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Abstract 

Background Non-cancer mortality in cancer patients may be higher than overall mortality in the general popula-
tion due to a combination of factors, such as long-term adverse effects of treatments, and genetic, environmental or 
lifestyle-related factors. If so, conventional indicators may underestimate net survival and cure fraction. Our aim was to 
propose and evaluate a mixture cure survival model that takes into account the increased risk of non-cancer death for 
cancer patients.

Methods We assessed the performance of a corrected mixture cure survival model derived from a conventional mix-
ture cure model to estimate the cure fraction, the survival of uncured patients, and the increased risk of non-cancer 
death in two settings of net survival estimation, grouped life-table data and individual patients’ data. We measured 
the model’s performance in terms of bias, standard deviation of the estimates and coverage rate, using an extensive 
simulation study. This study included reliability assessments through violation of some of the model’s assumptions. 
We also applied the models to colon cancer data from the FRANCIM network.

Results When the assumptions were satisfied, the corrected cure model provided unbiased estimates of parameters 
expressing the increased risk of non-cancer death, the cure fraction, and net survival in uncured patients. No major 
difference was found when the model was applied to individual or grouped data. The absolute bias was < 1% for all 
parameters, while coverage ranged from 89 to 97%. When some of the assumptions were violated, parameter esti-
mates appeared more robust when obtained from grouped than from individual data. As expected, the uncorrected 
cure model performed poorly and underestimated net survival and cure fractions in the simulation study. When 
applied to colon cancer real-life data, cure fractions estimated using the proposed model were higher than those in 
the conventional model, e.g. 5% higher in males at age 60 (57% vs. 52%).

Conclusions The present analysis supports the use of the corrected mixture cure model, with the inclusion of 
increased risk of non-cancer death for cancer patients to provide better estimates of indicators based on cancer 
survival. These are important to public health decision-making; they improve patients’ awareness and facilitate their 
return to normal life.
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Background
There is growing awareness that cancer patients, as com-
pared to age- and sex-matched individuals of the general 
population, may be at an increased risk of death from 
causes other than the diagnosed cancer, mainly from car-
diovascular and respiratory diseases or other independ-
ent cancers [1–4]. This increased risk can be partly a 
consequence of cancer, such as long-term adverse effects 
of the treatments, and partly due to determinants of 
cancer, such as a genetic predisposition or environmen-
tal and lifestyle related factors. A higher long-term risk 
of death from other causes in cancer patients than in the 
general population has been estimated, from Surveil-
lance, Epidemiology, and End Results Program (SEER) 
cancer registries data, for colorectal, breast and testicu-
lar cancer [5]. This increased risk potentially jeopardizes 
estimations of net survival after cancer for epidemiologi-
cal and public health purposes.

Net survival is the hypothetical survival that would be 
measured if the disease under study was the only possi-
ble cause of death. It should be used to compare cancer 
survival in groups with different population mortality [6]. 
To estimate net survival, two main settings were defined: 
the cause-specific setting and the relative survival setting, 
the latter not needing cause of death information. In the 
relative survival setting, net survival can be estimated 
through the excess mortality approach, by removing 
from observed mortality the mortality from other causes, 
which corresponds to the death that would occur in the 
cohort in the absence of cancer. Net survival can also be 
estimated using the ratio approach, by dividing observed 
survival by the survival that would be observed in the 
absence of cancer.

Usually, in population-based studies, the mortality (or 
survival) expected in the absence of cancer is derived 
from overall mortality (or overall survival) in the general 
population with the same characteristics. This approxi-
mation relies on the commonly accepted assumption 
that the probability of death by other causes in popula-
tion-based cohorts of cancer patients is similar to the 
probability of death by all causes in the general popula-
tion [6–9]. This assumption might not be true if cancer 
patients present an increased risk of dying from other 
causes, related (e.g. adverse effects of treatments) or not 
(e.g. independent second cancer) with the studied cancer, 
compared to the general population .

Cure models are used in cancer epidemiology to 
estimate relative survival under the assumption that a 

percentage of subjects will not die from cancer (“cured 
patients”) [10, 11]. This percentage of subjects is mate-
rialized by an asymptotic plateau reached by the relative 
survival curve. In this context, a patients’ increased risk 
of dying from other causes also impacts mortality rates 
in those cured, thus challenging the assumption that 
their mortality rates should be the same as those in the 
general population. Therefore, popular cancer burden 
indicators such as relative survival, cure fraction, time-
to-cure and survival of uncured patients, can be severely 
biased if cancer patients exhibit a substantial increased 
risk of non-cancer death that is not taken into account. 
Such risk may also affect survival comparisons if it dif-
fers among compared populations. Acknowledging 
this increased risk would have obvious consequences 
in providing to the patients, parents, clinicians and all 
the health care stakeholders the estimation of indicators 
expressing mortality for cancer progression or relapse. 
For example, it would lead to better targeting of health 
care programs and enable long-term cancer survivors 
to obtain credit and insurance more easily. Because the 
health status of cancer survivors is probably known to 
the patients themselves, to their physicians and to their 
insurers, the presence of a comorbid condition that 
would increase the risk of death is already known and 
would in any case influence access to loans etc. [12]. The 
common methods to estimate excess mortality include 
part of the risk due to comorbidity as well as the excess 
risk attributed to cancer; they consequently overesti-
mate an individual’s cancer mortality risk.

In the net survival setting, methods have been devel-
oped to account for differences between the risk of 
non-cancer death in cancer patients and the risk of 
death in the general population, or for insufficiently 
stratified life tables [13–16]. In the cure modelling set-
ting, a model based on a generalization of mixture cure 
models [17] has been developed and applied to real-life 
data (colorectal, breast and lung cancer patients from 
United States cancer registries) [18]. The reliability 
of the model and the robustness of its estimates had 
to be studied in detail before undertaking any exten-
sive applications on real-life data. Once tested, such 
models could provide practical indications for pub-
lic health and for the modification of clinical follow-
up for long-term survivors and cured cancer patients. 
This validation task cannot be done using real-life 
data because cure is an unobserved condition that 
is treated as a latent variable in cure models. No gold 
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standard is therefore available from real-life data for 
comparison with model-based cure estimates. In con-
trast, simulated data, with the generation of large num-
bers of virtual cohorts with known proportions of cure 
and precisely defined survival functions, can be use-
ful to test the model’s performance under controlled 
conditions.

