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Abstract 

Background  Combinations of drugs are becoming increasingly common in oncology treatment. In some cases, 
patients can benefit from the interaction between two drugs, although there is usually a higher risk of developing 
toxicity. Due to drug–drug interactions, multidrug combinations often exhibit different toxicity profiles than those of 
single drugs, leading to a complex trial scenario. Numerous methods have been proposed for the design of phase I 
drug combination trials. For example, the two-dimensional Bayesian optimal interval design for combination drug 
(BOINcomb) is simple to implement and has desirable performance. However, in scenarios where the lowest and 
starting dose is close to being toxic, the BOINcomb design may tend to allocate more patients to overly toxic doses, 
and select an overly toxic dose combination as the maximum tolerated dose combination.

Method  To improve the performance of BOINcomb in the above extreme scenarios, we widen the range of variation 
of the boundaries by setting the self-shrinking dose escalation and de-escalation boundaries. We refer to the new 
design as adaptive shrinking Bayesian optimal interval design for combination drug (asBOINcomb). We conduct a 
simulation study to evaluate the performance of the proposed design using a real clinical trial example.

Results  Our simulation results show that asBOINcomb is more accurate and stable than BOINcomb, especially in 
some extreme scenarios. Specifically, in all ten scenarios, the percentage of correct selection is higher than the BOIN-
comb design within 30 to 60 patients.

Conclusion  The proposed asBOINcomb design is transparent and simple to implement and can reduce the trial 
sample size while maintaining accuracy compared with the BOINcomb design.

Keywords  Dose escalation, Model-assisted design, Drug combination, Bayesian adaptive dose-finding design, Phase 
I clinical trial design

Introduction
Drug combination therapy provides an important 
method for the treatment of difficult diseases such as 
cancer. The purpose of drug combination therapy is 
to induce synergistic therapeutic effects, increase the 

combined dose intensity, and achieve better therapeu-
tic effects without cross-toxicity. The purpose of a drug 
combination dose escalation trial is to identify the max-
imum tolerated dose combination (MTDC) based on a 
prespecified target toxicity rate. In a single-drug dose 
escalation trial, toxicity is typically assumed to increase 
with an increasing dose. However, the order of toxicity 
between dose combinations in two-drug combination 
trials is only partially known. If the dose of one drug in 
the combination increases while that of the other drug 
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decreases, it is unknown whether the toxicity increases 
or decreases (Fig.  1). This partial ordering assump-
tion impacts interim dose allocation decisions. On the 
other hand, the MTDC may differ from the combina-
tion formed by the maximum tolerated dose (MTD) of 
each drug alone due to unknown potential interaction 
between the drugs (synergy, antagonism, or no interac-
tion). In fact, multiple dose combinations may have the 
same target dose-limiting toxicity (DLT) probability, 

thus yielding an MTDC contour (Fig.  2). Therefore, 
the traditional single-drug dose-finding design cannot 
be used directly for combination drug dose-finding tri-
als. The most common method for two-drug combina-
tion trials is to fix the dose of one drug and conduct 
a dose-finding trial on the other drug, i.e., reducing a 
two-dimensional dose combination-finding problem 
to a one-dimensional dose-finding one, which largely 
limits the ability to evaluate potential synergy between 
drugs. In addition, an increasing number of methods 
applicable to two-drug combination dose-finding tri-
als have been proposed. These methods can be broadly 
classified into three categories: algorithm-based design, 
model-based design, and model-assisted design. Algo-
rithm-based designs rely on several prespecified rules 
to determine when doses are escalated, de-escalated, 
or selected as MTDC. Examples include the up-and-
down design [1], 2 + 1 + 3 design [2], and 3 + 3 + 3 and 
its derivative designs [3]. Model-based designs simulate 
the relationship between dose and toxicity probabilities 
via parametric functions. During the trial, parameter 
estimates are continuously updated to better describe 
this relationship. Thall et  al. [4] proposed an adaptive 
two-stage Bayesian design by considering a six-param-
eter joint toxicity rate model. Wang and Ivanova devel-
oped a method based on a three-parameter model that 
uses Bayesian inference [5] to estimate parameters. 
Yin and Yuan [6] used copula-type regression mod-
els to relate the toxicity rates of two drugs based on 
several feasible conditions, which can be viewed as a 

