase of infection in the lung, 
whereas our Complications BN places more emphasis on 
subsequent feedback loops. Since vascular involvement 
is complicated, we explored it by eliciting a separate vas-
cular model from two of our experts, which is not pre-
sented here. We were satisfied that the vascular elements 
included in our Respiratory and Complications models 
were sufficient for our purposes.

V/Q mismatch and Shunt seem logically related: It 
is good practice to avoid including logically related terms 
in a causal model, i.e., where their semantics results in a 
logical dependence. Such a connection results in proba-
bilistic dependence and an arc in the model, but it may 
behave differently to a causal connection under inter-
vention, which can make it difficult to adapt the model 
for decision support. Here we included both Shunt and 
V/Q mismatch, even though shunt is (by definition) a 
type of V/Q mismatch, so the former logically entails the 
latter. This accurately represents the statements elicited: 
our experts consistently used both these terms and dis-
tinguished between them. They had good reason: differ-
ent interventions (such as positive airway pressure for 
shunt and supplementary oxygen for V/Q mismatch) are 
considered appropriate in each case. So, mirroring their 

terminology faithfully captures expert knowledge in a 
way they can agree is accurate, which in this case includes 
the relevant causal connections to interventions or tests.

Neurological explanation for “happy hypoxics”: We 
model the patient’s perceived need for air separately from 
dyspnea (shortness of breath). An unusual feature of 
COVID has been patients who present as “happy hypox-
ics” (physiologically hypoxic but without symptoms) [53]. 
One causal hypothesis is that neurological viral infec-
tion inhibits the perceived need for air. However, at the 
time of modeling this connection was very speculative, so 
we decided not to include this pathway, pending further 
medical research.

Complications BN description
Our Complications BN (Additional file  2) models the 
main physiological processes underlying the progres-
sion of COVID-19 from the initial infection in the 
respiratory system to complications in other organs. 
As before, the BN dictionary notes some key feedback 
loops and provides references for the mechanisms asso-
ciated with each variable mentioned below.

Overview
The model explicitly describes the status (dysfunction) 
of nine key organ systems, namely, respiratory, vascu-
lar, cardiac, liver, kidney, hematologic, gastrointestinal, 
cortical and brainstem dysfunctions. Among these, we 
choose to paint a more fine-grained picture of the Vas-
cular (nodes in blue) and Cardiac (nodes in green) sys-
tems due to their potential earlier involvement, as well 
as more significant System-wide impact (nodes in off-
white) on Other organs (nodes in orange).

The full picture of the pulmonary system is shown 
in the Respiratory model; here we retained a few key 
Pulmonary variables (nodes in yellow) and two major 
consequences of pulmonary dysfunction due to their 
system-wide impact: Hypoxemia and Hypercapnia. 
Two Background factors (nodes in purple) are added 
only for illustrative purposes.

Pulmonary system and direct viral impact
Despite its initial establishment in the pulmonary system, 
infection with SARS-CoV-2 can potentially drive the dys-
function of all listed organ systems directly via two main 
mechanisms, Direct viral injury and the Sys-
temic immune/inflammatory response, through-
out the entire process of the disease. In particular, they 
both can affect the vascular system by reducing Vas-
cular integrity and Vascular tone. Vascular 
integrity refers to the status of endothelial structure com-
promising permeability, and the vascular tone refers to the 
degree of constriction of a blood vessel.
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The systemic inflammatory response can additionally 
increase the probability of Hypercoagulable state 
(as also depicted in the Respiratory model) and Dehy-
dration. For the cardiac system, direct viral injury and 
the systemic inflammatory response might both result in 
Acute cardiac inflammation.

Vascular system
The vascular function (in this model) represents the abil-
ity of blood vessels to ensure sufficient blood circulation 
to meet the metabolic needs and energy requirements 
of the organs. Reduced vascular tone, Reduced 
vascular integrity and Hypercoagulable 
state are three major mechanisms that contribute to 
vascular dysfunction.

