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Abstract 

Background  Science is becoming increasingly data intensive as digital innovations bring new capacity for continu-
ous data generation and storage. This progress also brings challenges, as many scientific initiatives are challenged by 
the shear volumes of data produced. Here we present a case study of a data intensive randomized clinical trial assess-
ing the utility of continuous pressure imaging (CPI) for reducing pressure injuries.

Objective  To explore an approach to reducing the amount of CPI data required for analyses to a manageable size 
without loss of critical information using a nested subset of pressure data.

Methods  Data from four enrolled study participants excluded from the analytical phase of the study were used to 
develop an approach to data reduction. A two-step data strategy was used. First, raw data were sampled at different 
frequencies (5, 30, 60, 120, and 240 s) to identify optimal measurement frequency. Second, similarity between adja-
cent frames was evaluated using correlation coefficients to identify position changes of enrolled study participants. 
Data strategy performance was evaluated through visual inspection using heat maps and time series plots.

Results  A sampling frequency of every 60 s provided reasonable representation of changes in interface pressure over 
time. This approach translated to using only 1.7% of the collected data in analyses. In the second step it was found 
that 160 frames within 24 h represented the pressure states of study participants. In total, only 480 frames from the 
72 h of collected data would be needed for analyses without loss of information. Only ~ 0.2% of the raw data collected 
would be required for assessment of the primary trial outcome.

Conclusions  Data reduction is an important component of big data analytics. Our two-step strategy markedly 
reduced the amount of data required for analyses without loss of information. This data reduction strategy, if vali-
dated, could be used in other CPI and other settings where large amounts of both temporal and spatial data must be 
analysed.
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Introduction
The development of big data and big data analytics in 
healthcare holds the promise of improving healthcare 
resource value, management practices, and patient out-
comes, while decreasing healthcare costs[1, 2, 3, 4]. 
Human generated information is the most common 
source of big data based on a recent systematic review 
on healthcare analytics [77%][5]. In health care, large 
amounts of clinical data are being generated and col-
lected on an unprecedented scale[6, 7]. With the wide 
adoption of electronic medical records, contact data on 
millions of patients are being collected and stored in an 
electronic format. New technologies can now collect a 
variety of health measures (e.g., blood pressure, oxygen 
saturation, glucose) on a continuous basis, generating 
large amounts of data[8]. This generation of large vol-
umes of data poses challenges in data management and 
analysis[9, 10].

Big data analytics methodology is a multistep process 
that typically includes a concept statement or goal for 
the data mining application, dataset selection, pre-anal-
ysis data processing (transformation and/or reduction), 
application of one or more analytic approaches, evalua-
tion and interpretation of results, and application and 
translation of findings[11, 12]. Data reduction is a neces-
sary step in big data analysis. Approaches to this vary and 
include but are not limited to pure dimension reduction 
techniques, compression-based data reduction meth-
ods, and algorithms for summarization, de-duplication, 
and redundancy elimination. Selection of the approach 
depends on the nature of collected data as well as the 
computer resources. For example, dimension reduction 
can be applied to noisy data to identify and eliminate fea-
tures that are unimportant. No prior assumption about 
the number of clusters is required. Compression-based 
data reduction methods are suitable in order to preserve 
the original data at the expense of resource consumption 
from additional computations and redundancy elimina-
tion methods will depend on the application models as to 
the selection of the method [13].

CPI technology monitors the interface pressure 
between a patient’s skin in contact with a support sur-
face and provides assistance with patient repositioning 
to offload high or prolonged areas of pressure[14]. Prior 
to the trial, we have reported on a 9-patient pilot project 
with this technology demonstrating a statistically signifi-
cant increase in patient turns or chair transfers to reduce 
interface pressures[15]. For this clinical trial we sought to 
determine whether the visual feedback provided by this 
technology can assist health care providers to dimin-
ish the likelihood of periods of excessive skin pressure 
and resultant pressure injuries. CPI data in addition to 

providing prompts to health care providers was also used 
as an outcome measure[16].

