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Abstract 

Background In pre-post designs, analysis of covariance (ANCOVA) is a standard technique to detect the treatment 
effect with a continuous variable measured at baseline and follow-up. For measurements subject to a high degree of 
variability, it may be advisable to repeat the pre-treatment and/or follow-up assessments. In general, repeating the 
follow-up measurements is more advantageous than repeating the pre-treatment measurements, while the latter can 
still be valuable and improve efficiency in clinical trials.

Methods In this article, we report investigations of using multiple pre-treatment and post-treatment measurements 
in randomized clinical trials. We consider the sample size formula for ANCOVA under general correlation structures 
with the pre-treatment mean included as the covariate and the mean follow-up value included as the response. We 
propose an optimal experimental design of multiple pre-post allocations under a specified constraint, that is, given 
the total number of pre-post treatment visits. The optimal number of the pre-treatment measurements is derived. 
For non-linear models, closed-form formulas for sample size/power calculations are generally unavailable, but we 
conduct Monte Carlo simulation studies instead.

Results Theoretical formulas and simulation studies show the benefits of repeating the pre-treatment measurements 
in pre-post randomized studies. The optimal pre-post allocation derived from the ANCOVA extends well to binary 
measurements in simulation studies, using logistic regression and generalized estimating equations (GEE).

Conclusions Repeating baselines and follow-up assessments is a valuable and efficient technique in pre-post design. 
The proposed optimal pre-post allocation designs can minimize the sample size, i.e., achieve maximum power.

Keywords Optimal allocation, Repeating baselines, Pre-post design, Analysis of covariance, Repeated measures

Background
It is common in randomized clinical trials to col-
lect information from patients before they enter the 
study. Typically eligibility for the trial is assessed at 

a screening visit, and a subsequent baseline visit is 
conducted prior to randomization to document clini-
cal status at that time. Huntington disease studies for 
tetrabenazine and deutetrabenazine are randomized, 
placebo-controlled clinical trials (Huntington Study 
Group [1, 2]). As a motivation of this paper, the pri-
mary measure for both Huntington disease studies 
was the total chorea score of the Unified Huntington’s 
Disease Rating Scale, analyzed as a continuous varia-
ble. The total chorea score was measured at screening, 
baseline, and several follow-up visits. The treatment 
effect was evaluated using analysis of covariance 
(ANCOVA) model. In ANCOVA, both studies used 
the average baseline scores (i.e., the average values of 
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two pre-treatment measurements made at screening 
and at true baseline) as the covariate and the change 
from baseline as the dependent variable. The question 
then arises, “What are the benefits of using multiple 
pre-treatment measurements?”

The use of multiple pre-treatment measurements 
in randomized clinical trials has been proposed in 
recent years. In a randomized controlled trial for the 
effect of soy phytoestrogens on hot flashes in women 
with breast cancer, the hot flash scores were measured 
every 24 hours for 4 weeks baselines and 12 weeks 
follow-ups [3]. A variety of endpoints, such as daily 
scores of migraine headache and brief fatigue inven-
tory, were also assessed at multiple pre-treatment and 
post-treatment measurements [4]. Besides, several 
statistical papers discuss repeating the pre-treatment 
measurements for pre-post design. Frison and Pocock 
[5] demonstrated the merits of using more than one 
pre-treatment measurement in ANCOVA, with the 
pre-treatment mean as the covariate and the post-
treatment mean as the outcome. Bristol [6] presented 
simulation studies using two pre-treatment measure-
ments as covariates in linear regression models. Zhang 
et  al. [7] considered the power analysis of choosing 
two baselines in ANCOVA for continuous variables 
and in logistic regression for categorical variables by 
simulation studies.

ANCOVA is a common technique to incorporate 
the baseline value as the covariate and estimate the 
treatment effect in randomized clinical trials. Stand-
ard theory, based on linear regression models, shows 
that the adjustment for a covariate reduces the residual 
variance by a factor of 1− ρ2 , where ρ is the correla-
tion between the covariate and the outcome [8]. That 
would increase the precision of detecting the treat-
ment effect. Alternative approaches treat the pre-treat-
ment measurements as additional outcome variables in 
mixed effects analysis. This was exemplified by Liang 
and Zeger [9] and Tango [10]. These authors showed 
that the generalized linear mixed-effects model is 
another efficient tool for pre-post design, which could 
extend to discrete responses with non-linear models.

In randomized clinical trials with repeated measures, 
investigators usually focus on repeating the follow-up 
assessments, which is generally more advantageous 
than repeating the pre-treatment measurements. How-
ever, the latter can still be valuable and was ignored by 
most of the clinical trials. In this paper, we address the 
benefits of repeating the baselines using the ANCOVA 
model, which would be an interesting and novel point 
of randomized controlled clinical trials. Besides, when 
there are multiple pre-treatment and post-treatment 
measurements, we investigate the optimal pre-post 

allocation to minimize the required sample size. In the 
section Methods, we consider the ANCOVA sample 
size formula using multiple pre-post measurements 
under a general unequal correlation structure. We fur-
ther derive the optimal number of pre-treatment and 
post-treatment measurements given the total number 
of pre-post visits. In section Results, we illustrate the 
above procedures using the “Beat the Blues” data from 
a clinical trial of an interactive multimedia program 
[11]. In simulation studies, we consider both continu-
ous and binary outcomes. When the outcome is binary, 
exact formulas are generally not available but simula-
tion studies show that repeating baselines is advanta-
geous under logistic regression., We use simulation 
studies to assess how well the formulas and insights 
from the ANCOVA case extend to binary outcomes. 
Merits and future works of the proposed optimal 
design are in the last two sections.