Fig. 1  Partial toxicity order as shown. The probability of toxicity is 
greater for the A1B2 combination than for A1B1. In drug combination 
trials, the order of toxicity for all dose combinations is not entirely 
clear (e.g., between A2B1 and A1B2)

Fig. 2  Example of equivalent contour lines based on DLT probability for multiple dose combinations
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generalized or two-dimensional version of the continu-
ous reassessment method (CRM) [7]. Wages et  al. [8] 
developed a partially ranked CRM by listing the pos-
sible order of the combined toxicity rates. Yin et al. [9] 
developed a Bayesian adaptive design for dose discov-
ery based on a potential 2 × 2 table. Thomas et al. [10] 
proposed a hierarchical model for the probability of 
DLT for dose combinations and applied this model to a 
Bayesian adaptive trial design. Riviere et al. [11] devel-
oped a Bayesian dose discovery design for clinical trials 
combining cytotoxic drugs with molecularly targeted 
drugs. Manjrekar et al. [12, 13] proposed using a con-
tinuation ratio model to separate the toxicity and effi-
cacy profiles of each drug, and combining them into the 
optimal dosing region to determine the combination. Li 
et al. [14] proposed a Bayesian hierarchical model that 
jointly models the unordered probabilities of toxicity 
and efficacy in the design of a dose/schedule-finding 
trial, and applied a Bayesian isotonic transformation 
to the posterior samples of the toxicity probabilities 
to impose a partial ordering constraint. Guo et al. [15] 
developed a dose-schedule-finding algorithm to allo-
cate patients sequentially to a desirable dose–sched-
ule combination and to select an optimal combination 
at the end of the trial. Model-assisted designs do not 
prespecify any relationship between dose and toxicity 
and therefore do not rely on any parametric assump-
tions when finding the MTDC. However, unlike in 
algorithm-based designs, the decision process for dose 
escalation and de-escalation is aided by statistical mod-
els. Lin et  al. [16] proposed a two-dimensional Bayes-
ian optimal interval design, Zhang et al. [17] proposed 
a Bayesian optimal interval-based design for explor-
ing multiple MTDCs, and Pan et al. [18] extended the 
keyboard design to a two-drug combination dose-find-
ing trial. Among them, the two-dimensional Bayes-
ian optimal interval (BOINcomb) design has overall 
good operating characteristics [16]. The BOINcomb 
design is also comprehensible and easily implementa-
ble as an extension of the one-dimensional Bayesian 
optimal interval (BOIN) design to the two-drug com-
bination case. However, due to the complexity of two-
drug combination trial scenarios, the two-dimensional 
Bayesian optimal interval design may not perform 
well in some extreme scenarios and may tend to allo-
cate more patients at overly toxic doses [19]. In prac-
tice, extreme scenarios may not be common, but they 
do arise in real trials [20–22]. For example, in a phase 
I study of Ganetespib and Ziv-Aflibercept in patients 
with advanced carcinomas and sarcomas, the low-
est and starting dose combination may be adjacent to 
toxic dose combinations in the dose-combination grid 
being investigated [22]. To improve the performance, 

specifically, flexibility and stability, of the BOINcomb 
design in extreme scenarios, we modify BOINcomb by 
proposing adaptively-shrinking dose escalation and de-
escalation boundaries, the idea of which has been suc-
cessfully implemented with improvements in design 
performance demonstrated in one-dimensional phase I 
dose-finding trials [23, 24] and two-dimensional dose-
schedule-finding trials.

The rest of this paper is organized as follows. In Sec-
tion 2, the BOIN design, the BOINcomb design, and the 
improved BOINcomb design, denoted as asBOINcomb 
design, are presented. In Section 3, a simulation study is 
used to evaluate our proposed design. The results of the 
simulation study are also analyzed. Section 4 uses a trial 
example to illustrate our proposed design. Section 5 pro-
vides some brief discussions. Finally, a summary is pre-
sented in Section 6.