This simulation-based study explored the reliability of 
a new “corrected” cure model, i.e. including a correction 
factor to take into account the increased risk of non-can-
cer death. First, the performance of the model and its sta-
tistical properties were explored when all its assumptions 
were valid. We then analysed the model’s robustness by 
investigating its performance when some of the underly-
ing assumptions were violated. We also applied the cor-
rected model to real population-based data for colon 
cancer from the French cancer registries.

Methods
Cure models
The proposed corrected mixture cure model can be seen 
as an extension of the conventional mixture cure model 
with different assumptions. The latter is used as a refer-
ence to assess the performance of the former.

Conventional mixture cure models
Mixture cure models [19] assume that the cohort of can-
cer patients is divided into two subgroups: those cured, 
who will never die from the diagnosed cancer, and the 
uncured, who will eventually die from the progression or 
relapse of the disease.

Relative survival (RS) can be estimated for a group of 
patients (supposed for now homogeneous with respect to 
age and other possible covariates) by the ratio approach:

where So(t) is the survival observed in the patients’ group 
and Se(t) the survival expected for the same subjects in 
the absence of cancer and t the time since diagnosis.

Relative survival can also be estimated using the excess 
hazard approach, assuming that the observed mortality 
hazard hO(t) could be split into two forces of mortality 
attributable to cancer hc(t) and to other causes he(t). This 
can be written analytically:

The relative survival context assumes the expected 
mortality hazards of patients to be equal to those 

RS(t) =
So(t)

Se(t)
,

hO(t) = hc(t)+ he(t).

observed in a general population group comparable for 
geographic area, calendar year, age and sex, and some-
times for other known characteristics. This implies at the 
individual level that:

where age and year are the patient’s age at diagnosis and 
year of diagnosis.

The cumulative observed hazard can be written as:

And observed survival can be written as:

where exp −
t
0hc(v)dv  corresponds to the relative 

survival function and exp
[

−
∫ t
0h

∗(v)dv
]

 corresponds to 
the survival function for the general population.

The conventional mixture survival model expresses 
relative survival as a mixture of two net survival func-
tions attributed to uncured (Su(X, t)) and cured patients 
(Scured(X, t)), and can be expressed as:

where Scured(X, t) = 1 and Su(X, t) can be specified by any 
parametric survival function. There are a wide range 
of distribution functions to choose from, and in the 
mixture model we specified Su(X, t) as a Weibull func-
tion. The Weibull distribution is flexible enough to 
enable a monotonic increasing or decreasing mortal-
ity rate for the uncured group. The parametrization is 
Su(X, t) = exp(−λtγ)exp(δX), where λ> 0 and γ > 0 are respec-
tively the scale and shape parameters considered as con-
stant and δ is the proportional effect of covariates X on 
the baseline survival of uncured patients. To ensure that 
π remains between 0 and 1, we also specified π(Z) with a 
logistic link function allowing a linear effect β of covari-
ates Z on the cure fraction. Its analytical expression can 
be written as:

Other link functions can be used instead of the logistic, 
for example we used the identity link (π = Zβ) [19] for 
an ancillary analysis addressed in the discussion and pre-
sented in the Supplementary material Table 1.

The final expression of relative survival and excess 
hazard  hc in a conventional mixture cure model can be 
expressed as:

he(t) = h∗(t) = h∗
(

age + t, sex, year + t
)

HO(t) =

∫ t

0
hc(v)dv +

∫ t

0
h∗(v)dv,

SO(t) = exp
[

−HO(t)
]

= exp

[

−∫
t

0

hc(v)dv

]

exp

[

−∫
t

0

h
∗(v)dv

]

,

RS(t) = π(Z)Scured(X , t)+ (1− π(Z))Su(X , t)

π(Z) = [1+ exp (−β0 − Zβ)]−1.
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And

where X is the vector of covariates acting on the survival 
of the uncured.

Corrected mixture cure model (Model(1))
Relaxing the comparability assumption usually considered in 
the excess hazard approach, we set patients’ expected hazard 
equal to that in the general population multiplied by a constant  
parameter α : he(t) = ah∗(t) = ah∗(age + t, sex, year + t),  
with α > 0 .

The cumulative observed hazard can be written as:

The proposed excess hazard function is the same 
as that of the conventional model, but the estimated 
parameters are different due to the correction of the 
expected hazard, as in Philips et al. [17].

The observed survival can be written as:

where exp
[

−
∫ t
0h

∗(v)dv
]α

= S∗(t)α corresponds to sur-
vival in the general population corrected by the scale 
parameter.

The value of parameter α, which is defined on ℝ+, 
can be interpreted as a hazard ratio. α > 1 indicates 
that mortality due to other causes in the cohort under 
study is higher than that in the general population, 
α = 1 a null effect, as implicit in the conventional cure 
models and α < 1 a lower mortality. We assume α to 
express a fixed effect and to be independent of age.