While CPI of hospitalized patients may be useful for 
both the prevention and management of these injuries, 
for each patient, every 72 h, 259,200 frames of pressure 
images at one-second intervals will be produced. This 
would create spatiotemporal data sets of approximately 
6.7  GB on a single patient. As we anticipated enrolling 
678 research subjects, our trial would collect in total an 
estimated 4.52  TB of data, creating challenges in data 
management and analysis not dissimilar to what other 
health researchers face in clinical trials of emerging 
health care technologies. The key pieces of information, 
collected in our trial, are pressure values and their dura-
tion on each body part while a patient laid on a hospi-
tal bed. The large amounts of data provided mean that 
it is necessary to find ways to summarize the data while 
avoiding loss of critical information.

Our group has conducted a clinical trial evaluating 
the effectiveness of continuous pressure imaging (CPI) 
technology on the reduction of pressure injuries [16]. 
In this paper we provide a case study demonstrating 
the potential utility of data reduction methods explored 
to pre-process CPI data from our trial with both spatial 
and temporal data points. The proposed technique helps 
us identify when a patient moved and how long patients 
stayed in the same position. This approach reduced the 
data size to a manageable level and allowed us to do sum-
marization as needed. Our study is hypothesis generating 
and the approaches presented may be instructive to oth-
ers. This big data case study and the data reduction strat-
egies presented here are likely to be of value to readers 
and research teams facing similar big data challenges.

Methods
Data source
The objective of the randomized clinical trial was to test 
the efficacy of a CPI system in reducing both interface 
pressures and the risk of developing pressure injuries 
[16]. This trial used XSENSOR® Technology Corpora-
tion’s ForeSite PT™ Patient Turn System (referred to 
as the ForeSite PT™ system), which is composed of a 
repositioning reminder system utilizing CPI technology 
through a pressure-sensing mattress cover. The system 
consists of a flexible pressure sensing mattress cover-
ing that can collect up to 6136 pressure data points dis-
persed over a grid system of 52 rows by 118 columns, 
and an LCD monitor that displays the interface pressure 
readings in the form of a coloured pressure map with a 
timer and history bar for alerting and tracking patient 
repositioning. Health care professionals use the system 
to prompt repositioning of patients for pressure relief of 
target areas.
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After informed consent was received in our study, a 
research nurse or assistant set up the ForeSite PT™ sys-
tem on the patient’s hospital bed. The mattress cover was 
placed between the bed linen and mattress with the mon-
itor mounted at the head of the bed. The ForeSite PT™ 
system was removed after 72 h of data collection or prior 
to this if the enrolled patient withdrew consent, died, was 
transferred to another unit/hospital, or was discharged 
from the hospital. Upon removal of the system, the inter-
face pressure readings were downloaded in compressed 
Microsoft Office InfoPath 2003™ XML Form Template 
(XSN) formats. The files were then decompressed and 
converted to comma-separated values (CSV) files using 
the XSENSOR® Pressure Exposure Analyzer software. 
Detailed information about the clinical trial can be found 
in the published protocol [16] and on a trial registration 
website (ClinicalTrials.gov, NCT02325388).

To preserve the integrity of the clinical trial, for this 
paper we only utilized data from four study participants 
who did not complete the full 72 h and were not included 
in the primary trial analyses being done (i.e., analyses in 
which only individuals who completed the 72-h inter-
vention are included). Patients who did not complete 
the 72-h intervention because either there was a planned 
transfer to another unit within 72  h of enrollment, the 
patient slept in a chair at night, medical status would 
have been negatively impacted if turned or repositioned 
or the patient received either palliative or end-of-life care 
(with death imminent). These data were used to explore 
how to pre-process pressure data before these analyses. 
The four patients provided CPI data ranging from 29 to 
52 h in duration. The data size ranged from 2.7 to 4.9 GB 
for each study participant.

Analytical plan
We designed a two-step strategy to reduce the data. First, 
we sampled the data at every 5 s (s), 30 s, 60 s, 120 s and 
240  s to determine if we could reduce the frequency of 
pressure data examination without losing important 
information. Second, we used correlation coefficients 
to evaluate the similarity between adjacent frames to 
identify position changes and determine how we could 
coalesce frames collected during periods of stillness. 
Previous work on digital image correlation used similar 
methods and showed that correlation provides an effec-
tive measure on the similarity of images and enables us 
to identify the position and use of a single image to rep-
resent long static periods without position change [17]. 
Correlation coefficients of pressures between adjacent 
frames were calculated using pressure values from acti-
vated sensors. A sensor was activated if its pressure value 
was above 5 mmHg.

We defined two variables to illustrate the difference 
between adjacent frames. The first was the total number 
of sensors only activated in one of the two frames. The 
second variable was the sum of absolute pressure differ-
ence between two frames.