Methods
BOIN design
The BOIN (Bayesian optimal interval) design is a Bayes-
ian model-assisted phase I dose-finding design proposed 
by Liu and Yuan Y (2015). The design is simple and flex-
ible and performs comparably to model-based designs 
[25]. Dose escalation and de-escalation in this design are 
determined by comparing the observed DLT rate at the 
current dose with a fixed pair of dose escalation and de-
escalation boundaries. The specific rules are as follows: 
assume that p̂j = yj/nj is the observed DLT probability 
at the current dose, λe and λd denote the predetermined 
dose escalation and de-escalation boundaries, respec-
tively, and j is the current dose level. The BOIN design 
determines the next dose as follows:

•	 if p̂j ≤ �e , then escalate the dose level to j + 1,
•	 if p̂j > �d , then de-escalate the dose level to j – 1,
•	 otherwise, i.e., λe < p̂j ≤ �d , retain the same dose 

level j.

The trial continues until the prespecified sample size is 
exhausted or the trial is stopped due to excessive toxicity.

The boundary designation algorithm for the BOIN 
design aims to minimize incorrect decisions on dose 
assignment. It makes three assumptions:

where pj denotes the true toxicity probability at dose 
level j (1, 2..., j), where φ1 denotes the highest toxicity 

H0j : pj = φ

H1j : pj = φ1

H2j : pj = φ2
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probability that is deemed subtherapeutic (i.e., below the 
MTD) such that dose escalation should be made, and φ2 
denotes the lowest toxicity probability that is deemed 
overly toxic such that dose deescalation is required.

Under the Bayesian model, the three hypotheses are 
given equal prior probabilities, denoted as πkj = Pr(Hkj), 
k = 0, 1, 2, and the escalation and de-escalation bounda-
ries are:

The BOIN design is easy to implement and has com-
parable performance to that of existing one-dimensional 
phase I dose-finding design [25].

BOINcomb design
The two-dimensional BOIN design for drug combina-
tion trials is based on an extension of the one-dimen-
sional design. The details are as follows. Assume that p̂jk 
denotes the probability of toxicity of two drugs at dose 
combination (j, k), 1 ≤  j ≤ J,1 ≤ k ≤ K. Assume that the 
current dose combination is (j, k), and let p̂jk denote the 
estimated probability of toxicity based on the cumulative 
information of the dose combination (j, k). p̂jk = yjk/njk , 
where yjk and njk denote the number of patients with 
toxicity and patients treated at that dose combination, 
respectively. The acceptable dose escalation set is defined 
as AE = {(j + 1, k), (j, k + 1)}, and the allowable dose de-
escalation set is AD = {(j − 1, k), (j, k − 1)}.

The rules of BOINcomb are as follows:

(1)	 Treat the first cohort of subjects with the lowest 
dose combination (1, 1).

(2)	 Assuming that the current cohort is treated with 
dose combination (j, k), then for the next cohort of 
patients:

(a)	 If p̂jk ≤ �e , escalate the dose to the dose 
combination with the largest value of 
Pr pj′k ′ ∈ (�e, �d)|yj′k ′  in AE.

(b)	 If p̂jk ≥ �d , de-escalate the dose to the 
dose combination with the largest value of 
Pr
{

pj′k ′ ∈ (�e, �d)|yj′k ′
}

 in AD.
(c)	 Otherwise, if �e < p̂jk < �d , the doses remain 

the same for the combination (j, k).

(1)�e =
log

(

1−φ1
1−φ

)

log
{

φ(1−φ1)
φ1(1−φ)

}

(2)�d =
log

(

1−φ
1−φ2

)

log
{

φ2(1−φ)
φ(1−φ2)

}

(3)	 This process continues until the total sample size is 
exhausted.