The final expression of observed survival in the cor-
rected mixture cure model can be expressed as:

The corrected model expressed here (from here on 
called Model(1)), with the constraint α ≡ 1 gives the 

RS(t) = [1+ exp (−β0 − Zβ)]−1+

{

1− [1+ exp (−β0 − Zβ)]−1
}

exp
(

−�tγ
)exp (Xδ)

hc(t) =

{

1− [1+ exp (−β0 − Zβ)]−1
}

γ �tγ exp (Xδ) exp
(

−�tγ
)exp (Xδ)

[1+ exp (−β0 − Zβ)]−1 +

{

1− [1+ exp (−β0 − Zβ)]−1
}

exp
(

−�tγ
)exp (Xδ)

HO(t) =

∫ t

0
hc(v)dv +

∫ t

0
αh∗(v)dv

SO(t) = exp
[

−HO(t)
]

= exp

[

−∫
t

0

hc(v)dv

]

exp

[

−∫
t

0

h
∗(v)dv

]�

,

SO(t) = [1+ exp (−β0 − Zβ)]−1∗S∗(t)α+
{

1− [1+ exp (−β0 − Zβ)]−1
}

∗exp
(

−�tγ
)exp (Xδ)

∗S∗(t)α

conventional cure model [19] with the same param-
eterization of age effects and uncured net survival 

function.

Model estimation
Model parameters were estimated using the maximum 
likelihood method from both individual and grouped 
data.

As in De Angelis et  al. (1999), the total log-likelihood 
using the individual data approach in the conventional 
model can be expressed as:

where β,γ, λ,δ are the vectors of parameters to be esti-
mated using the maximum likelihood method,  ti,  di, and 
 hi* are, respectively, the time at death or censoring, the 
censoring index, and the population death hazard for the 
i-th individual observation among N individuals. X and 
Z are the covariates associated with survival of uncured 
patients and cure fraction, respectively.  fU(Xi,  ti|δ) and 
 SU(Xi,  ti|δ) are respectively the density and survival of 
uncured patients at time  ti depending on the effect δ of 
covariates acting on the baseline density or survival and 
S*(ti) is the general population survival at time  ti, which is 
a constant term and can be removed from the likelihood 
in the conventional model.

Using the same idea as in the conventional model, the 
total log-likelihood using the individual data in the pro-
posed corrected model can be expressed as:

Notice that in the estimation step the S* cannot be 

removed as α is a parameter to be estimated, whereas it 
can in the conventional model.

l(� , � , �, �) =

N
∑

j=1

−di ln

(
(

1 − �

(

Z i
|

|

�
))

fu
(

Xi, ti
|

|

�
)

�

(

Zi
|

|

�
)

+
(

1 − �

(

Zi
|

|

�
))

Su
(

Xi,ti
|

|

�
) + h∗

(

ti
)

)

+ ln
(

�
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�
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The estimation from group data was carried out by 
building relative survival tables, stratified by relevant pre-
dictor variables, from each generated sample and from 
survival data for the general population. In this study 
we used the commonly used Ederer II relative survival, 
but other estimators could be considered, particularly in 
between-population comparative analyses. The binomial 
log-likelihood for the j-th interval of the life table of k-th 
strata was derived similarly to the formula provided by 
Dickman [20]:

and  ljk =  (njk – 0.5wjk), the effective number of patients in 
each j and k combination,

where  njk,  djk, and  wjk were respectively the number 
of those alive at the start, dead and censored during the 
interval for k-th strata, and SOjk is the j-th interval-spe-
cific observed survival for k-th strata.

The log-likelihood using the grouped data approach in 
the conventional model can be expressed as:  djk*log[1- 
(

RSjk ∗ S
∗
jk

)]

  + (  ljk -  djk)* log[RSjk ∗ S∗jk].
Where S∗jk and ℝSjk are the expected survival and 

patients’ relative survival estimates in each j and k 
combination.

Using the same idea as in the conventional model, the 
log-likelihood using the grouped data in the proposed 
model can be expressed as:

Note that, differently from the standard cure models, 
survival in the population has to be taken into considera-
tion in the maximization of the log likelihood, due to the 
presence of α.

Using STATA, command strs was used to provide 
Ederer II estimates for grouped data, and command ml 
with the lnf method to determine Maximum likelihood 
estimations, based on the numerical calculation of deriv-
atives, was used to maximize each sample likelihood. The 
results provided for each sample were stored, summa-
rized and presented as a synthesis.

Simulation
Virtual samples representing cohorts of patients were 
built by means of a pseudorandom number-generating 
algorithm. Each virtual case was independently repre-
sented by three variables: age at diagnosis (restricted 
in all analyses from 40 to 74 years), follow-up time 
(0–15 years), and censoring index (alive, dead). Age 
at diagnosis was randomly generated from a uniform 

djk
∗ log

[

1− S0jk
]

+
(

ljk−djk
)

∗ log
[

S0jk
]

djk
∗ log

[

1−
(

RSjk + α log
(

S∗jk

))]

+
(

ljk−djk
)

∗ log
[

RSjk + α log
(

S∗jk

)]

distribution within age classes 40–57, 58–64, 65–69, and 
70–74, with each class including 25% of all cases.

In the simulations, age at diagnosis was the only covari-
ate associated with both cure fraction (vector Z) and 
survival of uncured patients (vector X) from now on 
reported as x. In model applications, a standardized age 
variable x = (age-60)/15 was used.

Follow-up time and the censoring index were gener-
ated as follows.

• The probabilities of administrative censoring  (PAC) 
and of loss to follow-up  (PLF) were assigned, and 
the corresponding times to censoring  TC1 and  TC2 
were sampled from uniform distribution U[0, 15] 
with probability  PAC and  PLF, or set at a maximum 
(15 years) with probability 1-PAC and 1-PLF, respec-
tively. The final censoring time was  TC = min(TC1, 
 TC2).

• A Weibull distribution with parameters λP (scale) 
and γP (shape) was fitted to a set of observed sur-
vival data derived from population lifetables. The 
patients’ expected survival time  TED to causes of 
death other than cancer was randomly sampled by 
the inverse transformation method from the esti-
mated Weibull distribution, rising the general pop-
ulation survival probabilities to the power α to sim-
ulate the relative risk of non-cancer death of cancer 
patients.