Methods
Repeating pre‑treatment measurements in ANCOVA
We consider the ANCOVA model with the mean of 
multiple pre-treatment measurements as the covari-
ate and the post-treatment mean as the outcome. 
Consider normally distributed endpoints in a rand-
omized clinical trial and suppose that there are two 
treatment groups i = 0, 1 (for placebo and treat-
ment) with ni individuals per group. For all individu-
als, assume there are S pre-treatment visits and T 
post-treatment visits. Denote the pre-treatment meas-
urements as Xijs and the post-treatment measure-
ments as Yijt , where i = 0, 1, j = 1, . . . , ni, s = 1, . . . , S 
and t = 1, . . . ,T  . We assume the S + T  pre-post 
measurements (Xij1, . . . ,XijS ,Yij1, . . . ,YijT )

′ fol-
lows multivariate normal distribution with mean 
µ = (µ

pre
ij1 , . . . ,µ

pre
ijS ,µ

post
ij1 , . . . ,µ

post
ijT )′ for i = 0 or 1 and 

the (S + T )× (S + T ) variance-covariance matrix

Denote the pre-treatment visits mean as 
X̄ij· = S

s=1 Xijs/S and the post-treatment visits mean 
as Ȳij· =

∑T
t=1 Yijt/T , i = 0, 1, j = 1, . . . , ni . The overall 

pre-treatment mean X̄ =
∑1

i=0

∑ni
j=1 X̄ij·/(n0 + n1) . The 

ANCOVA model is

The estimated treatment effect δ̂ = µ̂
post
1· − µ̂

post
0·  , which 

is an unbiased estimator with variance formula [5, 12]:

(1)Ȳij· = µ
post
i· + β(X̄ij· − X̄)+ ǫij , ǫij

iid∼N (0, σ 2).
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where �̄pre, �̄post and �̄pre-post are the mean of all ele-
ments in matrices �pre,�post and �pre-post , respectively. 
Term (X̄1·· − X̄0··)2 can be negligible due to randomization 
and (n0 + n1 − 2)/(n0 + n1 − 3) tends to 1 as sample size 
increases, which leads to the simple approximation [5].

Assume the covariance matrix

then we have Σ̄pre = 𝜎2
X
[1 + (S − 1)𝜌X ]∕S, Σ̄post = 𝜎2

Y
[1 + (T − 1)𝜌Y ]∕T and 

�̄pre-post = ρXY σXσY  . The variance formula of ANCOVA 
becomes

The merits of repeating the pre-treatment visits ( S ≥ 2 ) 
can be obtained directly from the variance formula (2). 
Keep the number of post-treatment visits T and other 
parameters fixed, the variance decreases as the number 
of pre-treatment visits S increases. Besides, when ρXY  
and other parameters are fixed, the higher the correlation 
between the pre-treatment visits ρX , the less benefit is 
obtained by repeating the pre-treatment measurements. 
When ρX is fixed, the higher the correlation between the 
pre- and post-randomization measurements ρXY  , the 
variance becomes smaller, and the efficiency is gained 
from repeating pre-treatment visits.

The sample size formula per group under n0 = n1 of S 
pre- and T post-treatment measurements is:

var(𝛿) =�̂�2
⎡
⎢⎢⎣
1

n0
+

1

n1
+

(X̄1⋅⋅ − X̄0⋅⋅)
2

∑1

i=0

∑ni
j=1

(X̄ij⋅ − X̄)2

⎤
⎥⎥⎦

=
1

n0 + n1 − 3

⎡⎢⎢⎣
1

n0
+

1

n1
+

(X̄1⋅⋅ − X̄0⋅⋅)
2

∑1

i=0

∑ni
j=1

(X̄ij⋅ − X̄)2

⎤⎥⎥⎦

×

⎧⎪⎨⎪⎩

1�
i=0

ni�
j=1

(Ȳij⋅ − Ȳi⋅⋅)
2 −

[
∑1

i=0

∑ni
j=1

(X̄ij⋅ − X̄i⋅⋅)(Ȳij⋅ − Ȳi⋅⋅)]
2

∑1

i=0

∑ni
j=1

(X̄ij⋅ − X̄i⋅⋅)
2

⎫⎪⎬⎪⎭

=
n0 + n1 − 2

n0 + n1 − 3

�
1

n0
+

1

n1
+

(X̄1⋅⋅ − X̄0⋅⋅)
2

(n0 + n1 − 2)Σ̄pre

�
Σ̄post

�
1 −

Σ̄2
pre-post

Σ̄preΣ̄post

�

≈

�
1

n0
+

1

n1

��
Σ̄post −

Σ̄2
pre-post

Σ̄pre

�
,

(2)
var(𝛿) ≈

(
1

n0
+

1

n1

)
𝜎
2

Y

[
1 + (T − 1)𝜌Y

T
−

𝜌2
XY

S

1 + (S − 1)𝜌X

]

=

(
1

n0
+

1

n1

)
𝜎
2

Y

[
1 − 𝜌Y

T
+

(1 − 𝜌X )𝜌
2

XY
∕𝜌X

1 + (S − 1)𝜌X
+ 𝜌Y −

𝜌2
XY

𝜌X

]
.

(3)

n(S,T ) ≈
2
[
Φ−1(1 − �∕2) + Φ−1(1 − �)

]2
�2

Y

�2

[
1 + �Y (T − 1)

T
−

�2
XY

S

1 + �X (S − 1)

]
,

where δ is the treatment effect, α and β are 
the Type I and Type II error probabilities lev-
els. The merits of repeating the pre-treatment 
measurements can be obtained directly from 
n(S = 1,T = 1)− n(S = 2,T = 1) ∝ ρ2XY (1−ρX )

1+ρX
> 0.

As a simple numerical illustration, suppose that 
ρX = ρY = 0.8, ρXY = 0.6 , and the number of post-
treatment visits T = 1 . The ratio of sample size formula 
(3) for having a single baseline visit ( S = 1 ) and having 
both screening and baseline visits ( S = 2 ) is 

1+(T−1)ρY−Tρ2XY
1+(T−1)ρY−2Tρ2XY /(1+ρX )

= 1.067 . The omission of the 
second pre-treatment visit would lead to an increase in 
the sample size of 6.7%.

