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Abstract 

Baseline imbalance in covariates associated with the primary outcome in clinical trials leads to bias in the reporting of 
results. Standard practice is to mitigate that bias by stratifying by those covariates in the randomization. Additionally, 
for continuously valued outcome variables, precision of estimates can be (and should be) improved by controlling for 
those covariates in analysis. Continuously valued covariates are commonly thresholded for the purpose of performing 
stratified randomization, with participants being allocated to arms such that balance between arms is achieved within 
each stratum. Often the thresholding consists of a simple dichotomization. For simplicity, it is also common practice 
to dichotomize the covariate when controlling for it at the analysis stage. This latter dichotomization is unnecessary, 
and has been shown in the literature to result in a loss of precision when compared with controlling for the covariate 
in its raw, continuous form. Analytic approaches to quantifying the magnitude of the loss of precision are generally 
confined to the most convenient case of a normally distributed covariate. This work generalises earlier findings, exam-
ining the effect on treatment effect estimation of dichotomizing skew-normal covariates, which are characteristic of a 
far wider range of real-world scenarios than their normal equivalents.
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Introduction
Two-arm randomized clinical trials with a continuous 
valued outcome may be analysed using a linear regres-
sion model to test for association between the dichoto-
mous intervention (independent variable), and the 
outcome (dependent variable). As with all tests for asso-
ciation between an intervention and an outcome, it is 
important to adjust for any baseline covariates believed a 
priori to be associated with the outcome [1–6]. This pro-
tects against bias due to baseline imbalance and increases 
the precision of treatment effect estimates.

When the baseline covariate to be controlled for is 
either categorical or ordinal, a common approach for 
this adjustment consists of two steps. Firstly, each level 
of the baseline covariate is regarded as a separate stratum 
and the randomisation is stratified such that the desired 
study-wide allocation ratio is honoured in each stratum 
individually. This stratified randomization approach pre-
empts any incidental imbalance in the covariate between 
arms which may arise in simple randomization due to 
sampling variability.

Then, at the analysis stage, the baseline covariate is 
controlled for by including it as an additional inde-
pendent variable in the model. This partitions the 
variance between the baseline covariate and the inter-
vention and thus yields a more precise estimate of the 
treatment effect. Failing to adjust for stratification var-
iables in analysis leads to models which overestimate 
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standard error, and thus overestimate confidence 
interval width, underestimate type 1 error, and reduce 
power [1, 5].

The procedure above is easily implemented for cat-
egorically valued baseline covariates such as gender or 
ethnicity, or ordinal ones such as disease stage. How-
ever, when the baseline covariate to be adjusted for is 
continuously valued, such as patient age or BMI, no 
naturally occurring strata exist, and more variabil-
ity exists in approach [7]. Creating artificial strata by 
thresholding the baseline covariate at pre-defined bin 
boundaries is attractively simple, as it allows the strati-
fied randomization to proceed in the same way as for 
the categorical or ordinal covariate above. Although 
the decision as to how many bins to threshold into and 
what the bin boundaries should be introduces a cer-
tain arbitrariness into the adjustment, it is nonetheless 
widespread practice, and often a simple dichotomiza-
tion at a somewhat arbitrarily chosen value close to the 
median is deployed. Thus, for example, prior to inclu-
sion as covariates in a model, age may be dichotomized 
as < 55 vs. ≥ 55  years, BMI as < 30 vs. ≥ 30  kg/m2, and 
continuously valued gene-based risk scores may be 
summarized as ‘high’ vs. ‘low’, based on a pre-deter-
mined threshold.

Unfortunately, when it comes to analysis, oftentimes 
the stratification variables are included in the model 
using the same dichotomization that was used in the 
stratification. It is well documented that this leads to 
substantial additional imprecision in treatment effect 
estimates, and is subject to all the same drawbacks as 
omitting the stratification variable from analysis alto-
gether, only to a lesser extent [8–10].