• The time to cancer death  TCD was randomly sam-
pled from a mixture cure model assuming that the 
net survival of uncured patients followed a Weibull 
distribution with scale and shape parameters λC 
and γC considered constant and with δ, represent-
ing the age effect on uncured survival. Sampling u* 
from the uniform distribution U[0, 1] we set:

Where π(x) = 1/[1 + exp.(−β0 -β x)] and β0 = ln[π(60) 
/(1 - π(60))]. The reference age was 60 years, and π(60) 
and β were fixed according to scenario. If u* > π(x) then 
we obtained:

Otherwise,  TCD was set to infinity.

u∗ = π(x)+ [1− π(x)]
[

exp
(

−�CTCD
γC
)]exp [−δx]

TCD = �c

[

− ln

(

u∗ − π(x)

1− π(x)

)]1
/

γc
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• The time to death from diagnosis was then defined 
as  TD = min(TED,  TCD), and the final time of follow-
up by T = min(TC,  TD).

• Finally, the censoring index d was equal to 0 (alive) 
if  TD >  TC, or equal to 1 (dead) if  TC ≥  TD.

The whole set of true parameter values considered in 
the simulation analysis were chosen to mimic the sur-
vival pattern of common cancers and the demographic 
characteristics of real patients’ groups and general popu-
lations. For notational simplicity, the symbols π60, λ and 
γ will be used in the following instead of π(60), λc, and 
γc. The distribution of ages at diagnosis was derived from 
that observed in (both sexes) incident cases collected by 
the French network of cancer registries (FRANCIM) [21] 
during the period 1995–2009 and gathered in the FRAN-
CIM common database. This database also provided the 
probability of administrative censoring (50%) and of loss 
to follow-up (3%). The survival distribution parameters 
in the population, fixed as λP = 88; γP = 11, were derived 
from the French general population life-tables, also for 
both sexes combined, for the year 2002 [19]. The underly-
ing α in the simulated samples were attributed the values 
0.8; 1.0; 1.2; 1.5; 2.0, the first indicating some (perhaps 
unrealistic) protective effect, the second no effect, and the 
others an increased risk of non-cancer death in patients 
as compared with the general population. The underlying 
true values of parameters determining the proportion of 
cured patients (π60 and β) and survival of the uncured (λ, 
γ, and δ) were derived from preliminary model applica-
tions to real data [18, 21–23], and are shown in Table 1. 
They were grouped under two scenarios, mirroring the 
behaviour of lung and breast cancers. In the following, 
the two scenarios will be named after the corresponding 
cancer within quotes (“Breast” or “Lung”).

Finally, one thousand samples were generated for 
each scenario, as defined by a specific set of simulation 
parameters (α, π60, λ, γ, β, δ). Depending on the specific 
objective, the number of cases generated for each sample 
varied from a minimum of 500 to a maximum of 20,000.

Performance indicators
To allow comparison with the results obtained by the 
conventional cure model some of the estimations were 
done with the constraint α = 1 and with unconstrained 
Model(1), thereby taking into account the increased risk 
of non-cancer death.

From the considered models, we obtained estimates of 
six parameters: α, π60, λ, γ, β, and δ. Intrinsically, the con-
ventional cure model did not estimate α. We indicated 
as true values the values of parameters used to generate 
the samples, and considered them the gold standard to 

be compared with model-based estimates. The following 
performance indicators were calculated for each param-
eter from the set of 1000 samples generated under a spe-
cific scenario.

• Absolute Bias (AB) = Mean(estimates - true value)
• Standard Deviation (SD) = standard deviation over 

the set of 1000 estimates
• Coverage (CVR) = the proportion of the time that 

the estimated 95% confidence intervals contained the 
true value

Robustness analysis
We investigated the estimates provided by Model(1) 
when some of the underlying assumptions went against 
the data. In particular, we analysed the model’s perfor-
mance in three different situations: the times to cancer 
death of uncured patients do not follow a Weibull distri-
bution; the increased risk of non-cancer death is depend-
ent on age at diagnosis; the increased risk of non-cancer 
death varies randomly among patients. All of the robust-
ness analyses were carried out by conducting 1000 inde-
pendent runs with simulated samples of 10,000 cases 
each.

The times to cancer death of uncured patients do not follow 
a Weibull distribution
Model(1) assumes that the relative survival of uncured 
patients diagnosed at the reference age 60 (x = 0) follows 
the Weibull distribution with parameters λ and γ.

In this analysis, data were generated according to the 
corrected exponential Weibull distribution [24]:

where the second shape parameter θ modulates the 
distance from the Weibull. When θ  < 1, the hazard is 
U-shaped, i.e. first decreasing and then increasing. The 
opposite bell-shaped pattern is obtained when θ > 1. Note 
that at ages different from 60, x ≠ 0, the survival function 
(2) no longer follows an exponential Weibull distribution.

Model(1), with uncured survival function specified by 
(1) was then fitted to data generated from survival func-
tion (2). We tested the model under the two scenarios 
“Breast”, and “Lung“, with θ varying between 0.25 and 4. 
The shapes of the probability density functions generated 
under these values are plotted in Supplementary mate-
rial Figure 1 together with the shape of the correspond-
ing Weibull distributions. The range was considered 

Su(t, x) = exp
(

−�tγ
)exp [−δ(x)]

Su(t, x) =
{

1−
[

1− exp
(

−�tγ
)]θ

}exp [−δ(x)]
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sufficiently wide to include most of the real-world situ-
ations. Note that values of θ far from 1 led to drastic 
changes in time to death distribution. For instance, 
5-year survival from the Weibull distribution (λ =0.4; γ 
=0.8; θ = 1) increases from 23 to 66% when θ = 4, and 
decreases to 8% when θ = 0.5. For this reason, actual esti-
mates were compared with underlying values only for 
parameters α, π, β and δ.

