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Abstract
Background Understanding how SARS-CoV-2 infection impacts long-term patient outcomes requires identification 
of comparable persons with and without infection. We report the design and implementation of a matching strategy 
employed by the Department of Veterans Affairs’ (VA) COVID-19 Observational Research Collaboratory (CORC) to 
develop comparable cohorts of SARS-CoV-2 infected and uninfected persons for the purpose of inferring potential 
causative long-term adverse effects of SARS-CoV-2 infection in the Veteran population.

Methods In a retrospective cohort study, we identified VA health care system patients who were and were not 
infected with SARS-CoV-2 on a rolling monthly basis. We generated matched cohorts within each month utilizing a 
combination of exact and time-varying propensity score matching based on electronic health record (EHR)-derived 
covariates that can be confounders or risk factors across a range of outcomes.

Results From an initial pool of 126,689,864 person-months of observation, we generated final matched cohorts 
of 208,536 Veterans infected between March 2020-April 2021 and 3,014,091 uninfected Veterans. Matched cohorts 
were well-balanced on all 37 covariates used in matching after excluding patients for: no VA health care utilization; 
implausible age, weight, or height; living outside of the 50 states or Washington, D.C.; prior SARS-CoV-2 diagnosis per 
Medicare claims; or lack of a suitable match. Most Veterans in the matched cohort were male (88.3%), non-Hispanic 
(87.1%), white (67.2%), and living in urban areas (71.5%), with a mean age of 60.6, BMI of 31.3, Gagne comorbidity 
score of 1.4 and a mean of 2.3 CDC high-risk conditions. The most common diagnoses were hypertension (61.4%), 
diabetes (34.3%), major depression (32.2%), coronary heart disease (28.5%), PTSD (25.5%), anxiety (22.5%), and chronic 
kidney disease (22.5%).

Conclusion This successful creation of matched SARS-CoV-2 infected and uninfected patient cohorts from the 
largest integrated health system in the United States will support cohort studies of outcomes derived from EHRs and 
sample selection for qualitative interviews and patient surveys. These studies will increase our understanding of the 
long-term outcomes of Veterans who were infected with SARS-CoV-2.
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Background
The U.S. faces continued infections with Severe Acute 
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) 
following earlier waves in 2020 and 2021. Numerous 
studies have examined short-term symptoms, hospital-
ization, and death [1, 2] among patients infected with 
SARS-CoV-2 both before and after vaccine availability. 
The coronavirus disease 2019 (COVID-19) pandemic 
caused unprecedented disruptions across a wide range of 
domains relevant to health and health care including to 
health systems and care processes, informal family sup-
port, long-term care, safety net programs, social organi-
zations, and economic stability, making it challenging to 
isolate the direct impact of infection with SARS-CoV-2 
on individual health. Thus, more work is needed to char-
acterize the direct long-term health effects of SARS-
CoV-2 infection distinct from these systemic disruptions.

To research the long-term health consequences of 
COVID-19, the U.S. Department of Veterans Affairs (VA) 
provided resources in May 2021 to create the COVID-19 
Outcomes Research Collaboratory (CORC). The main 
purposes of this program are investigating long-term 
health outcomes associated with SARS-CoV-2 infection 
using national electronic health record (EHR) data and 
survey research to assess factors not well captured by the 
EHR. The focus of this paper is on the study design uti-
lized to facilitate EHR and survey-based research through 
cohort construction of Veterans with SARS-CoV-2 infec-
tion and well-matched controls, with matching for a wide 
range of covariates potentially associated with the expo-
sure (SARS-CoV-2 infection) and outcomes. The creation 
of these populations will enable study of outcomes asso-
ciated with this infection and potential mediating factors 
using observational research methods applied to both 
retrospective EHR and prospective survey-based data.