Analytic approaches to understanding and quantify-
ing the deleterious effect of covariate dichotomization 
in the literature have focussed, for simplicity and con-
venience, on the case where the covariate of concern is 
normally distributed [4]. However, non-normally dis-
tributed covariates arise frequently in the analysis of 
medical data in particular, and are a subject of increas-
ing interest in clinical trials. It is well documented that 
anthropomorphic measures such as BMI [11, 12] and 
weight [13], lipid measurements such as triglycerides 
[14], biomarker measurements, and commonly used 
measures in medical domains as diverse as opfthalmol-
ogy [15] and cardiology [16] all display substantial right 
skew.

Log-transformation, the most commonly used 
method of normalizing right skewed data, is inflexible 
and in many cases will either over- or under-correct 
for the skewness. More flexible normalization meth-
ods such as the Box-Cox transformation [17] have 
been used with some success in normalizing skewed 

anthropomorphic data [18] but come at the cost of 
potentially undermining the assumed linear relation-
ship between the covariate and the outcome variable. 
It is thus of considerable interest to extend findings on 
the effect of covariate dichotomization from the case 
of normally distributed covariates to that of skew-nor-
mal ones.

Method
Consider a test for association between a dichotomous 
indicator variable z representing treatment (intervention 
vs. standard) and a continuously valued outcome variable 
y , controlling for a skew-normal (SN) distributed covari-
ate x purportedly associated with y . Assuming a linear 
relationship between x and y , the following model may 
be considered:

where ε ∼ N (0, σε) and x ∼ SN (ϕ,ω, �) . ϕ and ω are the 
location and scale parameters of x respectively. � con-
trols the skewness. If � = 0 the normal distribution is 
retrieved. The variance of x is given by [19, 20].

The test for a treatment effect is formulated as a 
hypothesis test with null hypothesis of γ = 0 against a 
1-sided alternative ( γ > 0 or γ < 0 ), or a 2-sided alterna-
tive ( γ  = 0) . The precision of the estimator of γ , γ  , affects 
the power of the hypothesis test, the confidence interval 
width and the p-value. It is thus of interest to assess the 
effect of dichotomization of the covariate x on the pre-
cision of γ̂ . To this end, we compare the following three 
models:

i)	 the full model as presented in Eq. 1;
ii)	 a restricted model, in which the covariate x is omitted;
iii)	a ‘partially restricted’ model, in which x is dichoto-

mized before inclusion in the model.

The full model takes advantage of all the information 
available in x , whereas the restricted model does not use 
x at all. The partially restricted model resides somewhere 
between these extremes. Measuring the precision of γ̂  
under the partially restricted model relative to the full 
and restricted models tells us just how much information 
is lost by dichotomization of a SN covariate when esti-
mating a treatment effect.

We denote the total sample size by n , and consider a 1:1 
allocation ratio, ( n/2 participants per arm).

i)	 Full model

(1)y = α + γ z + βx + ε

(2)σ 2
x = ω

2

(
1−

2�2

π
(
1+ �2

)
)
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From analysis of variance theory [21] we have that for 
the linear model in Eq. 1, the variance of γ̂  , V

(
γ̂
)
 , may be 

expressed as

where mf represents the full model and Szz is the sum of 
squared errors for z:

Encoding the arm indicator zi as 0 (standard care) 
or 1 (intervention), for 1:1 randomization, z = 1

2 , 
(zi − z)2 = 1

4∀i , Szz =
n
4 and thus

ii)	 Restricted model

Because we are considering a randomized study, x 
and z can be expected to be independent. In this case, 
if the covariate x is omitted from the model altogether, 
the mean component of the βx term will be absorbed 
into the intercept α and the variance component of the 
βx term, β2σ 2

x  , will be absorbed into the error term, ε , 
whose standard error under the restricted model will be 
referred to as σε

′.

Using mr to denote the restricted model, and using the 
expression for σ 2

x  in Eq. 2,

iii)	Partially restricted model

We now consider the effect of dichotomizing SN dis-
tributed covariate x prior to including it in the model.

The SN distribution may be expressed as [22].

φ(.) represents the standard normal distribution and �(.) 
is its cumulative distribution. When � = 0 the normal 
distribution is recovered.