We divided a patient’s monitor time into three catego-
ries: time not-on-bed, active time on-bed with position 
changes within short time intervals, and on-bed stillness 
where there was no movement while on the bed. Not-on-
bed time referred to the time period where the patient 
was not on the bed during the study period and defined 
as the sum of time periods when the number of activated 
sensors was less than 500, indicating that the patient was 
no longer lying or sitting on the bed. The use of less than 
500 activated sensors to determine not on bed status 
was selected based on a visual inspection of all the indi-
vidual images with less than 500 activated sensors. This 
excluded very few images while reducing the noise on 
the analysis. Identification of position changes depends 
on the selection of threshold of correlation coefficients. 
Active time was defined as the sum of all the time peri-
ods with continuous position changes. Two periods with 
position changes were combined if their time gap was 
less than 120 s to reduce the noise of calculation.

We used different plots to evaluate the performance 
characteristics and usefulness of different sampling fre-
quencies and correlation coefficient thresholds to com-
press the data. Heat maps and scatter plots were used as 
a similarity measure to illustrate the spatial difference of 
pressure values between frames. Boxplots of differences 
in activated sensors and pressure differences were used 
to illustrate overall similarity of frames at different cor-
relation coefficients. Lastly, a time series plot was used 
to show the continuous change of correlation coeffi-
cients, mean pressure values, number of activated sensor 
and number of sensors with pressure value > 40 mm Hg 
within 24 h for selected patients at different sampling fre-
quency. The threshold value of > 40 mm Hg was based on 
the distribution of data from a pilot study we conducted 
[16] and the work of Agrawal et  al. [18] that showed 
external pressures > 33 mm Hg would occlude blood ves-
sel leading to underlying and surrounding tissues becom-
ing anoxic. If the pressure continued at this level for a 
prolonged duration, cell death occurred resulting in soft 
tissue necrosis and eventual ulceration [18]. By study-
ing the continuous change of correlation coefficients, we 
aim to provide justification of the face validity of the pro-
posed technique and selection of appropriate thresholds 
for data reduction.

Ethical considerations
Ethics approval for this study was obtained from the 
Conjoint Health Research Ethics Board of the University 
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of Calgary (REB13-0794). Written informed consent was 
obtained from each participant after clarification of the 
study objectives and activities.

Results
As shown by the two heat maps (Fig. 1), Frames 1 and 2 
were almost identical with negligible differences in pres-
sure at the head position. Frames 1 and 2 had a correla-
tion coefficient of 0.977. In contrast, the patient assumed 
a different lying position between frames 2 and 3. The 
correlation coefficient between frames 2 and frame 3 
was very low (correlation coefficient = 0.332). If there is 
movement between two frames (e.g. the patient moves 
from one position to another position), the pressure 
value at the same position would change considerably, 
resulting in a lower correlation coefficient.

If the correlation coefficient was above 0.99, pairs of 
frames show almost no difference in the number of acti-
vated sensors (Fig.  2 Panel A) with absolute differences 
in pressure values close to zero (Fig. 2 Panel B). The dif-
ference in the number of activated sensors and pressure 

values increased when there was a decrease in the cor-
relation coefficient.

Figure  3 plots correlation coefficients over 24  h in a 
selected patient at five sampling frequencies. The curve 
at low sampling frequencies (e.g. 120 s) was a similar but 
smoothed version of curves at higher sampling frequen-
cies (e.g. 5  s) and having comparable times with corre-
lation coefficient drops. Drops of correlation coefficient 
generated negative deflections on the curves, which indi-
cated a complete position change as illustrated in Fig. 1. 
As shown in Fig. 3, the patient showed various position 
changes between periods of stillness. However, still-
ness sometimes was hard to define as patients may have 
only moved a limb without moving the trunk or torso of 
their body. As shown in the time period between 05:00 to 
08:00, we observed continuous changes in the correlation 
coefficient with small deflections, which could represent 
a period of frequent patient repositioning.