The same question may be asked about the benefit of 
repeating the post-treatment measurements. The ratio of 

sample sizes for using a single post-treatment measurement 
( T = 1 ) and two post-treatment measurements ( T = 2 ) is 

2[1+ρX (S−1)]−2ρ2XY S

(1+ρY )[1+ρX (S−1)]−2ρ2XY S
 . Similarly, suppose S = 1 and other 

parameters remain the same; this gives the ratio of sample 
sizes as 1.185. The omission of the second post-randomiza-
tion evaluation would lead to an increase in the sample size 
of 18.5%. Hence, repeating the post-treatment measure-
ments is more valuable than repeating the pre-treatment 
measurements in the ANCOVA model. The benefits com-
bine if we repeat both pre-post measurements.

Optimization of pre‑treatment visits given the total 
number of visits
In this subsection, we address the related optimization prob-
lem when designing randomized clinical trials with multiple 
pre-post measurements. For a given total number of visits 
M = S + T , we are interested in the optimal number of pre-
treatment visits Sopt , which minimizes the sample size.

First, we consider the equal correlation structure as 
ρX = ρY = ρXY = ρ . Since S + T = M is a fixed num-
ber and α,β , δ, σ 2

Y , ρ are constant, minimizing the sam-
ple size n ∝ ρ(1−ρ)M+(1−ρ)2

(M−S)[1+ρ(S−1)] is equivalent to maximizing 
the function f (S) = (M − S)[1+ ρ(S − 1)]. This is a 
quadratic function with a negative leading coefficient 
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under the assumption that S ≥ 1 . The optimal number 
of pre-treatment visits is

Now we consider the sample size formula (3) under 
the unequal correlation structure. Minimizing the sam-
ple size formula is equivalent to minimizing the follow-
ing objective function

for 1 ≤ S < M . Notice this is a quotient of two quadratic 
polynomials of S.

Theorem  1 Assume ρXρY − ρ2
XY ≥ 0, 0 < ρX , ρY < 1 

and ρXY  = 0 . The objective function f(S) has a unique 
minimum point on S ∈ [1,M) if M ≥

√

1−ρY
(1−ρX )ρ

2
XY

+ 1 . 
The minimum point is

Otherwise, if M <
√

1−ρY
(1−ρX )ρ

2
XY

+ 1 , then Sopt = 1.

Proof

The proof contains two parts: we first verify that the objec-
tive function f(S) has a unique minimum point on [1, M) 
and then derive the minimum point Sopt.

Part 1: Uniqueness. The two roots of the denominator 
Q(S) are S = 1− 1/ρX and S = M . Since ρX > 0 and Q(S) 
has negative leading coefficient, Q(S) > 0 for 
S ∈ (1 − 1∕�X ,M) . The numerator P(S) also has negative 
leading coefficient. Since P(1 − 1∕𝜌X ) = −𝜌2

XY

(
1 −

1

𝜌X

)(
M − 1 +

1

𝜌X

)
> 0 

and P(M) = [1+ ρX (M − 1)](1− ρY ) > 0,P(S) > 0 for 
S ∈ (1− 1/ρX ,M) . Therefore, S = 1− 1/ρX and S = M 
are two vertical asymptotes of f(S), i.e., limS→(1−1∕�X )

+ f (S) = +∞ 
and limS→M− f (S) = +∞.

Since 𝜌XY ≠ 0,P(1 − 1∕𝜌X ) > 0 and P(M) > 0,P(S) and Q(S) have no 
common zero. Equation f (S) = P(S)/Q(S) = k can be 
transformed into a quadratic equation, which has at most 
two roots. Hence, f(S) has a unique (relative) minimal 

(4)Sopt =
{

M
2 − 1−ρ

2ρ , ifM ≥ 1+ 1
ρ
,

1, otherwise.

f (S) =
1 + �Y (M − S − 1)

M − S
−

�2
XY

S

1 + �X (S − 1)

=
[1 + �X (S − 1)][1 + �Y (M − S − 1)] − �2

XY
S(M − S)

(M − S)[1 + �X (S − 1)]
=

P(S)

Q(S)

(5)

Sopt =
−(1 − �X )[M�2

XY
+ �X (1 − �Y )] + �XY [1 + �X (M − 1)]

√
(1 − �X )(1 − �Y )

�2
X
(1 − �Y ) − �2

XY
(1 − �X )

.

point s0 in (1− 1/ρX ,M) , which is absolute minimal 
point by our discussion. The function f(S) is decreasing 
in (1− 1/ρX , s0) and increasing in (s0,M) . Therefore, if 
s0 ∈ [1,M), s0 is the minimal point; Otherwise, S = 1 is 
the minimal point.

Part 2: Derive Sopt . The minimal point s0 in (1− 1/ρX ,M) 
satisfies f ′(s0) = 0 . Obviously, the objective function can 
be written as

where A = 1− ρY ,B = ρ2
XY (1− ρX )/ρX and 

C = ρY − ρ2
XY /ρX . Then

Since A > 0 and BρX > 0 , the only solution of f ′(S) = 0 
in (1− 1/ρX ,M) satisfies

So

which is

We can check that when M ≥
√

1−ρY
(1−ρX )ρ

2
XY

+ 1, s0 ≥ 1 . So 
we have the conclusion. �

Remark 1 When ρXY = 0 , the pre-treatment measures 
are unrelated to the post-treatment measures. Hence 
Sopt = 1 under this special case. Also, since the Sopt in (5) 
is usually not an integer, one should calculate the values 
of the objective function f(S) on both ⌊Sopt⌋ and ⌈Sopt⌉ and 
select the smaller one.

As an illustration, we assume that 
ρXY = 0.6, ρX = ρY = 0.8 , and the total number of visits 
M = 10 . Following Theorem  1, we obtain that 
M = 10 >

√

1−ρY
(1−ρX )ρ

2
XY

+ 1 = 2.67 and Sopt = 4.14 . Since 
f (⌊Sopt⌋) = f (4) = 0.4098 < f (⌈Sopt⌉) = f (5) = 0.4114  , 
the optimal number of pre-treatment visits is S = 4.

Now we consider a special case of ρX = ρY = ρ with 
the assumption ρ ≥ ρXY  . When M ≥ 1/ρXY + 1,

f (S) = A

M − S
+ B

1+ ρX (S − 1)
+ C ,

f ′(S) = A/(M − S)2 − BρX/[1+ ρX (S − 1)]2.