To best identify potential causal associations, we 
selected the target trial emulation approach to evaluate 
the causal effect of SARS-CoV-2 infection on long-term 
health-related outcomes. This approach is intended to 
minimize sources of bias, including observed and unob-
served confounding and immortal time bias in estimat-
ing the effect of SARS-CoV-2 infection [3, 4]. To address 
unobserved confounding and selection bias, we matched 
Veterans infected with SARS-CoV-2 to similar con-
temporaneous uninfected Veterans before comparing a 
broad array of outcomes available in the VA’s comprehen-
sive longitudinal EHR.

Analyses based on the EHR will be supplemented with 
a prospective longitudinal survey in which a subset of 
matched cohorts of infected and uninfected persons will 
be invited to participate. Longitudinal survey responses 
will provide more detailed information on patient-
reported outcomes that will complement outcomes 
ascertained from the EHR. Selection and matching of 

survey samples will be conducted in such a way to ensure 
covariate balance is maintained in the survey subsample. 
In addition, source data from the EHR and survey will be 
used to guide purposive sampling for a prospective quali-
tative study to understand the diversity of experiences of 
Veterans infected with SARS-CoV-2.

Designing a matched cohort study to address a wide 
array of EHR-based outcomes and embedded sur-
vey subsets requires a more inclusive consideration 
of confounding than when estimating the effect of 
SARS-CoV-2 infection on a single outcome. This pro-
tocol paper describes the design and methodological 
approach to identify a matched cohort of comparable 
patients infected and not infected with SARS-CoV-2. 
This matched cohort will be used in future research to 
analyze the effect of SARS-CoV-2 infection on clinical, 
functional, and economic outcomes among Veterans. 
This work could also inform and support efforts by other 
groups interested in creating matched cohorts to address 
a wide range of unanswered questions related to SARS-
CoV-2 infection.

Methods
Study design and data
We designed a retrospective cohort study of EHR-based 
outcomes with a non-equivalent comparator of unin-
fected Veterans. To facilitate measurement of patient-
reported outcomes, this retrospective cohort is paired 
with an embedded smaller post-only survey-based pro-
spective cohort study. In both components, comparator 
non-equivalence was reduced by generating matched 
cohorts.

As described previously [5], we assembled a cohort of 
VA enrollees who tested positive for SARS-CoV-2 RNA 
in a respiratory specimen within the VA system based on 
polymerase chain reaction (PCR) tests as well as those 
with evidence of SARS-CoV-2 infection identified out-
side the VA but documented in VA records as identified 
by the VA National Surveillance Tool between March 
1, 2020 and April 30, 2021. The earliest date of a docu-
mented positive test was taken as each patient’s date of 
infection. We included only those Veterans who had an 
assigned VA primary care team (e.g., Patient Aligned 
Care Team) or at least one VA primary care clinic visit 
in the two-year period prior to infection to minimize 
missingness in EHR-based covariates that are generated 
from health system interaction. Cohorts were identified 
sequentially on a monthly basis, with assignment to a 
particular month for cases based on the date of the posi-
tive test or documentation in notes of non-VA evidence 
of infection. VA-enrolled Veterans without a positive test 
prior to or during the month who met the same inclu-
sion criteria were considered uninfected potential com-
parators for that month. The uninfected control group 
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members were eligible for repeated sampling and match-
ing with replacement until they had a positive test. To 
avoid misclassification of first infection date based on a 
positive test, infected Veterans with COVID-19-related 
diagnostic codes (ICD-10: B97.29, U07.1, U09.9, J12.82, 
Z86.16) listed in fee-for-service Medicare claims 15 or 
more days before their VA test were excluded. In addi-
tion, Veterans from the uninfected comparator group 
with any such diagnostic codes were excluded from sam-
pling for matching in the month the COVID-19-related 
code arose and any months thereafter.