V
(
γ̂ ;mf

)
= σ 2

ε /Szz

Szz =
n∑

i=1

(zi − z)2

V
(
γ̂ ;mf

)
= 4σ 2

ε/n

σε
′
=

√
σ 2
ε + β2σ 2

x

V
(
γ̂ ;mr

)
= 4

(
σ 2
ε + β2ω2

(
1−

2�2

π
(
1+ �2

)
))

/n

f (x;ϕ,ω, �) =
2

ω
φ

(
x − ϕ

ω

)
�

(
�
x − ϕ

ω

)

For notational convenience, without loss of general-
ity, we temporarily restrict analysis to the special case of 
ϕ = 0 and ω = 1 . The expected value of a doubly truncated 
standard SN random variable can then be expressed in 
terms of � and the lower and upper standardized trunca-
tion points, α and β respectively [21, 23, 24].

f (.; �) and F(.; �) are the distribution and cumulative 
distribution functions respectively of the standard SN 
distribution with skewness parameter � , and �(.) is the 
cumulative distribution function of the standard normal.

Consider that x may be partitioned into two com-
ponent random variables. The first, denoted by xd , 
represents the dichotomized x . For x below the dichot-
omization threshold u , xd is set to u− , the mean of all 
values of x below u . For x above u , xd is set to u+ , the 
mean of all values of x above u . The second random 
variable, denoted by xr , is the “residual” of x around xd , 
xr = x − xd . Setting the lower and upper values of xd in 
this way achieves independence of xd and xr , such that 
V (x) = V (xd)+ V (xr) . Proof of this can be found in 
Additional file 1: Appendix 2.

To calculate the variance of xd , we require the 
mean of x above and below the dichotomiza-
tion point (singly truncated means), as well as the 
overall (untruncated) mean. These are arrived at 
by setting the boundary points α and β in Eq.  3 
to α = −∞ and β = u or to α = u and β = ∞ for 
the singly truncated means, and to α = −∞ and 
β = ∞ for the untruncated mean. By definition, 
f (−∞; �) = f (∞; �) = 0 , F(−∞; �) = 0, F(∞; �) = 1 , 
and �(−∞) = 0,�(∞) = 1 . For dichotomization 
threshold u , we have

and

The undichotomized mean is also easily derived as

We represent the percentile at which dichotomization 
occurs as τ , 0 < τ < 1 , i.e. τ = F(u; �).

(3)E(x;𝜆�𝛼 < x < 𝛽) = −
f (𝛽;𝜆) − f (𝛼;𝜆)

F (𝛽;𝜆) − F (𝛼;𝜆)
+ 𝜔2

�
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Scaling by ω to retrieve the more general case of 
x ∼ SN (ϕ,ω, �) , the variance of xd may be calcu-
lated using the above relationships for the truncated 
means and the identities Var[X] = E

[
X2

]
− E[X]2 and 

Var(X) = 1
n

∑n
i=1(xi − µ)2.

Since V (x) = V (xr)+ V (xd) , we have partitioned the 
variance attributable to x into a component attributable to 
xd and another attributable to xr . We may now calculate the 
variance of γ̂  under the partially restricted model as follows.

After partitioning x into components xd and xr , the 
model may be expressed as:

Arguing analogously as for the restricted model, since 
xr is independent of z , if the covariate xr is omitted from 
the model, then the mean component of the βxr term 
will be absorbed into α and the variance component of 
the βxr term, β2(V (x)− V (xd)) , will be absorbed into 
the error term, ε , whose standard deviation will now be 
referred to as σε′′.

Denoting the partially restricted model by mp,

The reduction in variance associated with the estima-
tor for γ̂  when going from the restricted model (covari-
ate x omitted altogether) to the full model (covariate x 
included in raw form) can be derived by subtraction.

The reduction in variance associated with the estima-
tor for γ̂  when going from the restricted model to the 
partially restricted model (with covariate x included in 
dichotomized form) can be similarly derived.