The first two mechanisms can both lead to Reduced 
functional intravascular volume, i.e., less 
blood is available to supply the organs because of the loss 
of vascular tone or the shift of intravascular fluid to the 
interstitium (Fluid shift to interstitium) due 
to altered permeability (vascular integrity).

The hypercoagulable state may increase the vascu-
lar resistance to flow of blood through affected 
vessels. Abnormally low vascular resistance is also prob-
lematic because it can lead to insufficient pressures needed 
to ensure the distribution of blood and perfusion of the 
organs.

Cardiac system incl. vascular interaction
The cardiac and vascular systems closely interact. While 
vascular resistance and functional intravascular volume 
predominately drive the amount of blood available to 
supply organs, the heart creates the forward movement 
of blood needed to maintain supply to organs (organ 
perfusion). This is measured as Stroke volume (the 
volume of blood ejected for each stroke) and Cardiac 
output (the product of heart rate, not shown, and 
stroke volume).
Acute cardiac inflammation and Ischemic 

cardiac injury can both cause abrupt or gradual 
deterioration in the cardiac output, either by inducing 
Abnormal contractility of the heart (the strength 
with which it pumps), or the synchronicity and efficiency 
with which it pumps; the latter can be manifest as abnor-
mal heart rate or arrhythmia.

Hypercoagulable state can lead to insufficient supply 
of blood more directly and acutely by blocking the path-
way to certain parts of body; this can cause ischemic car-
diac injury and pulmonary hypertension in the heart and 
lungs, respectively.

Other organ dysfunctions and failures
The ultimate need of organs is enough oxygen and 
metabolites supplied through the blood circulation to 
maintain their vital functions, we have therefore replaced 
Hypoxia from the Respiratory model with separate 
nodes that distinguish between the supply of blood (as 
organ perfusion) and the supply of oxygen and metabo-
lites. Reduced supply of blood will lead to reduced sup-
ply of oxygen and metabolites, and the latter will also be 
reduced if there is a lack of oxygen in blood (hypoxemia) 
even if the supply of blood is normal.

Reduced supply of oxygen and metabolites can lead 
to dysfunction of any of the listed end-organs, which 
often further disrupts the balance of the whole system. 
For example, liver, kidney and gut play important roles 
in maintaining the balance of electrolytes, metabolites 
and acids. The dysfunction of these organs would gen-
erate feedback loops with other organs including pul-
monary, cardiac, and vascular systems via electrolyte 
and metabolite imbalance and acidosis. In this model, 
we summarize all such feedback loops by present-
ing only their final deterioration to particular organ 
failures.

Since vascular failure is ill defined, we instead represent 
a key pathway in which a hypercoagulable state combined 
with possible liver, kidney and hematologic dysfunctions 
lead to general coagulopathy that can in turn contrib-
ute to severe vascular dysfunction that may result in the 
heart stopping and subsequent death. Critical failures of 
the brainstem, pulmonary, and cardiac systems also rap-
idly lead to an inability to support any of the vital organ 
functions and are terminal events.

Complications BN issues
As we did for the Respiratory model, here we describe 
two issues with our Complications model that seem 
noteworthy, involving modeling choices and/or domain 
knowledge. 
Hypercoagulable  state and  Coagulabil-

ity  seem logically related The model includes the 
Boolean variable Hypercoagulable state, and also 
a more general variable Coagulability, which has 
states to represent both hypercoagulability and hypoco-
agulability. This reflects the way our experts consistently 
preferred to describe the system, and our primary goal 
in this model was to capture expert knowledge in a way 
they can agree is accurate. It may be efficient to focus on 
a particular state, such as hypercoagulability, where that 
has a higher frequency or specific effects that other states 
do not. However, a reasonable alternative would be to 
represent Coagulability twice, at two different time 
steps, with hypercoagulable as one possible state of 
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this variable—which is what we use in our Progression 
DBN model.