We developed 14 separate monthly patient cohorts—
one for each month (March 2020-April 2021) —for the 
purpose of defining index dates and matching covari-
ates. For example, the March 2020 cohort included all VA 
enrollees with an initial positive test during March 2020 
and all VA enrollees who were alive as of March 1, 2020 
and had not been infected prior to April 1, 2020. SARS-
CoV-2-infected patients were included as potential com-
parator patients in months before infection. In a given 
month, uninfected Veterans could be matched to multi-
ple infected Veterans in that same month and uninfected 
Veterans could be included in multiple month-specific 
cohorts as long as they remained uninfected and contin-
ued to meet other eligibility criteria. To minimize immor-
tal time bias, the index date was defined as the date of the 
earliest positive test for SARS-CoV-2- infected Veterans 
and as the 1st day of the relevant month for uninfected 
Veterans [6]. Each patient’s index date served as the 
anchor for defining matching covariates (with covariate 
construction starting 14 days prior to the positive test 
date for infected patients), based on EHR data from the 
prior two years.

Matching specification
Our goal was to conduct many-to-one matching that 
would maximize retention of infected patients for exter-
nal validity and covariate balance for internal validity. A 
priori, we defined a suitable matching strategy as one that 
would result in < 5% attrition of the infected cohort and 
achieve covariate balance among the selected covariates 
for matching based on standardized differences < 0.1 [7].

Coarsened exact matching (CEM) was initially 
attempted. Covariates used for matching were derived 
iteratively at a single point in time (summer 2021) with 
the understanding that the evidence base about causes 
and consequences of COVID-19 was (and is) evolving 
rapidly. In collaboration with clinician-investigators (see 
left column, Appendix 1), we identified a broad list of 
demographic, clinical, and health care utilization mea-
sures hypothesized to be either risk factors for pre-spec-
ified outcomes alone (e.g., survival, depression, total VA 
costs, disability, healthcare-related financial strain due to 

high out-of-pocket costs) or confounders associated with 
both infection and outcomes [8].

To minimize sample loss when attempting to match 
on many covariates in CEM [9], the five physician prin-
cipal investigators then worked together to prioritize 
covariates for the final matching specification (see right 
column, Appendix 1). Modified coarsened exact match-
ing was then implemented using this prioritized set of 
covariates. However, a suitable exact match could not be 
identified for 53.7% of infected Veterans, so we reverted 
to a form of combined exact and calendar time-specific 
propensity score matching [10], with cohorts identified 
by index month.

In a two-step process, infected patients were exact 
matched to uninfected controls based on index month, 
sex, immunosuppressive medication use (binary), state 
of residence, and COVID-19 vaccination status (effec-
tive in January-April 2021 cohorts only) because these 
covariates were strong potential confounders. In the sec-
ond step, a total of 37 binary, categorical, and continuous 
covariates were included in the propensity score model, 
including immunosuppressive medication use (binary), 
nursing home residence any time in the prior two years, 
vaccination status (January-April 2021 cohorts), and 
diagnosed CDC high-risk conditions: [11] coronary heart 
disease, cancer (excluding non-metastatic skin cancers), 
chronic kidney disease, congestive heart failure, pulmo-
nary-associated conditions (including asthma, COPD, 
interstitial lung disease, and cystic fibrosis), dementia, 
diabetes, hypertension, liver disease, sickle cell/thalas-
semia, solid organ or blood stem cell transplant, stroke/
cerebrovascular disorders, substance use disorder, anxi-
ety disorder, bipolar disorder, major depression, PTSD, 
and schizophrenia.

Other categorical variables in the propensity score 
model included sex, race, ethnicity, rurality of the Vet-
eran’s home ZIP code, state of residence, smoking status, 
and categorization of two comorbidity scores (CAN [12], 
Nosos [13]). Continuous covariates included age, body 
mass index (BMI), comorbidity score via Gagne index, 
distance from a Veteran’s home to nearest VA hospital, 
and four VA utilization measures (inpatient admissions, 
primary care visits, specialty care visits, mental health 
visits in the prior 2 years).

A caliper of 0.2 times the pooled estimate of the stan-
dard deviation of the logit of the propensity score was 
used to bound which uninfected patients could be 
matched to each infected patient [14]. To provide the 
survey team a sufficiently deep pool of matched con-
trols to account for survey non-participation, the 25 
matched uninfected patients closest in propensity score 
were retained for each infected patient. Infected patients 
with fewer than 25 matched uninfected patients had all 
their comparator patients selected as eligible matches. 
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Matching was performed by the PSMATCH procedure 
from SAS/STAT 15.1 in SAS® 9.4M6 via the VA Informat-
ics and Computing Infrastructure (VINCI) platform.