The increased risk of non‑cancer death is dependent on age 
at diagnosis
Model(1) assumes that the increased risk of non-cancer 
death, expressed by parameter α, is independent of age at 
diagnosis. In order to assess the robustness of parameter 
estimations (especially α) with regard to variations of α 
according to age, we fitted Model(1) to data generated in 
breach of this assumption. We generated times to non-
cancer death from expected survival probabilities given 
by

where S* was all-cause survival from the population life 
table, αx was the increased risk of non-cancer death as a 
function of age x at diagnosis; E(x) is the expected value 
of sampling age distribution (actually E(x) = 62.25 in all 
our samples), α was set at 1.2 and 2.0 (according to the 
considered scenario) and the slope coefficient  bα was set 
to provide a reasonable range of values and vary between 
− 0.08 and 0.05 (i.e. 5% per year of age). Model(1) would 
of course estimate a single α parameter common to all 
ages. Given the linear relationship, we have for each sam-
ple E(αx) = α.

The increased risk of non‑cancer death varies randomly 
among patients
Model(1) assumes that the increased risk of non-cancer 
death, expressed by parameter α, acts as a fixed effect. 
We investigated the behaviour of Model(1) when applied 
to data generated with an increased risk of non-cancer 
death randomly assigned to the simulated cases. Log(α) 
was considered uniformly distributed around the overall 
value, and with increasing ratios of maximum to mini-
mum values from 2 to 4.

Results
Performances of models when all assumptions were valid
The performance indicators of Model(1) are reported in 
Table  1 for estimation methods for both grouped and 
individual data. Statistics on all six parameters consid-
ered are shown. Parameters β and δ represent changes 
in the probability of cure and of cancer survival in the 
uncured due to a 15-year difference in age at diagno-
sis. Estimates of α were always very close to the true 

SE = S∗αx , with αx = α+ bα(x-E(x))

underlying values, with an absolute bias (AB) ranging 
from − 0.006 to 0.006 and a relative bias always lower 
than 0.6%. The estimates of π60 were also very close to 
their underlying values. The AB was low for all of the 
other parameters, for both scenarios, and for both esti-
mation methods. It ranged between − 0.011 (β esti-
mate, “Breast” scenario) and + 0.004 (β estimate, “Lung” 
scenario). The standard deviation of α estimates was 
directly related to the true value of the parameter. Their 
coefficient of variation (standard deviation divided by 
the mean, not shown) ranged between 6 and 15%. The 
standard deviation of π60 estimates was considerably 
lower than those of α, with the coefficient of variation 
of estimates always within the range 4 to 6%, thereby 
resulting in higher precision of the estimates compared 
with α. The standard deviation of the estimates was 
also generally low for λ and γ , but it was higher for the 
two trend parameters β and δ. The standard deviation 
for estimates based on individual data was in general 
slightly lower than that for grouped data. The coverage 
estimated was almost always slightly lower but close 
to the nominal value of 95% for both scenarios, both 
methods, and all parameters. One partial exception was 
the coverage of λ estimates for “Lung”, which ranged 
from 89 to 95%.

Table  1 shows no strong advantage of estimates 
based on individual data with respect to those based on 
grouped data, which consumed far less time and com-
puter power. The following Tables present only results 
from the latter method, but the robustness analysis for 
individual data can be found in Supplementary Material 
Table 2.

The main performance indicators of Model(1), com-
pared with the conventional cure model, are presented 
in Table  2. The conventional model gave unbiased esti-
mates for all parameters when α = 1, with precision and 
coverage similar to those obtained from Model(1), but 
progressively more biased estimates of the parameters as 
the underlying value of α departed from 1.0. This is one 
more reason in favour of the systematic use of the full 
Model(1).

Table  3 illustrates the behaviour of Model(1) with 
varying sample size N and length of potential follow-
up. For the “Breast” scenario, decreasing the sample size 
and length of follow-up led to positive bias for α and a 
negative one for π. For the “Lung” scenario, π was gen-
erally estimated well, but both positive and negative AB 
of α estimates were obtained for 5 yrs. follow-up. This 
was also due to the very large standard errors. Esti-
mates of α were more sensitive to decreasing sample 
size and length of follow-up than were those of π. Gen-
erally speaking, these results indicate that small sam-
ple sizes and short follow-up definitely led to unstable 
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estimates. With at least 10 years of follow-up N ≥ 5000 
were needed to obtain good model estimates and with 
at least 15 years of follow-up the model provides accept-
able estimates with smaller sample size (N ≥ 1000). The 
latter is needed to provide the amount of information 
ensuring good estimate of α as well as the other involved 
parameters.

Obviously the ability of the Model(1) to produce 
acceptable results with similar sample size and length of 
follow-up varied also according to the amount of deaths, 
and these general conclusions can be relaxed. Indeed, a 
cohort of 500 cases will produce acceptable estimates 
when lethal cancer sites and long follow-up (15 years) are 
studied.

Within these conditions, the SD of α and π were 
roughly inversely proportional to the square root of sam-
ple size and increased with decreasing lengths of follow-
up. The same conclusion was drawn when individual data 
were used (Supplementary Material Table 3 ).

Robustness analysis
All the previous results were obtained for samples gener-
ated according to the model assumptions. In the follow-
ing paragraph, we report the performances of Model(1) 

when some of these assumptions were violated by the 
data generation algorithm.

The times to cancer death of uncured patients did not follow 
a Weibull distribution
The different shapes of the hazard and cumulative sur-
vival functions obtained by varying θ under the two con-
sidered scenarios are plotted in Supplementary Material 
Fig 1. The two dotted lines are those with minimum θ = 
0.25, showing a high initial risk, followed by a minimum 
value and by an increasing risk, and those with the maxi-
mum θ = 4, showing an opposite pattern, increasing at 
the beginning, but with a decreasing trend in the long 
term. The reference function with θ = 1, corresponding 
to the Weibull distribution defined for each scenario, is 
represented by the black lines. Figure  1 in the supple-
mentary material shows that values of θ not equal to 1 
change both the pattern and the level of the hazard. As 
a consequence, the other survival parameters λ, γ, and δ, 
also have to change in order to fit the same dataset.