Lung-acidosis feedback loop The Complications model 
involves several important feedback loops. For example, 
as noted in the description, if the lungs are damaged and 
do not adequately remove  CO2, then the resulting acido-
sis may damage the lungs themselves.

BN Dictionaries with references
All variables in these two BNs have both descriptions and 
their relationships with their parent nodes (supported by 
selected references) specified in their Dictionaries (Addi-
tional files 3  & 4); a few illustrative examples are given in 
Fig. 2. Here we discuss some general features.

Definitions and databases Chronic pulmonary 
disease in Fig.  2 illustrates that many of our variable 
descriptions are explicitly aligned with the case database, 
e.g., IDDO [54] or LEOSS [55], that we will use to param-
eterize both our expert and application BN models. If 
other researchers use slightly different descriptions and 
datasets, these are unlikely to alter the relevant causal 
connections, though different datasets in particular may 
not be sufficiently detailed to support each relation and, 
as is always the case, will need appropriate processing.

Observable versus latent Symptoms such as Ageusia 
and/or anosmia or test results such as Low oxygen 
saturation  (SaO2) are classified as directly observable 
(purple), and can often be represented as a node influ-
enced by (and considered a noisy measurement of ) a few 
underlying variables, but does not itself influence those 
underlying processes. Hence, additional observations can 
usually be represented simply by adding another such 
variable without changing the underlying causal struc-
ture. For simplicity, we omit these variables here, with the 
exception of Low oxygen saturation  (SaO2) in the Respir-
atory model. Most other variables are classified as latent, 
even if, like Hypoxemia, their state can be easily and 
reliably determined via an observation like the  SaO2 test.

Number of variable states Many of our variables, such 
as Ageusia and/or anosmia, are Boolean: their 
only possible states are true or false. The names of these 
variables generally refer to the abnormal status of a mech-
anism, since people more readily interpret abnormal 
states as causes, particularly when they tend to produce 
an abnormal result [56], and to make the causal diagrams 
more easily digested in the absence of visible states. Most 
of our other variables, such as Acidosis, are ordered 
categorical: they have a finite number of discrete states 
in a meaningful order (usually degrees of severity). Con-
tinuous variables are often discretized during a measure-
ment process and/or during BN construction to assist 

with probability estimation and computation (although 
BNs can include them). The states are not depicted in the 
causal DAG, but may be inspected in the BN GeNIe file.

Minimizing the state space Many variables were men-
tioned during elicitation and considered as candidates for 
inclusion, but ultimately excluded from the BN as unnec-
essary complications that would only make the BN harder 
to understand and parameterize. Several such examples 
exist: Electrolyte imbalance was soon replaced 
with the more specific Acidosis; Acute cardiac 
injury and Type I/II myocardial infarc-
tion were exchanged in preference for the more general 
Ischemic cardiac injury and Acute cardiac 
inflammation, along with other associated changes; 
several concepts surrounding innate versus adaptive 
immunity and finer distinctions between immune and 
inflammatory response were shelved in favor of a simple 
node Systemic immune/inflam. response repre-
senting the overall severity of the response. Similarly, we 
have included sufficient states to adequately represent the 
elicited causal relationships; adding further states would 
not change the causal structure significantly, but would 
add superfluous complexity. For example, in the Respira-
tory model, Hypercapnia and Acidosis are repre-
sented with just two states, while Hypoxemia and Low 
oxygen saturation are represented with three, due 
to the conclusions of that model being particularly sensi-
tive to the latter nodes.

Qualitative vs. quantitative influence In principle, the 
relationships depicted in BNs can be highly complex, 
so a causal DAG alone could be hard to interpret with-
out examining the details of the parameters. In practi-
cal applications such as this one, however, the reader 
usually has some basic domain knowledge which can 
be augmented by brief descriptions such as the ones we 
have given for the BN as a whole, and in the Dictionar-
ies for each variable’s parents. It then becomes fairly easy 
to interpret the kind of influence indicated by each of 
the arcs. For example, Upper respiratory tract 
epithelial infection is shown as a parent of 
Alveolar epithelial infection, which does 
not in itself indicate how the parent affects the child 
(unless additional markup is applied, such as plus and 
minus symbols), but the natural and correct reading here 
is that the former increases the probability of the latter. 
Our BN files do include parameters that roughly indicate 
a degree and direction of influence. These were often sug-
gested by our experts during structure elicitation, and 
used to assist structure validation, but they were not for-
mally elicited or estimated. Precise effects may vary with 
the local context of application, and precise parameters 
are often learned from an appropriate local dataset.