Outcomes comparisons to be conducted
The EHR-based clinical outcomes that we intend to 
compare between matched cohorts are mortality, 
depression, suicide, onset of new clinical diagnoses, 
exacerbation of prevalent conditions, development of 
COVID-19 sequelae, and health care use and VA health 
care costs. The survey-based outcomes to be compared 
between matched cohorts include disability, healthcare-
related financial strain, and health-related quality of life. 
Our default approach to analyses will be “per-protocol”, 
such that uninfected patients who cross over to become 
infected will be censored at the time of infection. Future 
analyses will account for this potentially informative 
censoring via inverse probability of censoring weights 
[15] and/or censoring of the entire matched strata at 
time of censoring. The study team discussed inclusion 
of negative control outcomes, but an outcome expected 
to be null between comparators could not be identified 
due to the ubiquitous effects of SARS-CoV-2 infection 
and the conditioning of negative control outcomes on 
health care utilization that might be differential between 
comparators.

Results
From a sampling frame of 231,160 Veterans who had 
documentation of at least one SARS-CoV-2 infection 
between March 2020 and April 2021, and 9,291,822 Vet-
erans without evidence of infection over the same time 
period, we excluded patients who had neither a CAN 
comorbidity CAN score (i.e., were not assigned a PACT 
team) nor primary care use 24 months prior to index, or 
who had missing or implausible height, weight, or age 
(Fig.  1). We also excluded Veterans with missing ZIP 
codes or ZIP codes outside of Washington, D.C. or the 
50 states, patients who were uninfected on the 1st of each 
month but became infected later in the same month (for 
the uninfected group), or had a prior infection docu-
mented in Medicare. Lastly, we excluded 776 (0.4%) of 
209,312 infected patients who did not have a suitable 
match, which generated final matched cohorts of 208,536 
infected and 3,014,091 uninfected Veterans (compris-
ing 5,173,400 total person-months of follow-up because 
of matching with replacement). Unmatched infected 
patients are described in Appendix Table 2 and exhibited 
greater rates of missing information than those with suit-
able matches.

As expected, the cohorts prior to matching were 
imbalanced in many covariates (Appendix Table  3). 
After matching, the cohorts were well-balanced on all 
covariates, based on standardized mean differences 

(SMD) < 0.1 (Table  1). The cohorts included Veterans 
from all 50 states and Washington, D.C. Most Veterans 
in the matched cohorts were male (88.3%), non-Hispanic 
(87.1%), white (67.2%), and living in urban areas (71.5%), 
with a mean (standard deviation, SD) age of 60.6 (16.4), 
BMI of 31.3 (6.6), and mean (SD) straight-line distance 
to the closest VA medical center of 35.8 (35.2) miles. A 
minority were current smokers (12.6%), 39.3% had never 
smoked and 42.5% were former smokers. Comorbid-
ity was assessed several ways, including Gagne score 
(mean = 1.4, SD = 2.2), count of CDC high-risk condi-
tions (mean = 2.3, SD = 1.9) and count of 5 mental health 
conditions prevalent in Veterans (mean = 0.9, SD = 1.0). 
The most common diagnoses were hypertension (61.4%), 
diabetes (34.3%), major depression (32.2%), coronary 
heart disease (28.5%), PTSD (25.5%), anxiety (22.5%), 
and chronic kidney disease (22.5%). Approximately 10% 
of matched cohort members had been prescribed one or 
more immunosuppressive medications within 24 months 
before the index date (qualifying medications listed in 
the Appendix Table 4). Of the 34.0% of the cohort with 
index dates between January-April 2021 when vaccina-
tions became available, 3,153 Veterans (1.5% of the entire 
infected cohort) received at least one dose of a vaccine 
before their first positive COVID-19 test result.