√
A/(M − S) =

√

BρX/[1+ ρX (S − 1)].

s0 = [M
√

BρX −
√
A(1− ρX )]/[

√

BρX +
√
AρX ],

−(1 − �X )[M�2
XY

+ �X (1 − �Y )] + �XY [1 + �X (M − 1)]
√
(1 − �X )(1 − �Y )

�2
X
(1 − �Y ) − �2

XY
(1 − �X )

.

Sopt =
M𝜌2

XY
+ 𝜌(1 − 𝜌) − 𝜌XY (M𝜌 − 𝜌 + 1)

𝜌2
XY

− 𝜌2
=

M𝜌XY + 𝜌 − 1

𝜌XY + 𝜌

(
= M

𝜌XY

𝜌XY + 𝜌
+

𝜌 − 1

𝜌XY + 𝜌
<

M

2

)

=M −
(M − 1)𝜌 + 1

𝜌XY + 𝜌
= 1 +

(M − 1)𝜌XY − 1

𝜌XY + 𝜌
,
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which gives Eq. (4) under the further condition that 
ρXY = ρ . When fixing ρ , the higher the correlation 
between the pre-post measurements, the larger Sopt is 
obtained. When fixing ρXY  , the higher the correlation 
between two pre-treatment measurements or two post-
treatment measurements, the smaller Sopt is obtained.

In conclusion, when the total number of pre-post visits 
is fixed, one can obtain the optimal choice of S pre-treat-
ment measurements and T post-treatment measure-
ments to minimize the sample size. Measurements 
taken after the randomization can be more informative 
under the special case of ρX = ρY  (since Sopt < M/2 ), 
while repeating the pre-treatment measurements is also 
valuable.

Results
Numerical example
We consider the “Beat the Blues” data from a clinical 
trial of an interactive multimedia program [11]. The data 
are available as the data frame “BtheB” in the R pack-
age HSAUR2. One hundred patients were allocated to 
the placebo group ( n0 = 48 ) and the treatment group 
( n1 = 52 ). Each patient had S = 1 baseline visit and 
T = 4 post-treatment visits at 2, 3, 5, and 8 months after 
randomization.

Assume that these S = 1 and T = 4 measurements fol-
low the unequal correlation structure with the variance-
covariance matrix � . Based on the data set, we found 
that σ̂ 2

X = 117.5, σ̂ 2
Y = 116.8, ρ̂XY = 0.52 and ρ̂Y = 0.77 . 

Since there is only S = 1 pre-treatment visit, ρ̂X could 
not be estimated. Instead, we simply assumed that 
ρ̂X = ρ̂Y = 0.77 . The treatment effect obtained from the 
dataset is δ̂ = 5.4 . Using these estimates, we calculate 
the sample size per group (assume n0 = n1 = n ) under 
α = 0.05 and 1− β = 0.8 using formula (3).

From Table  1, we verify that repeating the post-treat-
ment measurements can be more valuable (with a smaller 
sample size) than repeating the pre-treatment measure-
ments. The benefits combined if we repeat both pre-post 
measurements, e.g., S = 2,T = 4 can reduce up to 28.3% 
sample size compared with the single pre-post design 
( S = 1,T = 1 ). Note that in our numerical example, we 
consider a fixed power at 0.8 for different allocation strate-
gies (See Table 1). The purpose of this example is to show 
that when power is fixed, more pre-treatment and post-
treatment visits will lead to a smaller sample size per group, 
i.e., a more efficient trial. Equivalently, if the sample size is 
fixed, more S and T would lead to a more powerful analysis.

We also derive the optimal number of pre-treatment visits 
S given the total number of visits M = 5 . Using formula (5) 
in Theorem 1, we obtain that M ≥

√

1−ρY
(1−ρX )ρ

2
XY

+ 1 = 2.9 
and Sopt = 1.8 . Since for ⌊Sopt⌋ = 1, n(1, 4) = 36 and for 

⌈Sopt⌉ = 2, n(2, 3) = 35, S = 2 is the optimal number of 
pre-treatment visits. Hence, repeating the pre-treatment 
measurements ( S = 2,T = 3 ) is superior to using a single 
baseline ( S = 1,T = 4 ) under the constraint of the total 
number of visits M = 5.

Simulation studies
The previous algebra applies only to continuous meas-
urements analyzed by the ANCOVA model. Other mod-
els are needed when the outcome variable is discrete. 
The exact formulas for power calculations are generally 
not available for non-linear models with binary out-
comes. Hence, we set up Monte Carlo simulation stud-
ies to assess how well the formulas and insights from the 
ANCOVA model extend to the non-linear models. In this 
section, we conduct simulation studies on continuous and 
binary measurements. For continuous measurements, we 
use the ANCOVA model with the pre-treatment mean as 
covariate and the post-treatment mean as outcome. The 
binary outcomes are analyzed by logistic regression for a 
single outcome and by generalized estimating equations 
(GEE) for multiple outcomes. All simulation results were 
obtained using 20,000 replications.

Single / Multiple Continuous Outcomes
For a single continuous outcome, we assume there are S = 2 
and T = 1 continuous measurements as X1 (screening), X2 
(baseline), Y (outcome) and (X1,X2,Y ) follows MVN(µ,� ). 
For the control group, µ = (0, 0, 0) and for treatment 
group, µ = (0, 0, δ) . Assume σ 2

X = σ 2
Y = 1 . Different ρXY  

and ρX are considered: ρXY = 0.5, ρX = {0.6, 0.7, 0.8, 0.9} ; 
ρXY = 0.6, ρX = {0.7, 0.8, 0.9} and �XY = 0.7, �X = {0.8, 0.9} . 
The sample sizes of the control and treatment groups are 
n0 = n1 = {50, 75, 100, 125, 150}.