Page 17 of 21Mascaro et al. BMC Medical Research Methodology           (2023) 23:76  

Discussion and conclusion
Value of our method
Methodologically, we have demonstrated how to imple-
ment best practice recommendations in a systematic, 
expanded procedure for developing BNs via expert elici-
tation. This can be emulated, adapted and refined in 
future projects. It is particularly well suited to projects 
modeling emergent diseases, since (i)  it uses large-scale 
online expert elicitation to develop causal structure, 
rather than only using data or literature directly, and 
(ii)  it produces a family of well-documented theoretical 
models that make the expert knowledge freely available 
and that can be updated as the knowledge base develops, 
rather than only producing a few practical BN tools that 
can be derived from, and supported by, the hidden theo-
retical base.

Harnesses worldwide expertise when data and literature are 
lacking
We demonstrated how to overcome the scarcity of data, 
and the exceptional abundance and unreliability of 
research literature, by using groups of volunteer, inde-
pendent, specialist domain experts to filter, interpret and 
discuss the literature findings and develop a reasonable 
current consensus. We also utilized intermediary experts 
to facilitate the exchange of knowledge from domain spe-
cialists to BN modelers and vice versa.

This approach is unusual, and the total number of 
expert hours required was exceptionally high. We 
obtained these hours by recruiting a large number of 
experts to contribute the time they could spare, which 
was facilitated by our extensive use of online meetings. 
In addition to being COVID-safe, they had the logistical 
advantages that experts could meet briefly within their 
busy schedules from their normal places of work and in 
highly dispersed locations, without the overhead of travel 
time or even needing to be in the same country, which 
effectively broadened our pool of available experts and 
the number of elicitation sessions which were feasible. 
Online tools also enabled all our elicitation exchanges to 
be easily recorded.

Adaptive evolution of theoretical models that can be updated 
and used by others
We followed an unusual two-phase process of BN devel-
opment and publication. We aimed to first elicit relatively 
detailed causal models that captured the experts’ under-
standing of the relevant processes, including theoreti-
cally salient latent variables that might not be useful in 
the specific, practical BN tools we aimed to subsequently 
develop. Furthermore, we are publishing here the full 
details of, and documentation for, these causal models. 
The goal is to make the elicited expert knowledge freely 

available to others in a form that can be readily updated 
as medical science progresses, and used for a variety of 
purposes.

Since both the method and domain were large, com-
plex and novel, it was necessary to subdivide, adapt and 
evolve both the elicitation procedure and the models. We 
developed a systematic approach of refining and checking 
the group output with one-on-one follow-up meetings as 
necessary, with both group members and new, independ-
ent recruits. By enlisting new domain experts, we pro-
gressively validated and refined the causal DAGs in the 
iterative, incremental style that is broadly recommended 
for BN building, but is more logistically challenging and 
has rarely been achieved when using expert elicitation.

Although we have specified our method in clear logical 
sequences, we stress that in model building, teams need 
to be flexible and in some respects progress is unpredict-
able. Pre-workshop questionnaires, which we abandoned, 
may prove more suited to other topics, especially where 
variables are known or easily identified beforehand; an 
elicitation workshop may reveal that substantial sup-
plementary expertise or literature is required; it may 
become clear that models should be split or merged; and 
even after experts have signed off on a model it may need 
to be abandoned if subsequent testing with numerical 
datasets doesn’t support it.