During dose escalation and de-escalation, if there are 
multiple optimal dose combinations in sets AE and AD, 
we randomly choose one with equal probability. If no 
dose combination exists in sets AE and AD, we retain 
the current dose combination. Regarding the encoun-
tered boundary case, if j = 1 and p̂jk ≥ �d , the next dose 
combination is (j, k - 1), and if (j, k) = (1, 1), the cur-
rent dose is kept. If j = J and p̂jk ≤ �e , then the next 
dose combination is (j, k + 1), and if (j, k) = (J, K), then 
the current dose is maintained. Due to the symmetry 
between j and k, the same rules apply to k. Each pjk fol-
lows the (noninformative) Jeffreys prior Beta (0.5, 0.5) 
distribution [26].

asBOINcomb design
To improve the flexibility and stability of BOINcomb 
in extreme scenarios, we adopt nonfixed boundaries 
and introduce sample size nj to dynamically adjust the 
boundary such that it shrinks with increasing sam-
ple size. However, if only this aspect is considered, 
both dose escalation and de-escalation would be more 
likely to occur in the later stages of the trial, potentially 
increasing the number of people treated at high doses. 
Therefore, we also use parameter t to further control 
the change trend of the boundary and ensure that the 
initial boundary is the same as in the BOIN design 
(when nj is 1, φ1 and φ2 are the same as in the BOIN 
design). In the BOIN design framework, we reconstruct 
φ1 and φ2 as

where nj is the cumulative number of patients treated 
at dose level j during the trial and t1,t2 > 0 are two accel-
eration factors to control the contraction rate of the two 
boundaries. Parameters ∆1 and ∆2 are the initial value 
of the prespecified boundaries, i.e., the initial bound-
ary value when the first patient is enrolled in the trial. 
Clearly, the two fixed boundaries of the original BOIN 
design now depend on the dynamic number nj, i.e., the 
number of patients treated at dose level j. This method 
of construction would clearly make φ1 and φ2 converge 
to the MTDC target φ as nj increases. This construction 

φ1 = φ−
�1

nj−1

t1
+ 1

φ2 = φ+
�2

nj−1

t2
+ 1
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is also highly flexible for designing clinical trials. For 
example, to reduce toxicity, we can penalize the prac-
tice of assigning patients to dose levels above the MTDC 
by using discount parameters t1 > t2 so that the de-esca-
lation boundary shrinks more rapidly than the escala-
tion boundary. Similar to the BOIN design, the optimal 
λ1j and λ2j minimize the decision error rate and can be 
derived as λe(Δ1, nj) and λd(Δ2, nj) with the redefined φ1 
and φ2 plugged into (1) and (2), respectively:

where we set a parameter set controlling the bound-
ary shrinkage with thousands of parameter combinations 
to ensure that the optimal design performance can be 
achieved in various clinical trial scenarios. The rest of the 
design rules are the same as in BOINcomb. In contrast to 
the BOINcomb design, since a dynamic boundary value 
is adopted in the asBOINcomb design, the dose decision 
is related not only to the number of patients treated at 
the current dose but also the total number of patients 
enrolled in the trial. Moreover, like the BOINcomb 
design, the asBOINcomb design also has the advantages 

(3)�e =

log







1+ �1

(1−φ)

�

nj−1

t1
+1

�







log










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�
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�
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log−1







1− �2

(1−φ)

�

nj−1

t2
+1
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log
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of transparency and convenience, and the dose decision 
table can still be generated in advance according to the 
trial settings.

The parameter t1and t2, which control the boundaries, 
play an important role in a clinical trial. Its value can be 
determined through simulation and will influence the 
rate of dose escalation in the trial. When conducting a 
clinical trial, it is important to carefully select the value 
of t1and t2 in order to ensure the safety and performance. 
Therefore, when conducting simulation studies to assess 
the risks of a trial, biostatisticians must collaborate more 
closely with clinical investigators to assess the risks of tri-
als. In general, when setting the t parameters, to further 
enhance safety of the design, especially in oncology tri-
als, we recommend to choose t1 > t2, the trial will be more 
conservative in terms of dose escalation, and conversely, 
a fast rate of dose escalation may increase the toxicity of 
the trial.

To clarify our design, Table 1 provides examples of the 
values of (λe (nj), λd(nj)) for target φ = 0.3.

Simulation studies
Determination of the boundary range
Due to the dynamic properties of the asBOINcomb 
boundaries, there may be a better choice than the origi-
nal BOINcomb recommended boundaries. We con-
ducted a simulation study for the specified values of the 
default boundaries. In addition to the default values rec-
ommended by the original BOINcomb design (∆1 = 0.6φ, 
∆2 = 1.4φ), we considered eight different sets of values 
(Table 2).