Performance indicators of estimates are summa-
rized in Table 4 for all parameters apart from λ and γ, 
for which we did not have reference true values. Esti-
mates of almost all parameters presented an increasing 

Table 4 Performance indicators of Model(1) when applied to data generated with exponential-Weibull distribution of survival for 
uncured patients

Absolute Bias (AB) = Mean(estimates - true value); Standard Deviation (SD) = standard deviation over the set of 1000 estimates; Coverage (CVR) = the proportion of 
the time that the estimated 95% confidence intervals contained the true value

Estimated over 1000 simulation runs; Sample size 10,000; follow-up 15 years

The performance indicators for λ and γ are omitted from the table, even if estimated, due to impossibility to compare the estimated values with the fixed true values 
used in the simulation process
a True values: α = 1.2, π60,=0.7, λ = 0.1, γ = 1.1, β = − 0.15 and δ = 0
b True values: α = 2, π60,=0.1, λ = 0.9, γ = 0.8, β = − 0.75 and δ = − 0.3.

Scenario θ AB SD CVR

α π60 β δ α π60 β δ α π60 β δ

BREASTa 0.25 − 0.021 − 0.058 − 0.069 0.038 0.061 0.057 0.152 0.125 92% 96% 95% 92%

0.5 −0.024 − 0.045 − 0.069 0.040 0.072 0.040 0.156 0.126 93% 93% 94% 93%

0.625 −0.021 −0.035 −0.058 0.031 0.078 0.038 0.160 0.129 94% 95% 94% 94%

0.8 −0.011 −0.019 −0.034 0.015 0.084 0.037 0.169 0.134 94% 96% 94% 93%

1.25 0.010 0.013 0.018 −0.020 0.095 0.036 0.184 0.144 92% 87% 93% 93%

1.6 0.009 0.029 0.027 −0.027 0.096 0.037 0.190 0.148 93% 80% 93% 93%

2 −0.003 0.038 0.017 −0.026 0.092 0.038 0.193 0.150 94% 73% 94% 94%

4 −0.014 0.082 0.018 −0.026 0.062 0.047 0.315 0.227 96% 35% 97% 94%

LUNGb 0.25 −0.106 − 0.001 0.003 0.002 0.185 0.004 0.061 0.027 91% 94% 95% 94%

0.5 −0.105 −0.001 − 0.003 0.005 0.193 0.004 0.063 0.024 91% 95% 95% 95%

0.625 −0.092 0.000 − 0.005 0.005 0.198 0.004 0.064 0.023 93% 96% 95% 95%

0.8 −0.056 0.001 −0.002 0.004 0.201 0.004 0.064 0.023 95% 94% 96% 95%

1.25 0.072 0.005 0.014 0.001 0.213 0.005 0.065 0.023 95% 85% 95% 94%

1.6 0.194 0.008 0.032 −0.003 0.225 0.005 0.066 0.023 87% 65% 92% 94%

2 0.340 0.012 0.056 −0.007 0.239 0.005 0.066 0.023 70% 36% 86% 93%

4 0.815 0.028 0.158 −0.029 0.270 0.006 0.071 0.027 7% 0% 36% 76%
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pattern for increasing values of θ except for α for 
“Breast” and δ. In order to balance the bias of β the AB 
of δ presented a decreasing pattern for increasing val-
ues of θ in both scenarios. The estimates of parameter 
α under the “Lung” scenario were the most sensitive to 
the value of θ, increasing from 1.89 to 2.81 (AB − 0.106 
to 0.815) around the true value of 2.0. The estimates of 
the other parameters π60 , and β increased respectively 
from 10 to 13% and from − 0.75 to − 0.59.

As for the “Breast” scenario, the estimates of all 
three parameters were more stable and closer to their 
true values. The AB for α (true value = 1.2) ranged 
from − 0.024 to 0.01, those of π60 (true value = 70%) 
ranged from-0.058 to 0.082, while those of β (true 
value = − 0.15) ranged from − 0.069 to 0.018.

The increased risk of non‑cancer death is dependent on age 
at diagnosis
In Table  5, we report the performance indicators of 
Model(1) when data were generated under a linear 
trend of α with age. The column headed  bα shows the 
linear coefficient of the age trend and in the follow-
ing column is presented the range: the minimum and 
maximum values of α at ages 40 and 75, respectively. 
The limit coefficient values were taken so as not to have 
implausible protective levels of α for the extreme age 
classes.

The AB in estimating α was higher for “Breast”, with 
higher survival, than for the “Lung” scenario, for similar 
 bα. It remained smaller than 0.1 and greater than − 0.1 
when the rate of increase of α was between − 0.005 and 
0.005 per year of age for “Breast” and between 0.01 and 
0.02 for “Lung”. In both scenarios, the AB was roughly 
proportional to the slope  bα. Thus, α estimates tended 
to their true values at older ages, for which the param-
eter has the higher impact due to the higher mortality for 
other causes. The other parameters were similarly biased 
by a breach of the α-age independency assumption for 
the “Breast” scenario and a negative slope, and were 
hardly affected in all other cases.

The increased risk of non‑cancer death varied randomly 
among patients
Table 6 shows what happened when α was generated as a 
random effect. Mean estimates of α, assumed in Model(1) 
as a fixed effect covariate, slightly decreased with increas-
ing random variability of the underlying parameter. The 
AB was non-negligible for α in both scenarios when the 
range of the max/min ratio became greater than 2 (− 0.11 
for “Breast” and − 0.16 for “Lung” when the widest range 
of variability was considered). AB always remained closer 

to zero and by less than 0.05 for all other parameters. 
Estimates of β and δ were sensitive to the variability of 
α only for the “Breast” scenario, where showed higher 
AB but maintained a coverage close to 95%. In all the 
other cases, the estimates of π, λ, and γ parameters were 
only marginally affected by underlying α variability, and 
remained close to their true values.