Plot changes in correlation coefficients, mean pres-
sure values, number of activated sensors, and number 
of sensors with pressure value > 40 mm Hg over 24 h at a 

Fig. 1  Heat map of pressure for a patient at three different changes and correlation of pressure between changes
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sampling frequency of every 60 s are illustrated in Fig. 4. 
The peaks and flat sections from each curve aligned well 
with each other. A drop in correlation coefficient values 
corresponded to a sharp increase in mean pressure val-
ues, number of sensors with pressure values over 40 mm 
Hg, and a drop in the number of activated sensors. This 
aligns well with our perception of pressure changes 
during repositioning, which should be associated with 
decreases in contact areas and increases in mean pres-
sure values.

‘Not-on-bed’ times were similar at sampling frequen-
cies of 30  s and 60  s for the four study participants 
(Fig. 5). In comparison, it appears that sampling at longer 

time intervals (i.e., every 120 s), resulting in substantially 
less data points, may be underestimating the ‘not-on-bed’ 
time.

Next, we defined a position change as occurring if cor-
relation coefficients were below a pre-established thresh-
old value. Use of high threshold value for the correlation 
coefficient could lead to the detection of partial position 
change, such as limb or head movement. As expected, 
active time depends on the selection of correlation coef-
ficient thresholds (Fig.  6 Panel A). A low sampling fre-
quency of 120  s slightly overestimated values. Higher 
thresholds for the correlation coefficient resulted in 
longer active time. A low sample frequency (e.g., 120  s) 

Fig. 2  Boxplot of difference in activated sensors (Panel A) and absolute pressure difference (Panel B) between frames at different correlation 
coefficients
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resulted in slightly longer active time than high sample 
frequencies (e.g., 60  s or 30  s). The differences of active 
time between different sampling frequencies decreased 
with a decrease in threshold values of correlation 
coefficients.

Lastly, the number of position changes captured 
decreased as we lowered the threshold of correlation 
coefficients (Fig.  6 Panel B). As expected, higher sam-
pling frequencies identified more position changes. 
However, this difference was minimal once the thresh-
old of correlation coefficient dropped below 0.9. If 

Fig. 3  Change of correlation coefficient within 24 h at different sampling frequencies

Fig. 4  Change of correlation coefficients, mean pressure, and number of activated sensors (with pressure > 40 mmHg) over 24 h for a randomly 
selected patient at sampling frequency of every 60 s
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we set the threshold of correlation coefficient as 0.9, 
we observed around 20, 13, 50, and 25 active periods, 
respectively for the above four patients. The order of 

activity, based on the number of position changes, 
appeared consistent across all correlation coefficient 
values.

Fig. 5  Time not-on-bed during study period for the four study participants

Fig. 6  Sum of active time (movement) within 24 h from randomly selected four patients at different sampling frequency (every 30 s, 60 s, 120 s) 
(Panel A) and Total number of position changes in 24 h from four patients at different sampling frequency (every 30 s, 60 s, and 120 s) (Panel B)
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Discussion
We utilized a two-step strategy to reduce raw spa-
tial–temporal pressure data while preserving informa-
tion. In the first step, a decrease of sampling frequency 
significantly reduced data size without compromising 
resolution. Based on our testing of the data, an optimal 
sampling frequency of every 60 s was found for the pres-
sure data. The use of sampling frequency of every 60  s 
meant that we only needed to retain 1.7% (1/60) of raw 
data during pre-processing.

In the second step, we focused on the evaluation of the 
similarity between adjacent frames to identify lying posi-
tion changes and coalesce the data during periods of still-
ness. Selection of an appropriate correlation coefficient 
threshold for position changes should strike a balance 
between major and minor position changes depending 
on the specific purpose of the analysis. The maximum 
number of active periods for 24 h is 80 if the threshold 
of correlation coefficient is set at 0.90. Therefore, we 
estimated that we would probably need ~ 160 frames 
within 24  h to represent the pressure states of a study 
participant. In total, this meant we needed ~ 480 frames 
(160*3), over 72 h, of collected data for our analyses with-
out any relevant loss of information. These 480 frames 
represented ~ 0.185% of the raw data. The two-step pro-
cess significantly reduced data size without the loss of 
information.