We set DLT = 0.3 and assigned ten different dose-tox-
icity scenarios (Table 3), setting 5 × 3 dose levels for the 
trial with a maximum sample size of 60 and an enroll-
ment cohort size of 3. Each scenario was simulated 1000 
times. The following metrics were assessed:

Table 1  Dose escalation and de-escalation boundaries for the asBOINcomb design, with φ = 0.3, t1 = t2 = 100, Δ1=0.3φ, and Δ2=1.7φ

nj 3 6 9 12 15 18 21 24 27 30

λe 0.179 0.186 0.190 0.194 0.197 0.200 0.203 0.206 0.208 0.211

λd 0.402 0.397 0.394 0.392 0.389 0.387 0.385 0.383 0.381 0.379

Table 2  Eight different boundary ranges (∆1 is the initial value of the increasing boundary and ∆2 is the initial value of the decreasing 
boundary)

bp_1_9 bp_2_8 bp_3_7 bp_4_6 bp_5_5 bp_6_4 bp_7_3 bp_8_2 bp_9_1

∆1 0.1φ 0.2φ 0.3φ 0.4φ 0.5φ 0.6φ 0.7φ 0.8φ 0.9φ

∆2 1.9φ 1.8φ 1.7φ 1.6φ 1.5φ 1.4φ 1.3φ 1.2φ 1.1φ
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Table 3  Ten realistic toxicity scenarios with a target toxicity probability of 0.3, where the bold values indicate the maximum tolerated 
dose combination (MTDC)

S: Scenario

Dose Level Agent 1

1 2 3 4 5 1 2 3 4 5

Agent 2 S1 S2

1 0.05 0.1 0.15 0.3 0.45 0.15 0.3 0.45 0.5 0.6

2 0.1 0.15 0.3 0.45 0.55 0.3 0.45 0.5 0.6 0.75

3 0.15 0.3 0.45 0.5 0.6 0.45 0.55 0.6 0.7 0.8

S3 S4

1 0.02 0.07 0.1 0.15 0.3 0.3 0.45 0.6 0.7 0.8

2 0.07 0.1 0.15 0.3 0.45 0.45 0.55 0.65 0.75 0.85

3 0.1 0.15 0.3 0.45 0.55 0.5 0.6 0.7 0.8 0.9

S5 S6

1 0.01 0.02 0.08 0.1 0.11 0.05 0.08 0.1 0.13 0.15

2 0.03 0.05 0.1 0.13 0.15 0.09 0.12 0.15 0.3 0.45

3 0.07 0.09 0.12 0.15 0.3 0.15 0.3 0.45 0.5 0.6

S7 S8

1 0.07 0.1 0.12 0.15 0.3 0.02 0.1 0.15 0.5 0.6

2 0.15 0.3 0.45 0.52 0.6 0.05 0.12 0.3 0.55 0.7

3 0.3 0.5 0.6 0.65 0.75 0.08 0.15 0.45 0.6 0.8

S9 S10

1 0.005 0.01 0.02 0.04 0.07 0.05 0.1 0.15 0.3 0.45

2 0.02 0.05 0.08 0.12 0.15 0.45 0.5 0.6 0.65 0.7

3 0.15 0.3 0.45 0.55 0.65 0.7 0.75 0.8 0.85 0.9

Fig. 3  The PCS results of simulation studies with different dose boundary ranges
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(1)	 The percentage of simulated clinical trials in which 
the correct dose combination was selected as the 
MTDC (PCS).

(2)	 The percentages of patients at the MTDC 
(PNMTDC).

(3)	 Average number of DLTs (NDLTS).

According to Fig.  3, the first 7 groups of boundaries 
tend to outperform the last two groups of boundaries 
in most scenarios when evaluated using the PCS metric. 
In particular, the first group of boundaries in scenario 4 
exhibits a 7.3% higher PCS value compared to the origi-
nal recommended boundary. Overall, the PCS values of 
the first 7 groups of boundaries are comparable.