The ANCOVA model (1) is considered of using only 
baseline ( S = 1 ) as the covariate or taking the mean 
of screening and baseline ( S = 2 ) as the covariate for 

Table 1 Sample size per group n(S, T) for ANCOVA model under 
α = 0.05 and 1− β = 0.8 with different number of pre-treatment 
and post-treatment measurements

S, T n(S, T) Sample size reduction 
percentage (%) 
1− n(S, T )/n(1, 1)

S = 1, T = 1 n(1, 1) = 46 -

S = 2, T = 1 n(2, 1) = 44 4.3%

S = 1, T = 2 n(1, 2) = 39 15.2%

S = 1, T = 4 n(1, 4) = 36 21.7%

S = 2, T = 3 n(2, 3) = 35 23.9%

S = 2, T = 4 n(2, 4) = 33 28.3%

S = 4, T = 2 n(4, 2) = 36 21.7%
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a single continuous outcome Y. We set the effect size 
δ = 0 to evaluate Type I error probabilities and δ = 0.3 
for power. The Type I error probabilities of ANCOVA 
models control well by using only baseline ( S = 1 ) or 
screening and baseline ( S = 2 ) (Table  2). The power of 
repeating pre-treatment measurements consistently 
exceeds the power of using a single baseline (Table 3). For 
S = 2 , when ρXY  is fixed, higher ρX leads to lower power. 
When ρX is fixed, higher ρXY  would obtain larger power.

For multiple continuous outcomes, we conduct simula-
tion studies to obtain the optimal number of pre-treat-
ment visits Sopt given the total number of visits M = 10 . 
Similarly, we generate M = 10 continuous measurements 
(X1, . . . ,XS ,Y1, . . .YT ) using multivariate normal dis-
tribution with mean µ = (µX , . . . ,µX ,µY , . . . ,µY ) and 
covariance matrix � , where S = {1, . . . , 9} and T = M − S . 
For control group, µX = µY = 0 and for treatment 
group, µX = 0,µY = δ . Again, assume σ 2

X = σ 2
Y = 1 . 

Different ρXY  and ρX = ρY  are considered as above; 
n0 = n1 = {50, 100, 150}.

We set the effect size δ = 0 to evaluate Type I error prob-
abilities and δ = 0.25 for power. The Type I error probabil-
ities all control well (Table S1). The power results (Fig. 1) 
show that having more than 2 pre-treatment visits can be 
more valuable than using a single baseline. The optimal 
number of pre-treatment visits is highlighted in red, show-
ing that Sopt are less than or equal to M/2 = 5 . In sum-
mary, the simulation results give a similar conclusion as the 
ANCOVA analyses in the section Methods.

A Single Binary Outcome
Denote S = 2 and T = 1 binary measurements as X1,X2 
and Y. We generate the correlated binary data using Gauss-
ian copulas, which take the marginal of multivariate nor-
mal distributions to multivariate uniform distributions. 
Assume that the uniform margins (UX1 ,UX2 ,UY ) has the 
correlation matrix

We then generate the Gaussian copulas under the corre-
lation matrix R using R package copula [13]. The correlated 
binary measurements are obtained below. For the control 
group, (X1,X2,Y ) =

(

1(UX1
≤p), 1(UX2

≤p), 1(UY≤p)

)

 . The 
dichotomized probability p yields triplets of dependent 
Bernoulli variables. For the treatment group, 
(X1,X2,Y ) =

(

1(UX1
≤p), 1(UX2

≤p), 1(UY≤p′)

)

 , where 

p′ = peβ1

1−p+peβ1
,β1 represents the treatment effect coeffi-

cient, so that log
(

p′

1−p′

)

= β1 + log
(

p
1−p

)

.
Three different logistic regression models are considered:

R =





1 ρX ρXY
ρX 1 ρXY
ρXY ρXY 1



.

where Treat is the treatment indicator, 
X = X1 + X2,XC is categorial variable of X and 
Xlog = log[(X + 1/2)/(2− X + 1/2)] . The term 1/2 is 
introduced to avoid infinite estimates [14].

The logistic regression model

is equivalent to Model 2 for S = 2 . That is because 
when S = 2,X = X1 + X2 = {0, 1, 2} . Then 
Xlog = log[(X + 1∕2)∕(2 − X + 1∕2)] = {−log(5), 0, log(5)} , which is pro-
portional to X − 1 = {−1, 0, 1} . Hence, using X or Xlog in 
the logistic regression model would provide exactly the 
same Type I error probabilities and power.

To detect the treatment effect, we consider the null 
hypothesis H0 : β1 = 0 vs. the alternative hypothesis 
H1 : β1 �= 0 . Assume that the dichotomized probabil-
ity p = 0.4 . The sample sizes of the control and treat-
ment groups are n0 = n1 = {50, 75, 100, 125, 150} . 
Different ρXY  and ρX (assume ρXY < ρX ) are considered 
to generate the data, ρXY = 0.5, ρX = {0.6, 0.7, 0.8, 0.9} ; 
ρXY = 0.6, ρX = {0.7, 0.8, 0.9} and 
ρXY = 0.7, ρX = {0.8, 0.9} . We conduct simulation stud-
ies with the treatment effect coefficient β = 0 to obtain 
the Type I error probability and with β = 0.8 to obtain 
power. For logistic regressions with small samples, per-
fect separation may occur, leading to infinite estimates of 
the logistic regression coefficient and fitted probabilities 
close to zero and one. Hence, when n0 = n1 = 50 , we 
only consider Models 1 and 2 in the simulation studies.

The simulation error for estimat-
ing the Type I error probability of α = 0.05 is 
1.96× SE = 1.96×

√
(0.05)(0.95)/20000 = 0.003 . The 

Type I error probabilities of three different logistic 
regression models control well (See Table 4). Some of the 
Type I error probabilities are slightly conservative, which 
is reasonable for binary outcomes. The power results of 
three logistic regression models under different sam-
ple sizes, ρXY  and ρX are shown in Table  5. The power 
of repeating pre-treatment measurements using Xlog 
or XC (Models 2, 3) consistently exceeds the power of 
using a single baseline X2 (Model 1). When ρXY  is fixed, 
the higher the correlation between two pre-treatment 
measurements, the less benefit is obtained by repeating 
the pre-treatment measurements. When ρX is fixed, the 
higher the correlation between the pre-post measure-
ments, the larger power is obtained.