There is also scope to refine our methods further and 
test some variations in future applications. For exam-
ple, group workshops followed by one-on-one follow 
ups worked well, bringing key information and model 
structures together quickly (via the workshops) and 
then allowing more cautious validation and refinement 
of those structures in detail (via the follow ups). How-
ever, we now believe that conducting some one-on-one 
interviews may be useful earlier in the elicitation process. 
They may be useful prior to questionnaires to increase 
the chance that questions handle problematic concepts 
well, or prior to group workshops to provide better struc-
ture for those sessions.

Value of our models
Representing current and future understanding
The two fully documented models presented here are 
the first published causal DAGs of COVID-19 patho-
physiology. Confidence in their quality is underwritten 
by the rigorous process used to create them. They can be 
used as a visual aid to understanding and explaining the 
internal causal processes and remaining controversies of 
COVID-19, and are accessible to audiences without spe-
cialist medical expertise.

Medical science is constantly progressing, so the causal 
DAGs presented in this paper must be refined accord-
ingly—possibly using the method we have provided here, 
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whether employed by us or by others. Fortunately, most 
of our work will not need to be repeated, since elicited 
causal DAGs can be readily updated (see Causal Bayesian 
networks). This includes resolutions to the theoretical 
issues mentioned in Respiratory BN issues and Compli-
cations BN issues, as well as adding new background fac-
tors, new diagnostic tests, and new interventions.

Feedback loops are not incorporated in these DAGs, 
even though some are important for modeling the pro-
gression of the disease over longer time scales. We noted 
some of these loops in the Dictionaries, and will discuss 
them in future work, in conjunction with presenting our 
DBN model for disease progression.

Guiding design of empirical studies
Causal DAGs are now widely recommended to inform the 
design and analysis of health-related observational stud-
ies  [57]. DAGs help researchers identify relevant factors, 
and more specifically, factors that are potential mediators, 
confounders, and sources of selection bias or measure-
ment error. So, we anticipate that the causal models pre-
sented in this paper will serve as a guide to the design of 
cohort and case-control studies of the effects of various 
demographic and clinical risk factors, or of the effects of 
various interventions, on one of several clinical outcomes 
of interest for SARS-CoV-2 infection. We also anticipate 
that these models will help data collection and stand-
ardization efforts, by identifying the issues most likely to 
affect any future and often unknown uses of the data, par-
ticularly causal analyses, and providing guidance on how 
best to avoid these issues at the data collection stage.

Causal DAGs have similar applications to the design of 
experimental studies, even where manipulation or rand-
omization of the treatment variables reduces confound-
ing. So, we anticipate that our models will also be useful 
to guide the design of clinical trials of treatments for 
SARS-CoV-2 infection.

Our DAGs can be used to identify important non-treat-
ment factors that may influence and produce unwanted 
variation in the trial outcome, and which should there-
fore be considered for control by stratification or sta-
tistical adjustment (regardless of whether treatment 
randomization is employed) in order to increase the sta-
tistical power of the experiment. Similarly, our DAGs can 
be used to identify factors that might modify the effect of 
treatments, which should therefore be used to pre-spec-
ify patient subgroups.

By quantifying the pathways in our models that con-
nect proximal outcomes such as hypoxia or biomarkers 
to key outcomes of interest such as the need for mechani-
cal ventilation or death, it may be possible to design more 
statistically efficient trials that use the former as plausible 
surrogate endpoints for the latter. For example, we may 

use the degree to which a treatment reduces hypoxia and 
specific biomarkers in a larger group of patients as a more 
statistically powerful way of quantifying the expected 
reduction in the need for mechanical ventilation, which 
eventually occurs in a smaller subset of patients.

Developing and validating practical tools
Our models will be useful in the development and/or 
validation of fully parameterized practical tools for causal 
reasoning and decision support. In addition to using 
them for individual decision-making in a clinical setting, 
such tools can also be used as an aid to policy decision-
making at a broader level, for example, by considering 
risks that apply to whole populations, or the effect of 
non-targeted interventions applied to readily identifiable 
patient subgroups.