According to Fig.  4, the first 7 groups of boundaries 
tend to be better than the last two groups of boundaries 
in most scenarios when evaluated using the PNMTDC 
metric. Specifically, the first group of boundaries in sce-
nario 4 exhibits a 13% higher PNMTDC value compared 
to the original recommended boundaries. Among the 
first five groups of boundaries, the boundary of group 3 
performs particularly well.

Figure  5 indicates that the latter two groups of 
boundaries often have smaller DLTs, but this is due to 

a significant decrease in PCS and PNMTD. As a result, 
these groups are not selected. In general, the first three 
boundary groups perform better in terms of DLT control 
and outperform the original recommended boundary 
group (group 6) in most scenarios. Overall, the design 
performance under the first three groups of boundaries is 
better. These boundaries provide more adjustment space 
for dose escalation and de-escalation, allowing for greater 
flexibility in dosing and the potential to explore the most 
suitable method for the current scenario. Additionally, all 
three indicators PCS, PNMTDC and DLTs are more sta-
ble under the boundary of group 3. Therefore, ∆1 = 0.3φ 
and ∆2 = 1.7φ are recommended.

Simulation studies
After determining the optimal bounding range (∆1 = 
0.3φ, ∆2 = 1.7φ), we conducted a simulation study of 
the performance of asBOINcomb and BOINcomb at 
multiple sample sizes (from 30 to 60 step by 3) using the 
settings in Section 3.1. The BOINcomb design was imple-
mented using the R package BOIN and with the same 
bounding range. Each trial continued until the sample 
was exhausted, unless early termination occurred due to 
excessive toxicity at the lowest dose combination.

Fig. 4  The PNMTDC results of simulation studies with different dose boundary ranges
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According to Fig.  6, asBOINcomb outperforms 
BOINcomb when the sample size is 30–60 for all 10 
scenarios and converges faster, especially in some 
extreme scenarios (scenarios 4, 5, 9). For example, in 
scenario 4, the PCS of asBOINcomb with a sample size 

of 39 is comparable to that of BOINcomb with a sam-
ple size of 51. This demonstrates that asBOINcomb 
can achieve comparable accuracy to BOINcomb with 
a smaller sample size, which is beneficial in a clinical 
context.

Fig. 5  The DLTs results of simulation studies with different dose boundary ranges

Fig. 6  PCS comparison of BOINcomb and asBOINcomb designs for simulation studies with multiple sample sizes
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According to Fig.  7, asBOINcomb is generally com-
parable to BOINcomb in terms of PNMTDC when the 
sample size is between 30 and 60. However, in certain 
extreme scenarios (scenarios 4, 5, and 9), asBOINcomb 
performs better. For example, in scenario 4, asBOIN-
comb exhibits a 8–10% higher PNMTDC than BOIN-
comb at sample sizes between 33 and 39.

According to Fig.  8, asBOINcomb is generally 
comparable to BOINcomb in terms of DLTs when 
the sample size is between 30 and 60. In scenario 2, 
asBOINcomb exhibits improved DLTs at the cost of a 
partial decrease in PNMTDC.

Combining the three metrics of PCS, PNMTDC, 
and DLTs, asBOINcomb has better accuracy than 
BOINcomb, especially in some extreme scenarios, or 
equivalently, asBOINcomb can achieve performance 
comparable to BOINcomb with a smaller sample size.

Trial example
To further evaluate the proposed strategy, we applied 
the proposed design to a clinical trial of PF03084014 
combined with doxorubicin for the treatment of 
advanced triple-negative breast cancer (TNBC). 
PF-03084014 is a reversible, noncompetitive, and 
selective secretase inhibitor that blocks the NOTCH 

Table 4  Toxicity scenarios for PF03084014 in combination with 
doxorubicin

PF03084014

doxorubicin 1 2 3

2 0.22 0.33 0.67

1 0.08 0.13 0.36

Fig. 7  Comparison of PNMTDC of BOINcomb and asBOINcomb designs for simulation studies with multiple sample sizes

Fig. 8  Comparison of DLTs for simulation studies with BOINcomb and asBOINcomb designs at multiple sample sizes
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signaling pathway. In preclinical studies, this combi-
nation has demonstrated anticancer efficacy in solid 
tumor models, such as advanced thyroid cancer and 
sclerofibrosarcoma, and in T-cell acute lymphoblastic 
leukemia. In TNBC patient-derived and cell lineage 
xenograft models, the combination of PF-03084014 
with doxorubicin greatly improved the inhibition of 
tumor growth [27–31].