Model 1 (only baseline) ∶ log

(
P(Y = 1)

1 − P(Y = 1)

)
=�0 + �1Treat + �2X2,

Model 2 (screening and baseline) ∶ log

(
P(Y = 1)

1 − P(Y = 1)

)
=�0 + �1Treat + �2Xlog ,

Model 3 (screening and baseline) ∶ log

(
P(Y = 1)

1 − P(Y = 1)

)
=�0 + �1Treat + �2XC ,

log

(

P(Y = 1)

1− P(Y = 1)

)

= β0 + β1Treat+ β2X
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Hence, repeating the pre-treatment measurements 
is valuable under logistic regressions for a single binary 
outcome. This conclusion is the same as the ANCOVA 
model for continuous outcome variables, which shows 
that repeating the pre-treatment measurements have a 
nice performance extending to the binary variables using 
logistic regression.

Multiple Binary Outcomes
We conduct simulation studies to obtain the optimal 
number of pre-treatment visits Sopt given the total num-
ber of visits M = 10 under binary data. We use GEE 
logistic regression models [15] for correlated binary data 
when the number of post-treatment visits T exceeds one 
(multiple binary outcomes).

Similarly, we generate M = 10 correlated binary meas-
urements (X1,… ,XS ,Y1,…YT ) using Gaussian copulas, where 
S = {1, . . . , 9} and T = M − S . The uniform margins 
(UX1 , . . . ,UXS ,UY1 , . . . ,UYT ) has a correlation matrix:

Table 2 Type I error probabilities of using only baseline ( S = 1 ) or screening and baseline (S=2) for a single continuous outcome, 
under different sample sizes, ρXY and ρX

S = 1, T = 1 S = 2, T = 1 S = 1, T = 1 S = 2, T = 1

n0 = n1 = 50 n0 = n1 = 75

ρXY = 0.5, ρX = 0.6 0.0504 0.0494 0.0488 0.048

ρXY = 0.5, ρX = 0.7 0.0491 0.0495 0.049 0.0484

ρXY = 0.5, ρX = 0.8 0.0493 0.0494 0.0488 0.0483

ρXY = 0.5, ρX = 0.9 0.0494 0.0498 0.0491 0.0486

ρXY = 0.6, ρX = 0.7 0.0497 0.0495 0.0497 0.0488

ρXY = 0.6, ρX = 0.8 0.0492 0.0495 0.0503 0.0486

ρXY = 0.6, ρX = 0.9 0.0497 0.0494 0.0488 0.0482

ρXY = 0.7, ρX = 0.8 0.0491 0.0499 0.0491 0.0486

ρXY = 0.7, ρX = 0.9 0.0495 0.0498 0.0495 0.0488

n0 = n1 = 100 n0 = n1 = 125

ρXY = 0.5, ρX = 0.6 0.0485 0.0482 0.049 0.0488

ρXY = 0.5, ρX = 0.7 0.0497 0.048 0.0488 0.0489

ρXY = 0.5, ρX = 0.8 0.0498 0.048 0.0488 0.049

ρXY = 0.5, ρX = 0.9 0.049 0.0484 0.0496 0.0491

ρXY = 0.6, ρX = 0.7 0.0496 0.0484 0.0492 0.0495

ρXY = 0.6, ρX = 0.8 0.0502 0.0482 0.0485 0.0493

ρXY = 0.6, ρX = 0.9 0.0498 0.0484 0.0486 0.0493

ρXY = 0.7, ρX = 0.8 0.0498 0.0484 0.0493 0.05

ρXY = 0.7, ρX = 0.9 0.0506 0.0482 0.0491 0.0496

n0 = n1 = 150

ρXY = 0.5, ρX = 0.6 0.05 0.0496

ρXY = 0.5, ρX = 0.7 0.0498 0.0497

ρXY = 0.5, ρX = 0.8 0.0488 0.0499

ρXY = 0.5, ρX = 0.9 0.0491 0.0499

ρXY = 0.6, ρX = 0.7 0.0502 0.0497

ρXY = 0.6, ρX = 0.8 0.0495 0.0498

ρXY = 0.6, ρX = 0.9 0.0484 0.0498

ρXY = 0.7, ρX = 0.8 0.0505 0.0493

ρXY = 0.7, ρX = 0.9 0.0494 0.0495
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For the control 
group,(X1,… ,XS ,Y1,… ,YT ) =

(
1(UX1

≤p) ,… , 1(UXS
≤p) , 1(UY1

≤p) ,… , 1(UYT
≤p)

) , and 
for the treatment group, 
(X1,… ,XS ,Y1,… ,YT ) =

(
1(UX1

≤p) ,… , 1(UXS
≤p) , 1(UY1

≤p� ) ,… , 1(UYT
≤p� )

) . Two GEE 
logistic regression models are considered as follows.

where Yijt is the multiple binary outcome, t = 1, . . . ,T  . 
The treatment indicator Treatij = 0 for placebo 
and 1 for treatment, Xij+ = Xij1 + · · · + XijS and 
Xlog,ij+ = log

[
(Xij+ + 1∕2)∕(2 − Xij+ + 1∕2)

]
, i = 0, 1, j = 1,… , ni.

Consider H0 : β1 = 0 vs. H1 : β1 �= 0 . Similarly, assume 
p = 0.4, p′ = peβ1

1−p+peβ1
 and n0 = n1 = {50, 100, 150} . Dif-

GEE Model 1: log

(
P(Yijt = 1)

1 − P(Yijt = 1)

)
=�0 + �1Treatij + �2Xij+ ,

GEE Model 2: log

(
P(Yijt = 1)

1 − P(Yijt = 1)

)
=�0 + �1Treatij + �2Xlog,ij+ ,

ferent ρXY  and ρX = ρY  are considered as 
ρXY = 0.5, ρX = ρY = {0.6, 0.7, 0.8, 0.9}  ; 
ρXY = 0.6, ρX = ρY = {0.7, 0.8, 0.9} and 
ρXY = 0.7, ρX = ρY = {0.8, 0.9} . We conduct simulation 
studies with treatment effect coefficient β1 = 0 to obtain 
Type I error probability and β1 = 0.5 to obtain power. We 
compare the power under 9 different scenarios of 
S = {1, . . . , 9} and T = 10− S , then find Sopt that has the 
highest power. For T = 1 , we use logistic regression. For 
other scenarios, we use GEE logistic regression. Again, to 
avoid perfect separation for small samples, we only con-
duct the simulation studies using GEE Model 2 when 
n0 = n1 = 50 .