In the 24 months prior to the index date, cohort mem-
bers had a mean (SD) of 8.3 (10.2) primary care visits, 
13.4 (14.9) specialty care visits, and 7.8 (21.9) mental 
health visits in VA. Over one-half (53.3%) of infected 
patients were drawn from three of the 14 months in the 
observation period (November 2020, December 2020, 
and January 2021).

Discussion
Despite the very large sample size available for this 
research with 231,160 infected and just over 9  million 
uninfected Veterans, a strategy of bias reduction based 
on coarsened exact matching resulted in lack of an exact 
match for 53.7% of cases. The large sample loss reduced 
statistical power and generalizability since the expo-
sure-disease associations may have differed between 
successfully matched and unmatched populations. 
The combined exact matching and propensity score 
approach, on the other hand, resulted in a much lower 
failure to match frequency at only 0.4%, with a high rate 
of success as assessed by the SMDs < 0.1 for all matching 
covariates. The work performed by the CORC to iden-
tify important covariates on which to match cases and 
uninfected controls using propensity score methodol-
ogy should facilitate the performance of causal research 
on long COVID-19 etiology in this population. Matched 
cohorts will be updated from May 2021 forward to be 
able to generate evidence on Veteran experience after 
April 2021. Given the ever-changing environment of 
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variants, vaccination status, immunogenicity from prior 
exposure, and tests and treatments available, future 
analyses will consider period-specific effects and include 
individuals with antigen test-detected infections in these 
future cohorts.

As the nation’s largest national integrated publicly 
financed health system, the VA has the unique ability to 
track long-term outcomes among individuals infected 
with SARS-CoV-2 because it has a well-established com-
prehensive EHR that was developed around the mission 

Fig. 1 STROBE Figure of Cohort Derivation

 



Page 6 of 10Smith et al. BMC Medical Research Methodology           (2023) 23:81 

Variable Name COVID-19
(n = 208,536)

Uninfected
(n = 5,173,400)

SMD

Age, mean (SD) 60.6 (16.2) 60.6 (16.4) 0.00106

BMI, mean (SD) 31.3 (6.4) 31.3 (6.6) 0.01178

Sex, N (%)
Female 21,949 (10.5) 540,127 (10.4) 0.00988

Male 183,676 (88.1) 4,566,632 (88.3)

Unknown 2,911 (1.4) 66,641 (1.3)

Race, N (%)
American Indian/Alaska Native 1,965 (0.9) 47,784 (0.9) 0.00610

Asian 2,081 (1.0) 51,718 (1.0)

Black or African American 47,726 (22.9) 1,189,212 (23.0)

Native Hawaiian or Other Pacific Islander 1,946 (0.9) 48,095 (0.9)

White 139,952 (67.1) 3,474,658 (67.2)

Multiple Races 1,978 (0.9) 49,028 (0.9)

Missing 12,888 (6.2) 312,905 (6.0)

Hispanic Ethnicity, N (%)
Yes 20,309 (9.7) 492,607 (9.5) 0.00792

No 181,097 (86.8) 4,506,252 (87.1)

Missing 7,130 (3.4) 174,541 (3.4)

Rurality, N (%)
Urban 149,310 (71.6) 3,700,754 (71.5) 0.00144

Not Urban (incl. missing) 59,226 (28.4) 1,472,646 (28.5)

Smoking Status, N (%)
Current 26,188 (12.6) 654,415 (12.6) 0.01379

Former 88,275 (42.3) 2,201,135 (42.5)

Never 81,916 (39.3) 2,032,442 (39.3)

Missing 12,157 (5.8) 285,408 (5.5)

CDC High Risk Conditions, N (%)
Coronary Heart Disease 59,972 (28.8) 1,472,173 (28.5) 0.00668