Practical tools can be developed by any researchers 
directly from our causal DAGs, or from future updated 
versions of them. It is unlikely that a single dataset will 
contain all of the variables (and quality) required to 
parameterize our DAGs directly, and we do not expect 
the DAGs to be used in that way. Instead, we expect 
new models to be built based on the causal knowledge 
in our DAGs. We have subsequently conducted signifi-
cant quantitative work in this way5. To provide guidance 
on how others may approach this task, we outline a brief 
example from this work, involving the development of a 
prognosis model (which we call the Progression applica-
tion model) parameterized using the LEOSS database 
[55] (and subsequently, the IDDO subset of the ISARIC 
database [54]).

The purpose of the Progression application model is 
to identify patients at risk of severe outcomes among 
COVID-19 patients who were admitted to hospital (gen-
eral ward or ICU). For this purpose, the Complications 
BN was deemed the most suitable starting point. While 
we did not have direct access to the LEOSS dataset, we 
were permitted to train the model remotely and had 
access to the dataset’s schema and summary statistics. 
After consulting these, key organ systems and functions 
that had good quality data were retained — this included 
the pulmonary, cardiac, immune and vascular systems. 
One node was used to summarise the status (normal or 
abnormal) for each of the first three systems (these were 
the pulmonary function, cardiac function and systemic 
immune function nodes) while the vascular system was 
represented directly by nodes for coagulation and func-
tional intravascular volume. Additional nodes from the 
causal DAGs that were considered key and which had 
good data were included directly into the new models 

5 Publication of this work is upcoming. For an initial report, including devel-
opment, analysis and validation, see https:// osf. io/ mdve7/.

https://osf.io/mdve7/
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— these included hypoxemia, cardiac output, and end 
organ perfusion. All the nodes just described were linked 
together according to the causal pathways given by the 
Complications BN.

With this basic structure in place, the LEOSS data-
set was then further examined to identify variables that 
would provide information about an organ system, and 
where these were identified, they were used as part of 
the definition of that organ system’s summary node. For 
example, high respiratory rates were one of the attrib-
utes used to define the abnormal state of the pulmonary 
function node. Some of these variables had been identi-
fied in the DAGs already (such as hypercapnia for pulmo-
nary function), but most were new and often specific to 
the dataset (for example, records of complications that 
could be attributed to cardiac dysfunction). Generally, 
late stage dysfunctions (i.e., those in the ‘Dysfunctions 
and failures’ section of the Complications BN) had data 
that was difficult to extract, and hence these were omit-
ted. A small set of background variables (such as age and 
diabetes) were further added as causal influences of the 
organ system nodes. At this point, the model was ready 
for parameterization6.

While the details of the parameterization and perfor-
mance testing process are beyond the scope of this paper, 
we note that the model was parameterized on the LEOSS 
dataset via a remote training process and, even without 
direct data access, was capable of producing predictive 
performance competitive with simpler, non-causal Naïve 
Bayes and logistic regression models (while retaining the 
benefits of causal validity)7.

In addition to the work we have described, decision and 
utility nodes may be added to the theoretical or applica-
tion models, to allow causal BNs to formally model and 
predict the consequences of therapeutic interventions, 
which is essential for clinical reasoning and decision 
making. As new data accrues on the impacts of such 
interventions, the application models can be re-parame-
terized to remain accurate.

Even if an application model is developed independently 
of our models, the dependencies this application model 
encodes between variables (including interventions) can 
be checked against our DAGs to identify any likely dis-
crepancies. Our models thus provide a ready-made and 

well grounded source of theoretical validation for other 
research teams using different modeling methods.