During the simulation studies, we found that the Type I 
error probabilities for GEE logistic regression ( T ≥ 2 ) are 
hard to control. This is because when the sample size is 
small, the robust sandwich estimator is biased downward 

Table 3 Power of using only baseline ( S = 1 ) or screening and baseline (S=2) for a single continuous outcome, under different sample 
sizes, ρXY and ρX

S = 1, T = 1 S = 2, T = 1 S = 1, T = 1 S = 2, T = 1

n0 = n1 = 50 n0 = n1 = 75

ρXY = 0.5, ρX = 0.6 0.4001 0.4324 0.554 0.5886

ρXY = 0.5, ρX = 0.7 0.4008 0.4225 0.554 0.5771

ρXY = 0.5, ρX = 0.8 0.4009 0.4132 0.5538 0.5674

ρXY = 0.5, ρX = 0.9 0.4019 0.4059 0.5532 0.5592

ρXY = 0.6, ρX = 0.7 0.456 0.4978 0.6206 0.6695

ρXY = 0.6, ρX = 0.8 0.4568 0.4819 0.6208 0.6526

ρXY = 0.6, ρX = 0.9 0.458 0.4692 0.6217 0.6354

ρXY = 0.7, ρX = 0.8 0.5428 0.5913 0.7212 0.766

ρXY = 0.7, ρX = 0.9 0.5446 0.5666 0.7194 0.7416

n0 = n1 = 100 n0 = n1 = 125

ρXY = 0.5, ρX = 0.6 0.6746 0.7116 0.775 0.8111

ρXY = 0.5, ρX = 0.7 0.6741 0.7 0.7736 0.7996

ρXY = 0.5, ρX = 0.8 0.6738 0.6908 0.7742 0.7907

ρXY = 0.5, ρX = 0.9 0.6748 0.6829 0.7737 0.782

ρXY = 0.6, ρX = 0.7 0.7428 0.7873 0.8381 0.8714

ρXY = 0.6, ρX = 0.8 0.7449 0.7706 0.8371 0.8586

ρXY = 0.6, ρX = 0.9 0.7446 0.7561 0.8371 0.8466

ρXY = 0.7, ρX = 0.8 0.8336 0.8744 0.9113 0.9378

ρXY = 0.7, ρX = 0.9 0.8334 0.8538 0.9113 0.9244

n0 = n1 = 150

ρXY = 0.5, ρX = 0.6 0.8464 0.8766

ρXY = 0.5, ρX = 0.7 0.8469 0.8686

ρXY = 0.5, ρX = 0.8 0.8472 0.8603

ρXY = 0.5, ρX = 0.9 0.8474 0.8534

ρXY = 0.6, ρX = 0.7 0.8991 0.9266

ρXY = 0.6, ρX = 0.8 0.899 0.9166

ρXY = 0.6, ρX = 0.9 0.8989 0.9082

ρXY = 0.7, ρX = 0.8 0.9507 0.9694

ρXY = 0.7, ρX = 0.9 0.9507 0.9619
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for estimating var(β̂1) [16, 17] and the Z-statistics 
𝛽1∕

√
var(𝛽1) would be overestimated and then increase the 

Type I error probabilities. That will make the power com-
parison between T = 1 (logistic regression) and T ≥ 2 
(GEE) to be inaccurate. Hence, the empirical calibration 
of the Z-test is applied to control the Type I error prob-
abilities of GEE, and we obtain the empirical power for 
comparison.

We first obtain the Z-statistics β̂1/
√

var(β̂1) under 
H0 , which follows N(0,  1) when n → ∞ . But since 
our sample size is not infinity, the (α/2)× 100% and 
(1− α/2)× 100% quantiles of the Z-statistics are not the 
quantiles of N(0, 1). To calibrate the Type I error prob-
abilities at level α , we obtain the empirical (α/2)× 100% 
and (1− α/2)× 100% quantiles of the Z-statistics 
from simulation studies. By definition, those empirical 

Fig. 1 The power of multiple continuous outcomes using ANCOVA Model, with total number of visits M = 10 , sample size per group 
n = n0 = n1 = {50, 100, 150} under different ρXY , ρX and ρY . The number of pre-treatment measurements S = {1, . . . , 9} . The optimal number of 
pre-treatment visits Sopt are highlighted in red points
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quantiles have Type I error probabilities exactly equal 
to α . We then use these empirical quantiles to calibrate 
the power. Similar ideas of using p-value empirical cali-
bration to control the Type I error probabilities are dis-
cussed by several authors [18, 19]. To make it consistent, 
we calibrate the Type I error probabilities at level α for 
not only the GEE regression ( T ≥ 2 ) but also the logistic 
regression ( T = 1 ), then compare the calibrated power 
for different S = {1, . . . , 9}.

The original Type I error probabilities (with-
out calibration) of multiple binary outcomes 
using GEE models are shown in Tables S2-S4. The 
upper bound of 95% confidence interval for esti-
mating the Type I error probability at α = 0.05 is 
0.05+ 1.96×

√
(0.05)(0.95)/20000 = 0.053 . The inflated 

original Type I error probabilities ( > 0.053 ) are shown in 

italic font in these tables. When n0 = n1 = 50 , the origi-
nal observed Type I error probabilities are hard to con-
trol under the GEE logistic regression (Table S2). With a 
larger sample size ( n0 = n1 = 100, 150 ), more observed 
Type I error probabilities can be controlled (Tables S3, 
S4). The calibrated Type I error probabilities are all equal 
to α = 0.05 (not shown in the tables).