Cancer 38,136 (18.3) 942,791 (18.2) 0.00165

Chronic Kidney Disease 47,610 (22.8) 1,161,200 (22.4) 0.00920

Congestive Heart Failure 22,124 (10.6) 532,106 (10.3) 0.01059

Pulmonary 46,178 (22.1) 1,131,201 (21.9) 0.00671

Dementia 10,837 (5.2) 254,136 (4.9) 0.01298

Diabetes 72,020 (34.5) 1,773,699 (34.3) 0.00528

Hypertension 127,761 (61.3) 3,174,235 (61.4) 0.00187

Liver Disease 15,324 (7.3) 370,974 (7.2) 0.00684

Sickle Cell 383 (0.2) 9,131 (0.2) 0.00169

Transplant 687 (0.3) 16,864 (0.3) 0.00061

Stroke/Cerebrovascular disease 13,012 (6.2) 314,234 (6.1) 0.00689

Substance Use Disorder 25,915 (12.4) 645,302 (12.5) 0.00140

Anxiety 47,186 (22.6) 1,165,628 (22.5) 0.00230

Bipolar disorder 8,039 (3.9) 199,388 (3.9) 0.00005

Major Depression 67,383 (32.3) 1,664,825 (32.2) 0.00282

PTSD 52,964 (25.4) 1,317,278 (25.5) 0.00148

Schizophrenia 4,737 (2.3) 115,145 (2.2) 0.00309

# CDC High Risk Conditions, mean (SD) 2.3 (1.9) 2.3 (1.9) 0.01088

# Mental Health Conditions (Anxiety, Bipolar disorder, major depression, PTSD, schizophre-
nia), mean (SD)

0.9 (1.1) 0.9 (1.0) 0.00200

Gagne score, mean (SD) 1.4 (2.3) 1.4 (2.2) 0.01559

# VA Inpatient Admissions, mean (SD) 0.4 (1.2) 0.4 (1.3) 0.00079

# VA Primary Care Visits, mean (SD) 8.6 (9.7) 8.3 (10.2) 0.02916

# VA Specialty Care Visits, mean (SD) 13.9 (14.1) 13.4 (14.9) 0.03288

Mental Health Care Utilization, mean (SD) 7.9 (22.6) 7.8 (21.9) 0.00457

Table 1 Descriptive Statistics of Matched Cohorts
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Variable Name COVID-19
(n = 208,536)

Uninfected
(n = 5,173,400)

SMD

Immunosuppressed in prior 24 months, N (%) 20,366 (9.8) 502,358 (9.7) 0.00188

CLC At Index Date, N (%) 2,176 (1.0) 46,586 (0.9) 0.01457

NOSOS score, N (%)
NOSOS, missing 4,801 (2.3) 110,729 (2.1) 0.03224

NOSOS Category 1 [0, 0.417) 5,708 (2.7) 129,206 (2.5)

NOSOS Category 2 [0.417, 0.471) 9,599 (4.6) 227,788 (4.4)

NOSOS Category 3 [0.471, 0.534) 12,449 (6.0) 305,685 (5.9)

NOSOS Category 4 [0.534, 0.611) 15,187 (7.3) 378,825 (7.3)

NOSOS Category 5 [0.611, 0.707) 17,737 (8.5) 450,045 (8.7)

NOSOS Category 6 [0.707, 0.829) 20,556 (9.9) 525,057 (10.1)

NOSOS Category 7 [0.829, 0.998) 23,462 (11.3) 599,981 (11.6)

NOSOS Category 8 [0.998, 1.259) 26,956 (12.9) 686,219 (13.3)

NOSOS Category 9 [1.259, 1.805) 31,372 (15.0) 786,826 (15.2)

NOSOS Category 10 [1.805, Inf ) 40,709 (19.5) 973,039 (18.8)

CAN Score, N (%)
CAN, missing 4,066 (1.9) 86,041 (1.7) 0.03258

CAN Category 1, 0–20 34,427 (16.5) 851,737 (16.5)

CAN Category 2, 25–40 31,926 (15.3) 801,677 (15.5)

CAN Category 3, 45–60 38,266 (18.3) 970,378 (18.8)

CAN Category 4, 65–80 46,894 (22.5) 1,184,134 (22.9)

CAN Category 5, 85–90 30,745 (14.7) 762,537 (14.7)

CAN Category 6, 95–99 22,212 (10.7) 516,896 (10.0)