V
�
xd
�
=

�2
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�
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�
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y = α + γ z + βxr + βxd + ε
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√
σ 2
ε
+ β2(V (x)− V (xd))

V
(
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)
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σ 2
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)
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V
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We will refer to the ratio between these two variance 
differences as the ‘dichotomization efficiency’, D.

Detailed derivations of the expressions in Eqns. 4 and 5 
are presented in Additional file 1: Appendix 1.

Real‑world data
The prevalence and extent of skewness in real-world 
data was explored using publicly available summary 
statistics on BMI, weight and lipid measurements 
from the US Center of Disease Control and Prevention 
(CDC) [25–27]. Using the provided percentile values 
for the variable being summarized, we used Maximum 
Likelihood Estimation (MLE) to find the SN param-
eter values that optimize the fit. Results are presented 
in Table 1. BMI and Weight data are specific to people 
aged 20. All lipid parameter data are for people aged 
20–74 between 1976 and 1980.

The CDF of a random variable is a function with 
argument ‘x’ which provides the probability of obtain-
ing a value smaller than x. In Fig.  1 it was decided to 
present graphs of the CDF rather than the probability 
density function (PDF), which is the derivative of the 
CDF, because the publicly available datasets provided 
values at non-equally spaced percentiles, which makes 
presentation of the PDF cumbersome and difficult to 
interpret. Figure 1 shows that the SN model fit the data 
extremely well in six of the eight cases, and moderately 
well in the other two (Female BMI and Fasting Triglyc-
erides). In contrast, the normal model achieved very 
good fit for just two of the eight cases (Total Choles-
terol and non-HDL Cholesterol). Table  1 shows that 
in all eight cases the amount of skewness was at least 
moderate ( � > 2 ), and in three cases it was substantial 
( � > 5 ). This highlights the prevalence of skewed data 
in medical datasets and the importance of considering 
implications for analysis. In all cases the skewness was 
to the right (� > 0).

D =
V
(
γ̂ ;mr

)
− V
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γ̂ ;mp

)

V
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Table 1  MLE parameters for fitting a SN model to common anthropomorphic and lipid measurements

Data Location Scale Shape ( �)

Male BMI 19.4 5.51 4.55

Female BMI 17.7 6.66 7.49

Male Weight 57.9 19 3.51

Female Weight 46.8 17.7 5.19

Total Cholesterol 163 65.7 2.19

HDL Cholesterol 32.1 17.5 2.93

non-HDL Cholesterol 116 67.7 2.2

Fasting Triglycerides 49.6 115 11

Fig. 1  Cumulative Distribution Functions (CDF’s) for common anthropomorphic and lipid measurements with SN densities with parameters 
determined by MLE overlaid



Page 6 of 10Herschtal ﻿BMC Medical Research Methodology           (2023) 23:60 

Results
We see from Eq. 5 that the dichotomization efficacy is 
a function of just two parameters, the SN shape param-
eter � and the dichotomization percentile τ . Equation 5 
may then be used to graph the dichotomization effi-
cacy as a function of these parameters. Figure 2 shows 
results for a range of realistic shape parameters ( �) , 
with the dichotomization percentile ranging from 0.1 
to 0.9. Figure 3 shows the distribution functions for the 
same range of shape parameter values, chosen to cover 
those observed in the real-world data summarized 
above.

Figure 2 shows that the loss of efficiency when dichoto-
mizing a continuously valued covariate is similar for a SN 
distributed covariate as is the case for a normally distrib-
uted covariate ( � = 0) . As for the normal case, the loss 
of efficiency is substantial and should be avoided if at all 
possible. However, if dichotomization is necessary, advice 
regarding the best cut-point at which to dichotomize in 
order to mitigate this loss should consider the likely skew 
in the data. For data with little or no skew, the ideal cut-
point is at the median, with little additional loss so long 
as the cut-point remains in the percentile range 0.35, 
0.65. However, when skew becomes substantial (> 5), this 
advice changes. The ideal cut-point becomes ∼ 2

3 and the 
acceptable range runs from ~ 0.5 to ~ 0.8. Table  2 shows 

the cut-point that optimises the loss of precision, as well 
as the range of cut-points such that the additional loss of 
precision is kept within modest bounds, as percentiles of 
the covariate being dichotomized.