Application to real‑life FRANCIM colon cancer data
As an example, this method was applied to survival 
data of colon cancer patients recorded by FRANCIM 
(the French network of cancer registries). FRANCIM 
data are checked for quality and completeness every 
4 years by an independent audit committee (Comité 
d’Évaluation des Registres). Life tables were provided 
by the National Statistics Institute (INSEE). All colon 
cancers diagnosed in 1995–2009 in patients aged 40–74 
were included (N = 15,717 in men and N = 10,942 in 
women). The relative survival and the cure fraction were 
estimated, separately for each sex, using Model(1) and 
using the conventional model without the α parameter 
(Table 7). The cure assumption was already checked for 
these data [21].

For both sexes, we estimated α ≅ 1.3, with confidence 
intervals not including 1, therefore supporting the 
hypothesis of increased non-cancer mortality in colon 
cancer patients. The differences between the cure frac-
tion estimates from Model(1) and those from the con-
ventional model were greater for males (57% vs. 52% at 
age 60) than for females (61% vs. 58%) due to the higher 
mortality rates for other causes in the male population. 
Model(1) and the conventional model also provided dif-
ferent estimates for survival by age. For example, 10-yr 
relative survival in males decreased from 63% at age 40 
to 57% at age 70 with Model(1), and from 64 to 52%, 
respectively, with the conventional model. Since non-
cancer mortality increases steeply with age, not including 
alpha in the model led to a portion of the age trend in 
mortality being attributed to cancer rather than to other 
causes. Not taking into consideration the cancer patients’ 
increased risk of non-cancer death led to bias in the 
colon cancer net survival estimators produced so far.

Discussion
This simulation study, which showed very good perfor-
mances, validated the mixture cure model for relative 
survival estimation presented here. The model includes 
a coefficient that reflects the risk of dying from causes 
other than cancer in cancer patients as compared with 
the risk of all-cause death in the general population. In 
the rationale of this study this coefficient expressed an 
increased risk of non-cancer death for cancer patients 
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(α  > 1) but we also validated the model for α =0.8, as 
we could not exclude the possibility that, for some spe-
cific cancers, the risk of non-cancer death in the patients 
can be smaller than the risk of death in the general 
population.

The model was tested in the ideal situation, where 
it exactly mirrored the pattern of data to which it 
was applied. In these simulations, we considered two 
extreme scenarios in terms of cure fraction, survival 
time of uncured patients, and age trends of both quan-
tities, reflecting the survival pattern of lung and breast 
cancer. We considered linear age effects in order to 
reduce the number of parameters to be presented and 
because other analyses with categorical age effects pro-
vided similar results. We applied the model to both 
individual data and grouped data, the latter in the 
form of life tables stratified by age at diagnosis. When 
Model(1) assumptions were verified, the two methods 
showed comparable performances and provided unbi-
ased estimates of the parameters, and coverage close to 
its nominal value of 95%. Standard deviations of esti-
mates of α and π60 over the 1000 simulation runs using 
individual data were only slightly lower than those 
using grouped data. When there was an increased risk 
of non-cancer death, the estimates generated by the 
conventional model carried a risk of being severely 
biased. When there was no increased risk, Model(1) 
generated the same estimates as the conventional 
model. A sample size of 5000 cases with more than 
10 years of follow-up were sufficient to obtain reliable 
estimates for all parameters in most scenarios.

Good model specification is a requirement of every 
modelling application, but seldom can it be completely 
achieved or checked. In the second part of this work, 
we studied the robustness of model estimates when the 
underlying assumptions were not in line with the data, 
more specifically: when relative survival in uncured 
patients did not follow a Weibull distribution;  when the 
increased risk of non-cancer death was dependent on 
age at diagnosis;  when the increased risk of non-cancer 
death was not a fixed effect but randomly varied within 
the cohort of patients. The individual data approach 
provided (Supplementary material Table  2) severely 
biased estimates in some extreme scenarios, in particu-
lar for the low survival “Lung” scenario with exponential 
Weibull parameters θ  = 0.25. This was perhaps due to 
the extremely high probability density generated by this 
distribution in very short times (say, 1–2 months) after 
diagnosis, making the contribution of observations with 
longer follow-up time negligible. The analysis of grouped 
data was also faster and is suitable to overcome problems 
of data access, problems due to personal data protection 
regulations, which research teams are increasingly facing. 

The grouped data approach was therefore chosen to 
obtain a more detailed presentation of results.

Each of the mis-specification situations considered 
could be accounted for by modifying the basic model, i.e. 
by considering other survival distributions, or including 
age dependence, or random effect covariates. This could 
be the subject of future developments on corrected cure 
models. Nevertheless, investigating the robustness of a 
parsimonious model can help in finding a compromise 
between a lack of fit and over-parametrization.

The strength of the corrected model studied here lies 
in the fact that an overall risk of death from other causes 
can be estimated without needing to know the causal fac-
tors and their distribution in the patient set and in the 
general population. Such information is seldom avail-
able in population-based studies. On the other hand, the 
model assumes the increased risk of death in patients to 
act as a multiplicative relative risk with respect to mortal-
ity in the general population. The multiplicative relative 
risk model has, however, shown its plausibility during 
its broad and long use in epidemiological research. Its 
appropriateness in the specific field of cancer survivor-
ship can be ascertained through an extensive application 
to epidemiological data on various cancers and in differ-
ent populations.

The model is based on the plausible assumption that 
patients’ cancer mortality is not indefinitely increas-
ing after some years since diagnosis, differently from 
the increasing age trend of other causes mortality. This 
makes in principle possible to disentangle the two risks. 
The model can be fitted even if the excess death remains 
constant after a long time and in this context the func-
tional form has to be found that best describes the ana-
lysed data. Actually, we found a good behaviour of the 
model also in scenarios assuming persisting long-term 
cancer mortality, as expressed by γ parameter = 1.1 
(Breast scenarios).