Vaccinated in January-April 2021, N (%) 3,153 (1.5) 75,353 (1.5) 0.00470

Index Month, N (%)
March 2020 2,340 (1.1) 58,278 (1.1) 0.00363

April 2020 6,786 (3.3) 168,727 (3.3)

May 2020 4,402 (2.1) 109,604 (2.1)

June 2020 6,967 (3.3) 173,776 (3.4)

July 2020 14,945 (7.2) 373,025 (7.2)

August 2020 8,376 (4.0) 208,750 (4.0)

September 2020 6,787 (3.3) 169,048 (3.3)

October 2020 12,212 (5.9) 302,119 (5.8)

November 2020 31,004 (14.9) 767,646 (14.8)

December 2020 43,732 (21.0) 1,085,816 (21.0)

January 2021 36,282 (17.4) 900,381 (17.4)

February 2021 15,699 (7.5) 388,553 (7.5)

March 2021 9,942 (4.8) 244,839 (4.7)

April 2021 9,062 (4.3) 222,838 (4.3)

U.S. State of Residence, N (%)

Table 1 (continued) 
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Variable Name COVID-19
(n = 208,536)

Uninfected
(n = 5,173,400)

SMD

Alaska 694 (0.3) 16,880 (0.3) 0.01515

Alabama 4,089 (2.0) 101,648 (2.0)

Arkansas 3,075 (1.5) 76,426 (1.5)

Arizona 6,310 (3.0) 157,105 (3.0)

California 16,253 (7.8) 405,136 (7.8)

Colorado 3,278 (1.6) 80,733 (1.6)

Connecticut 1,895 (0.9) 46,782 (0.9)

Washington, D.C. 414 (0.2) 10,111 (0.2)

Delaware 552 (0.3) 13,199 (0.3)

Florida 16,003 (7.7) 399,175 (7.7)

Georgia 7,893 (3.8) 196,375 (3.8)

Hawaii 263 (0.1) 6,295 (0.1)

Iowa 2,473 (1.2) 59,479 (1.1)

Idaho 1,582 (0.8) 39,124 (0.8)

Illinois 6,462 (3.1) 159,840 (3.1)

Indiana 4,533 (2.2) 112,806 (2.2)

Kansas 2,471 (1.2) 61,282 (1.2)

Kentucky 3,352 (1.6) 82,956 (1.6)

Louisiana 3,754 (1.8) 93,423 (1.8)

Massachusetts 2,990 (1.4) 73,840 (1.4)

Maryland 2,640 (1.3) 65,047 (1.3)

Maine 631 (0.3) 15,442 (0.3)

Michigan 4,383 (2.1) 108,714 (2.1)

Minnesota 4,251 (2.0) 105,503 (2.0)

Missouri 6,609 (3.2) 164,281 (3.2)

Mississippi 1,804 (0.9) 44,823 (0.9)

Montana 1,122 (0.5) 27,824 (0.5)

North Carolina 8,521 (4.1) 212,232 (4.1)

North Dakota 865 (0.4) 21,154 (0.4)

Nebraska 1,872 (0.9) 46,270 (0.9)

New Hampshire 743 (0.4) 18,024 (0.3)

New Jersey 2,623 (1.3) 64,850 (1.3)

New Mexico 1,373 (0.7) 34,024 (0.7)

Nevada 3,049 (1.5) 75,467 (1.5)

New York 7,739 (3.7) 192,659 (3.7)

Ohio 9,173 (4.4) 228,564 (4.4)

Oklahoma 4,030 (1.9) 100,147 (1.9)

Oregon 1,386 (0.7) 34,259 (0.7)

Pennsylvania 7,880 (3.8) 196,104 (3.8)

Rhode Island 762 (0.4) 18,729 (0.4)

South Carolina 6,352 (3.0) 157,970 (3.1)

South Dakota 1,408 (0.7) 29,278 (0.6)

Tennessee 5,848 (2.8) 145,295 (2.8)

Texas 19,436 (9.3) 485,224 (9.4)

Utah 1,243 (0.6) 30,706 (0.6)