Simulation
Analytic findings were corroborated using simula-
tion as follows. A dichotomously valued variable repre-
sented the trial arm ( z ). A continuously valued covariate 
( x ), designed to have a relationship with the outcome 
as described below, was controlled for. The propor-
tion below the dichotomization threshold, τ , was set to 
values ranging from 0.1 to 0.9 in increments of 0.1, and 
500 datasets were generated at each setting of τ to ensure 
sufficient accuracy in simulation-based estimates. The 
expected difference between arms ( γ ) was set to 15 units, 
and the standard error of the residuals was set to 30 
units, which gives a moderate effect size of ½). The sam-
ple size per dataset was set to 100 per arm, large enough 
to obviate any small sample effects. The strength of the 
relationship between the covariate and the outcome 
variable was set by choosing a value of 20 for β . For each 
dataset at each of the above settings of τ , three models 
were generated: the full model; the restricted model; 
and the partially restricted model. These were used to 
empirically calculate the dichotomization efficiency as 

Fig. 2  Dichotomization Efficiency as a function of Proportion below the Dichotomization Threshold for a range of shape parameters and 
dichotomization thresholds
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a function of the proportion below the dichotomization 
threshold. Theoretical values based on Eq. 5 are shown in 
Fig.  4 (black dashed curve), and simulation-based point 
estimates and their 95% CI’s from the 500 runs are shown 
as points with error bars.

It is of note that the calculation of the dichotomi-
zation efficiency (Eq.  5) involves a division in which 
the denominator is a random variable. That being the 
case, simulation runs where the denominator has a low 
value due to sampling variation have high variance and 
thus increase the standard errors in the estimate of D . 
To circumvent this, point estimates and 95% CI’s for D 
were calculated by regressing V

(
γ̂ ;mr

)
− V

(
γ̂ ;mp

)
 on 

V
(
γ̂ ;mr

)
− V

(
γ̂ ;mf

)
 and estimating D from the slope of 

the regression line.

Discussion
The development above is valid where the covariate to 
be controlled for is linearly associated with the outcome 
variable. Deviations from this assumption will change 
results. If the nature of the non-linearity is such that 
the dichotomisation threshold coincides with a natural 
‘change point’ (i.e. a near discontinuity) in the covariate 
– outcome relationship, then the deleterious effects of 
dichotomisation may be ameliorated, or even reversed. 
However, such change points are rare in nature, and 
given that dichotomisation thresholds are not usually 
chosen with this in mind, such an occurrence would be 
purely serendipitous. Since the nature of possible non-
linearities is diverse, and any attempted transformation 
(logarithmic, quadratic, square-root, sigmoid) will likely 
only partly capture it, a full investigation of their effect is 
considered beyond the scope of this work.

It is of note that the dichotomization efficiency for the 
case of a normal covariate is analogous to that demon-
strated in Senn [28] for dichotomization of a normally 
distributed outcome variable. However, in the case of 
dichotomization of a covariate, the dichotomization 
efficiency multiplies the maximum possible gain in effi-
ciency, which would be achieved when the covariate is 
left in its raw form.

Taking practical advantage of the findings in this work 
requires that a method to estimate the parameters of the 
SN distribution be available. There are a number of ways 

Fig. 3  Distribution functions of standard skew-normal distributions for a range of shape parameters

Table 2  Optimal dichotomization cut-point, as well as minimum 
and maximum cut-points that avoid substantial additional loss of 
precision (taken as keeping the dichotomization efficacy > 0.6), as 
a function of the shape parameter of the SN distribution

Shape Optimal Minimum Maximum

0 0.5 0.35 0.65

2 0.59 0.44 0.73

5 0.66 0.48 0.81

10 0.67 0.48 0.82

20 0.67 0.48 0.82
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in which this can be done. One is to find the maximum 
likelihood estimates of the parameters using a simplex 
method such as that of Nelder and Mead [29]. This is 
the approach which was taken for estimating the param-
eters of the publicly available CDC datasets discussed 
in the Real-World Data subsection above. Alternatively, 
Thiuthad and Pal [30] present an approximation based on 
the method of moments. An R package [31] to perform 
this parameter estimation based on the method of Fer-
nandez and Steel [32] is also available.