In order to test the model behaviour in a critical situ-
ation, it was also applied to data generated with negli-
gible or zero proportion of cure and, in addition, with 
persisting long-term cancer mortality. Actually, we 
found that the corrected cure model provided biased 
estimates for α and for the cure fraction (Supplementary 
material Table  1). Such bias was however attributable 
to the logistic transformation. Indeed, when applying a 
linear age effect on the cure fraction, all estimates were 
unbiased (Supplementary material Table 1). Finally, we 
compared the estimates provided by the full model and 
those from a model obtained by retaining the α param-
eter but with no cure assumption (Supplementary 
material Table  1). The latter provided biased estimates 
only when the true cure fraction was higher than 5%. 
It can be suggested that, when in the applications the 
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full corrected model gives an estimated cure fraction 
of less than 10%, the no-cure model, with the inclusion 
of α parameter, should be also applied for comparison. 
Moreover the model with linear effect of age on the cure 
fraction can be considered in the case of non-negative 
estimate of the cure fraction.

This work has several limitations. We only tested the 
model with the Weibull distribution assumption for sur-
vival of the uncured patients. The Weibull is a very popu-
lar survival distribution generally providing a good fit of 
cancer data [25] but other choices are possible as the log-
normal [26], the loglogistic [27], or the flexible regression 
spline-generated [28] distributions. We have no reason 
to believe that any of these distributions would give dif-
ferent results in the case of well-specified model, when 
exactly the same distribution is used to generate and to 
fit the data. However, their behaviour may change when 
some of the assumptions are not verified, so the robust-
ness analysis could be affected by the specific function 
considered.

Reliable cause-of-death data from population-based 
sources can be used to test the distribution assumptions 
considered. Cause of death was not available in the data 
of our application. In the future this information will be 
standardized and included in the basic dataset of cancer 
registries.

Age at diagnosis was the only covariate included in the 
model. Other variables available from population-based 
data, as sex, period of diagnosis or, sometimes, stage and 
treatment, can be included without substantially modify-
ing the model structure.

A linear effect of age, as considered in the model, can 
be accepted for many cancers, but can be unrealistic for 
others. Breast and prostatic cancers have for instance a 
higher death risk for the young and the old with respect 
to the middle age patients. We choose the linear link 
to simplify the proof of concept, mainly focused on the 
alpha parameter, without great loss of generality. Second 
or higher order polynomials can be used to account for 
different cancer mortality pattern such as U-shaped.

Future methodological development can address the 
testing of other scenarios, designed to mirror a wider 
variety of cancers, exploring different survival distri-
butions for the uncured and separately modelling the 
parameters in the distribution function, that is, the scale 
(λ) and shape (γ) parameters in the case of the Weibull 
distribution.

Previous applications of the same model to real data 
[17, 18] or of survival models not focused on cure [13–
15] have shown that an increased patients’ mortality 
risk due to other causes exists for several cancers. Rea-
sons for different ‘other causes of death’ risk in patients 
with respect to the general population may differ. They 

range from causes not generated by the cancer such as 
smoking, genetic and other lifestyle risk factors com-
mon to cancer and other diseases, as well as to depri-
vation and other socio-economic factors, to factors 
indirectly caused by the diagnosed cancer such as side 
effects of cancer treatment [29, 30]. We cannot separate 
these two components without detailed treatment data 
from clinical databases. However, our intention was to 
capture cure of the cancer itself, implying no further 
risk of progression and death due to the diagnosed can-
cer and following the definition proposed by Haupt in 
2007 “cure from the original cancer regardless of any 
potential for, or presence of, remaining disabilities or 
side effects of treatment” [31]. Following this definition 
we distinguish from patients that will die for progres-
sion or relapse of the diagnosed cancer and those who 
will die from other causes related (e.g. adverse effects of 
treatments) or not (e.g. other disease) with the cancer 
[32] .

This increased risk of death is greater in patients aged 
65 or more. By applying our model to colon cancer data, 
we showed that not acknowledging an increased risk of 
death led to substantial bias in relative survival estima-
tions and cure fractions. Even a moderately increased 
risk of 1.3 can make a greater difference than, for exam-
ple, the one induced by different choices of the relative 
survival estimator, an issue that has raised considerable 
debate within the biostatistics community [33–35].

Concerning applications, the model provides a new 
indicator in cancer patients: the relative risk of death 
due to other causes. Estimating and accounting for 
variations in this indicator over time, in different popu-
lations, or according to stage or treatment could poten-
tially improve the validity of survival comparisons. 
Moreover, we believe that providing correct estimates 
of cure fractions and of survival in uncured patients is 
important in that it could be used to improve the plan-
ning of health services for cancer survivors, particularly 
when a large increase in long-term cancer prevalence 
occurs or is expected. For instance, the estimated 
increased risk of dying of 1.3% in patients cured for 
colon cancer indicates that long-term clinical follow-
up should focus more on preventing or treating the 
long-term effects of surgery and chemotherapies and 
addressing risk factors for cancer that are shared with 
other chronic diseases. To be more effective in prevent-
ing or reducing the increased risk, the same services 
that provide the cancer clinical follow-up have to take 
care of the conditions responsible for the increased risk 
estimated by this study, particularly in the elderly.

Correct estimates of time to cure, derived from the 
cure model parameters, also have practical implications 
in the legislation addressing the “Right to be Forgotten” of 
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cancer patients https:// ecpc. org/ policy/ the- right- to- be- 
forgo tten-a- new- resea rch- proje ct. Such legislation has 
been introduced in France, Belgium, Luxembourg and 
the Netherlands, with efforts being made across Europe 
to establish similar approaches. Finally, a more accurate 
balance between the risk of death due to cancer and that 
due to other, often more effectively controlled, causes can 
improve patients’ awareness and quality of life.

Conclusion
The present analysis supports the use of the corrected 
mixture cure model including the increased risk of 
non-cancer death, to provide better estimates of indi-
cators based on cancer survival, which are important 
to public health decision-making and should improve 
patients’ awareness of their health status and facilitate 
their return to normal life.
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