In our ongoing work with these BN models, we are 
already developing a range of our own tools for either 
standalone or integrated decision support, including the 
Progression application model described above, based 
on both the LEOSS and IDDO databases. We are tai-
loring two distinct tools based on an applied version of 
the models we have described here, one for in-hospital 
prognosis and management of COVID-19 patients and 
another to support resource management and moni-
toring for confirmed cases. For the in-hospital progno-
sis tool, available information about the patient can be 
entered into the tool by a clinician directly, or retrieved 
automatically from a patient’s record. The clinician will 
then receive information not just on the patient’s over-
all prognosis, but also on risks around organs, body 
functions and treatment requirements over the next 24 
hours and the next 5 days. For resource management, 
the same application model can be used, but integrated 
into existing, centralized, government monitoring sys-
tems. The model would be used for confirmed cases 
being monitored at home or in non-medical facilities to 
quickly flag those at risk, allowing ministry staff to make 
better informed and more fine-grained decisions around 
utilization of hospital and medical resources.
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CPT  Conditional probability table
DAG  Directed acyclic graph
DBN  Dynamic Bayesian network
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The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12874- 023- 01856-1.

All the following additional files will remain available on our OSF project 
page [14] in the versions referred to here, accompanied by any subse-
quent versions of them that we develop.

Additional file 1.Respiratory causal DAG v3.8. This depicts the initial 
pathophysiological process of SARS-CoV-2 in the respiratory system, out-
lining multiple and often concurrent pathways from viral infection to key 
downstream complications such as multi-organ failure. Some variables 
are latent (i.e., not directly observable) but their probability distributions 
can be inferred from observable evidence such as clinical signs, symptoms 
and laboratory measurements, not all of which are shown in the diagram. 
Many mechanisms described in the BN can be influenced by background 
factors such as age, sex, and comorbidities, which are also not shown. BNs 
are acyclic, so feedback loops that may occur as the disease progresses are 
not included in the diagram. We divide the nodes into four color-coded 
categories: Infection process (pink), Pulmonary details (yellow), resulting 
Complications (orange), and a few illustrative examples of Signs and 
symptoms (cyan). Within the pulmonary system, we distinguish (using 
background boxes) three pathways from Infection to possible Complica-
tions: involving problems with Mechanical operation of the lungs, Gas 
exchange, and Coagulation.

6 The final application model structure can be found at https:// osf. io/ mdve7/.
7 Of greater interest would be a comparison with other causal models, 
but these are generally lacking in the literature. We did make comparisons 
with putative causal structures learned automatically (and remotely) from 
the LEOSS dataset (using the PC  [13] and CaMML  [23, 67] algorithms). 
However, while these had very good predictive performance, the number of 
variables shared with our models was not sufficient to allow them to inde-
pendently produce reliable causal structures to assess the causal relation-
ships in our DAGs.
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https://doi.org/10.1186/s12874-023-01856-1
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Additional file 2.Complications causal DAG v3.8. This depicts the main 
physiological processes underlying the progression of COVID-19 from the 
initial infection in the Pulmonary system (nodes in yellow) to compli-
cations in other organs. Vascular (nodes in blue) and Cardiac (nodes 
in green) systems are modeled in more detail due to their likely earlier 
involvement and greater system-wide impact on Other Organs (nodes 
in orange), i.e., liver, kidney, hematologic, gastrointestinal, cortical and 
brainstem dysfunction. Mechanisms that have a system-wide impact are 
colored in off-white, and we include two illustrative examples of back-
ground factors (nodes in purple).

Additional file 3.Respiratory BN dictionary v3.8. This table for the Respira-
tory BN specifies, for each variable, a description of the variable and its 
relationships to its parent nodes, supported by references to academic 
literature listed in a bibliography. Relevant evidence, background fac-
tors, and some feedback loops are noted even if not included in the BN 
diagram.

Additional file 4.Complications BN dictionary v3.8. This table for the 
Complications BN specifies, for each variable, a description of the variable 
and its relationships to its parent nodes, supported by references to aca-
demic literature listed in a bibliography. Relevant evidence, background 
factors, and some feedback loops are noted even if not included in the BN 
diagram.

Additional file 5. Members of COVID BN Advisory Group v1.2. This 
table lists all the members of our COVID BN Advisory Group who opted 
to be individually acknowledged, with their institutions and relevant 
qualifications.
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