It is of interest to compare this work to a related work 
by Kahan and Morris [1]. Kahan and Morris consider a 
somewhat different but nonetheless related scenario, in 
which paired continuous valued data are analysed using an 
independent groups t-test to test for a difference between 
groups. They show that by ignoring the pairing when con-
ducting the t-test, the model estimated variance of the 
treatment difference is inflated by a factor of (1− ρ)−1 , 
where ρ is the correlation between the group means 
induced by the pairing. We can equivalently represent a 
paired t-test as a bivariate linear regression with treatment 
assignment as the predictor variable, controlling for a sec-
ond categorical variable representing the participant. By 
assigning each participant to both of the treatment con-
ditions, we effectively stratify by participant in the rand-
omization, with exactly 2 observations in each stratum, 

one for each treatment condition. Then, by including the 
participant indicator in the regression at the analysis stage, 
this stratification variable is controlled for. Such a model 
is equivalent to a paired t-test, and a model which fails to 
control the participant indicator is equivalent to an inde-
pendent groups t-test. There is a direct analogy between 
the relationship between the paired and independent 
groups t-tests, and the relationship between the full model 
and the restricted model in this current work. The first 
step in the current work – comparison of the full model to 
the restricted model, is exactly analogous to that of Kahan 
and Morris, except that in this current work the covariate 
to be controlled for is a continuous valued SN covariate 
( x ) as opposed to being a participant indicator. The next 
step, which constitutes the main message of this work, is 
to determine what proportion of this loss in efficiency is 
‘recouped’ by including the dichotomized x in the model 
(partially restricted model) rather than its raw value.

Conclusion
We have found that the ratio of the additional variability 
incorporated into the treatment effect estimate under a 
model with a dichotomized SN covariate to that incor-
porated under a model with the same covariate omitted 
altogether is a function only of two parameters – the pro-
portion below the dichotomization boundary, and the 

Fig. 4  Confirmation of analytic findings by simulation, for low and high values of skewness ( � = 2, 10) , and different values of the error standard 
deviation (10, 20)
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shape parameter of the SN covariate, which controls the 
skewness. We have provided an analytic expression for 
this ratio which can be easily computed using any stand-
ard statistical software package. We have further shown 
that dichotomization of a SN covariate has a similar 
effect on efficiency to that of dichotomization of a normal 
covariate. We have also shown that in real-world medical 
data the amount of skewness is often substantial and that, 
should dichotomisation be unavoidable, this changes 
advice regarding the optimal dichotomization cut-point 
from being at the median to being at approximately the 
67th percentile (for right-skewed data).

Limitations
Computation of the dichotomization efficiency depends 
on calculation of the cumulative distribution function 
of the SN distribution for which there is no closed form 
expression. However, it can be expressed in terms of 
Owen’s function [33], for which fast and accurate compu-
tational algorithms are well established [34].

The findings are asymptotically valid for large sample 
sizes, regardless of whether randomisation was sim-
ple, or stratified by the dichotomized covariate. For 
small sample sizes, findings are approximate. However, 
for reasonable sample sizes the magnitude of the inac-
curacy is very small (of order n−1

n  with sample size n ). 
Results shown in the Simulation section show that with 
sample sizes as small as 100 per arm, theoretical calcu-
lations match empirical findings with high accuracy.

Software implementation details
All simulation code was written in the R programming 
language, version 4.1.0 [35]. Regressions used the glm 
function in the ‘stats’ package and all graphs were pro-
duced using the ggplot2 [36] package. Densities and 
cumulative densities of the skewed-normal distribution 
were calculated using the ‘sn’ package [37]. MLE esti-
mation was performed using the bbmle package [38].
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