In this phase I study (A8641016), patients with 
advanced TNBC were evaluated for safety, tolerabil-
ity, pharmacokinetics, and antitumor efficacy. The goal 
of the study was to determine the MTDC of the drug 
PF03084014 when combined with the chemotherapy 
drug doxorubicin. The dose exploration component used 
a modified probability interval technique based on a 
2 × 3 matrix design to evaluate toxicity. On day 1 of each 
21-day cycle, oral PF-03084014 was coadministered with 
intravenous doxorubicin twice a day.

To redesign the trial, we fitted logistic regression mod-
els to the data observed in this PF03084014 with doxo-
rubicin combination trial. Table  4 illustrates the DLT 
generated using the estimated probability of toxicity for 
various combinations of PF03084014 with doxorubicin. 
This probability reflects a clinician’s estimation of the 
toxicity of the drug combination.

The target toxicity probability was set to 0.33, the maxi-
mum sample size was 30 patients, the cohort size was 3, 
and the first group of patients was treated with the lowest 
dose combination (1, 1). After the parameter set simu-
lation, the optimal parameters t1 = 300 and t2 = 1 were 
selected as the boundary control conditions for the trial. 
Figure  9 shows the dose allocation path for the subse-
quent cohort.

As shown in Fig.  9, asBOINcomb can quickly locate 
the MTDC and treat most patients with the correct dose 
combination. The estimated toxicity probability matrix at 
the end of the trial is shown in Fig. 10.

“-” represents a dose combination that was not admin-
istered in the trial. The dose combination (2, 2) is selected 
as the MTDC. As shown in Figs. 9 and 10, the dose lev-
els administered converged to the MTDC starting with 
6 sequence of enrollment patients, indicating that the 
asBOINcomb design can rapidly target the MTDC and 
treat most patients (60%) with the correct dose combi-
nation, while also preventing any patients from being 
treated at doses above the MTDC. This minimizes the 
risk of DLT and ensures the safety of the trial.

Discussion
From statistical and clinical viewpoints, the proposed 
combination designs are simple and easy to understand. 
But there are some practical or ethical issues that have 
not been considered in actual trials. The above design 
aims to find individual MTDC in the drug combination 
trial and is not suitable for finding MTDC profiles. This is 
a topic of our future research.

Conclusion
We improve the two-dimensional Bayesian optimal inter-
val design by proposing adaptively-shrinking dose esca-
lation/de-escalation boundaries, which converge with 
increasing sample size. In addition, we introduce the 
parameter t1 and t2 to control the variation trend of the 
dose escalation/de-escalation boundaries and establish a 
parameter set to achieve optimal performance. Our simu-
lation results demonstrate that the improved BOINcomb 

Fig. 9  Example of PF03084014 in combination with doxorubicin
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design has better accuracy and stability than the origi-
nal design, especially in some extreme scenarios. This is 
largely due to the controllable dynamic boundary which 
allows for different rates of shrinking for the escalation 
and de-escalation boundaries. For instance, in highly toxic 
scenarios, the de-escalation boundary can be set to shrink 
at a slightly faster rate than the escalation boundary, as 
stricter or smaller boundaries reduce the risk of expos-
ing subjects to over-toxic doses. The improved accuracy 
of asBOINcomb means that it can achieve comparable 
performance to BOINcomb with a smaller sample size, 
which is highly beneficial in clinical trials. Additionally, 
the asBOINcomb design allows clinical trial investigators 
to make decisions based on decision tables, while main-
taining the same flexibility and transparency as the BOIN-
comb design. In conclusion, the proposed design provides 
a new reference method for Phase I dose finding in subse-
quent drug combination clinical trials.
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