Data reduction is an important component of big data 
analytics. There are six core properties of big data—vol-
ume, variety, value, velocity, veracity, and variability[9]. 
Velocity refers to frequency of data streams into the data 
system and is one of the major challenges in our study. 
Data collection at an unnecessarily high frequency could 
overload the data system and/or lead to redundancy. 
The analyses and general approach presented here have 
helped us to reduce the collection frequency to make 
the data manageable while providing good represen-
tation of the pressure exposure of study participants. 
Data duplication is another issue for us. During periods 
of stillness, redundant information is collected without 
adding any new information about pressure distribution 
and lying positions of a patient. Similar to other data de-
duplication schemes, we focused on the evaluation of 
the similarity of data. Correlation coefficients are a clas-
sic measure of similarity, and these have been applied to 
various applications, such as measuring reproducibility 
of RNA amplification reactions and separating noise and 
artifacts from ECG readings[19]. Our method focused on 
the reduction of data volume and velocity based on the 
characteristics of pressure imaging data.

To the best of our knowledge, our paper is unique in 
reporting on a data reduction approach for pre-process-
ing of pressure data from a large clinical trial. There are 

other studies that have looked at interface pressure in a 
small group of participants over short or long periods of 
time. Peterson et al. looked at changes in interface pres-
sures of routine repositioning in a convenience sample 
of 23 hospitalized bedridden patients[20]. They used a 
24 × 24 in.2 sensory array pressure map with 2,304 sen-
sors, and recorded interface pressure readings every 
30  s for 4–6  h, which resulted in 15,784 pressure pro-
files. Their reason for capturing data every 30 s was not 
explained, but it did allow them to analyze pressure pro-
files of certain positions. Sakai et  al. have used a sam-
pling frequency of 60 s for pressure data in intensive care 
patients without providing justification[21]. In an arti-
cle by Bogie et  al., researchers developed an algorithm 
that used data mining for rapid information recovery 
and applied it to the analysis of interface pressure read-
ings from 10 spinal cord injury patients to determine the 
effects of neuromuscular electrical stimulation on pre-
venting pressure injuries[22]. A 40 × 38 cell sensor mat 
was used and 200 s of data was captured at a time. Partic-
ipants were assessed 2–6 times with three 200 s readings 
per assessment, which resulted in 8,640,000 data points 
per subject. Although data reduction was not applicable 
in view of their small sample size and short periods of 
pressure readings, they did discuss how correlation coef-
ficients could be used to align pressure readings at differ-
ent times. They considered it to be not appropriate for 
their study because they were interested in detecting dif-
ferences in pressure of the same locations over time. For 
our study, we noted differences in the capture of detail at 
120 s and therefore did not test larger time frames.

Limitations
Our study has an overriding limitation; the data that we 
analyze to showcase data reduction methodologies are 
unique to our study, and they are likely to differ from 
large complex databases that other researchers are using. 
This may limit the extent to which this methodologic 
data reduction case study is applicable to other big data 
scenarios. Nevertheless, we anticipate that some aspects 
of the methods presented can be applied to other data 
reduction challenges. There are some secondary study 
limitations relating to the pressure measurements that 
are central to our clinical trial. These include the chal-
lenges of data loss when patients are not in bed, unsta-
ble pressure measurements during position changes, and 
possibly some random ‘noise’ in the pressure data. We 
remind readers that this data reduction study is distinct 
from the data analysis for the clinical trial testing the effi-
cacy of pressure sensing technology for pressure reduc-
tion and ulcer prevention.

There are also limitations relating to our use of the 
Pearson correlation coefficient. It assumes a linear 
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relationship between variables and that the variables are 
normally distributed. Reassuringly, our sample size of 
pressure values was very large and near normally distrib-
uted with very few outlier measurements (see Fig. 1) – all 
features that make the Pearson correlation coefficient 
quite appropriate.

Conclusion
Our study serves as a case study demonstrating a two-
step strategy in data reduction of CPI data. The use of 
sample frequency at 60 s provided a reasonable repre-
sentation of pressure exposure and would reduce the 
burden of data management. Correlation coefficients 
were an effective measure that allowed us to identify 
lying position changes of patients. Both of these strat-
egies will allow us to more efficiently analyse the data 
to quantitatively understand how the use of CPI tech-
nology affects interface pressure, and to determine its 
effectiveness in reducing pressure-related injuries.

Data reduction methods are a necessary step in the 
era of adoption of new techniques that require big data 
analysis. Data reduction should be always considered 
in  situations like ours, and ideally before starting data 
analysis. Our method may be generalizable to other 
data sets with spatiotemporal elements.

Abbreviations
CPI	� Continuous pressure imaging
CSV	� Comma-separated values
XSN	� Microsoft Office InfoPath 2003™ XML Form Template
s	� Seconds
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