Virginia 5,070 (2.4) 125,759 (2.4)

Vermont 149 (0.1) 3,594 (0.1)

Washington 1,976 (0.9) 48,855 (0.9)

Wisconsin 5,087 (2.4) 126,171 (2.4)

West Virginia 1,621 (0.8) 40,213 (0.8)

Wyoming 554 (0.3) 13,603 (0.3)

Distance to Nearest VAMC (miles), mean (SD) 35.6 (36.5) 35.8 (35.1) 0.00452

Table 1 (continued) 
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of providing lifelong care for Veterans. In addition, Vet-
erans are historically reliant on VA for care if they engage 
with the health system.

Our matching strategy defines the specific effect that 
will be estimated from our results. We considered his-
torical controls of Veterans receiving care in the VA 
before the pandemic, but that would estimate the effect 
of individual SARS-CoV-2 infection combined with all 
the many other social and systematic disruptions that 
accompanied the pandemic. We also considered compar-
ing Veterans hospitalized with SARS-CoV-2 infection to 
Veterans hospitalized with other conditions (e.g., influ-
enza), which would be analogous to a randomized clini-
cal trial with an active comparator. Such a comparator 
group asks whether COVID-19 hospitalization is worse 
than other sorts of hospitalizations. We reasoned that, 
for most Veterans, had they not developed COVID-19, 
they may not have been hospitalized with another condi-
tion that same month (although we did not exclude those 
hospitalized, so they do occur at whatever their natural 
frequency is in the comparator group).

We also did not wish to restrict to only hospitalized 
COVID-19 patients, as we took as a scientific question 
the relationship between initial severity of SARS-CoV-2 
infection and subsequent outcomes—rather than pre-
suming it by conditioning on initial severity. We also 
considered Veterans infected with other non-SARS-
CoV-2 viruses. However, we noted the substantial body 
of evidence on sepsis and pneumonia—much of it viral 
in origin—that suggested such patients also have adverse 
long-term outcomes caused by non-SARS-CoV-2 viruses, 
including influenza. As such, we reasoned such com-
parators might underestimate the total individual effects 
survivors of COVID-19 would face and health systems 
would need to support. Each of these comparators may 
be of great interest to other research groups; they were 
not, however, our primary focus. Our goal was to gener-
ate matched cohorts to support cohort studies of EHR-
derived outcomes and sample selection for qualitative 
interviews and patient surveys.

The retrospective cohort study described here is sub-
ject to several limitations. First, cohort matching results 
in sample loss that may reduce generalizability of results 
compared to weighting methods, although we were able 
to retain > 99% of the infected patients in the sample after 
matching. Second, there is likely some contamination 
of the uninfected comparator group with Veterans with 
undiagnosed SARS-CoV-2 infection or who tested posi-
tive for SARS-CoV-2 with test results not available from 

private insurers, Medicare Advantage plans, Medicaid, 
or other community sources. Third, covariate specifica-
tion for matching is based on our understanding of risk 
factors and confounders of SARS-CoV-2 infection as of 
spring 2022, however, we are unable to measure all risk 
factors via administrative data. Specifically, unmea-
sured confounders such as employment, income, or 
other social vulnerability indicators may be imbalanced 
between matched groups and could confound the asso-
ciation between infection and outcomes. Fourth, results 
may not generalize to Veterans who became infected 
after April 2021 or to non-Veterans. CORC will update 
matched cohorts from May 2021-March 2022, and that 
work is ongoing.

Conclusion
Our understanding of the long-term outcomes of Veter-
ans who were infected with SARS-CoV-2 will be gleaned 
from qualitative interviews, population-based surveys, 
and cohort studies of outcomes derived from EHRs. This 
study will explore all these approaches, all framed in the 
context of the matched cohorts generated from EHR data 
from the largest integrated health system in the U.S. Due 
to Veterans’ reliance on VA for care and eligibility for 
care once enrolled, we will be able to evaluate clinical and 
economic outcomes following their acute SARS-CoV-2 
infection, as long-term outcomes two years after the 
onset of the pandemic are now being realized.
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