The calibrated power comparison for S = {1, . . . , 9} 
using two GEE logistic regression models are shown in 
Figures 2 and S1. The power curves first increase from 
S = 1 to S = 3 . For 3 < S ≤ M/2 , there is little change 
in power. When S > M/2 , the power curves decrease 
to a minimum at S = M − 1 . The optimal number of 
pre-treatment visits Sopt are highlighted in red, show-
ing that Sopt are less than or equal to M/2 = 5 . Hence, 
when M = 10 , repeating pre-treatment measurements 

Table 4 Type I error probabilities of three different logistic regression models for a single binary outcome, under different sample 
sizes, ρXY and ρX

Model 1 ( X2) Model 2 ( Xlog) Model 3 (XC ) Model 1 ( X2) Model 2 ( Xlog) Model 3 (XC )

n0 = n1 = 50 n0 = n1 = 75

ρXY = 0.5, ρX = 0.6 0.0527 0.0517 - 0.05 0.0503 0.0512

ρXY = 0.5, ρX = 0.7 0.0526 0.052 - 0.0505 0.0502 0.0506

ρXY = 0.5, ρX = 0.8 0.0522 0.0519 - 0.0512 0.0504 0.052

ρXY = 0.5, ρX = 0.9 0.052 0.0526 - 0.0508 0.0505 0.0512

ρXY = 0.6, ρX = 0.7 0.051 0.0503 - 0.0508 0.0504 0.051

ρXY = 0.6, ρX = 0.8 0.0527 0.0517 - 0.0508 0.0503 0.0518

ρXY = 0.6, ρX = 0.9 0.0526 0.0511 - 0.0505 0.0494 0.05

ρXY = 0.7, ρX = 0.8 0.0508 0.0482 - 0.0506 0.0498 0.0508

ρXY = 0.7, ρX = 0.9 0.0499 0.049 - 0.051 0.0488 0.0493

n0 = n1 = 100 n0 = n1 = 125

ρXY = 0.5, ρX = 0.6 0.0479 0.0481 0.0491 0.0476 0.0476 0.0476

ρXY = 0.5, ρX = 0.7 0.0498 0.0491 0.0499 0.0494 0.0482 0.0494

ρXY = 0.5, ρX = 0.8 0.0488 0.0478 0.0493 0.0496 0.0491 0.05

ρXY = 0.5, ρX = 0.9 0.0482 0.0473 0.0484 0.0494 0.0504 0.0506

ρXY = 0.6, ρX = 0.7 0.0491 0.0472 0.0485 0.0476 0.0492 0.0503

ρXY = 0.6, ρX = 0.8 0.0485 0.0486 0.0492 0.0489 0.0486 0.0498

ρXY = 0.6, ρX = 0.9 0.0485 0.0493 0.0492 0.0471 0.0486 0.0487

ρXY = 0.7, ρX = 0.8 0.0469 0.0471 0.0482 0.0492 0.0497 0.0516

ρXY = 0.7, ρX = 0.9 0.0486 0.0472 0.0478 0.0483 0.049 0.05

n0 = n1 = 150

ρXY = 0.5, ρX = 0.6 0.0486 0.0491 0.0493

ρXY = 0.5, ρX = 0.7 0.049 0.0488 0.0488

ρXY = 0.5, ρX = 0.8 0.0494 0.0493 0.0485

ρXY = 0.5, ρX = 0.9 0.0488 0.048 0.0484

ρXY = 0.6, ρX = 0.7 0.0495 0.0492 0.0499

ρXY = 0.6, ρX = 0.8 0.0488 0.0499 0.0506

ρXY = 0.6, ρX = 0.9 0.0489 0.0486 0.0494

ρXY = 0.7, ρX = 0.8 0.0496 0.0504 0.0507

ρXY = 0.7, ρX = 0.9 0.051 0.0504 0.051
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with 2 < S ≤ 5 would provide the optimal power. The 
optimal pre-post allocations in GEE logistic regres-
sions have similar conclusions as the linear models, 
that is, Sopt < M/2 when ρX = ρY  . Measurements 
taken after the randomization can be more informa-
tive since we treat the pre-treatment measurements as 
covariates.

Overall, the results for the multiple binary outcomes 
with GEE logistic regression are similar to those for 
the continuous outcomes with the ANCOVA model. 
The proposed method extends well to the non-linear 
models through Monte Carlo simulation studies. The 
closed-form formulas for sample size, power, and Sopt 
calculations under non-linear models require future 
investigations.

Discussion
In this article, we demonstrate the merits of having 
multiple pre-treatment measurements for both con-
tinuous and discrete responses in pre-post designs. We 
consider the sample size calculation for the ANCOVA 
model when the pre-treatment measures are included 
as covariates under a general correlation structure. 
Then we propose an optimal design under a specific 
constraint that the total number of pre-treatment 
and post-treatment visits is fixed. Simulation studies 
were conducted for binary outcomes, suggesting that 
the insights from the linear model extend well to GEE 
logistic regression.

The prior information on the correlation struc-
ture is required to determine sample size and the 

Table 5 Power of three different logistic regression models for a single binary outcome, under different sample sizes, ρXY and ρX

Model 1 ( X2) Model 2 ( Xlog) Model 3 (XC ) Model 1 ( X2) Model 2 ( Xlog) Model 3 (XC )

n0 = n1 = 50 n0 = n1 = 75

ρXY = 0.5, ρX = 0.6 0.5482 0.5662 - 0.7268 0.7509 0.749

ρXY = 0.5, ρX = 0.7 0.5474 0.5624 - 0.7264 0.7454 0.7444

ρXY = 0.5, ρX = 0.8 0.5476 0.5584 - 0.7262 0.7394 0.7405

ρXY = 0.5, ρX = 0.9 0.5464 0.555 - 0.7292 0.7361 0.7341

ρXY = 0.6, ρX = 0.7 0.5708 0.5946 - 0.754 0.7788 0.779

ρXY = 0.6, ρX = 0.8 0.5692 0.5896 - 0.7538 0.7732 0.771

ρXY = 0.6, ρX = 0.9 0.5668 0.5804 - 0.7558 0.767 0.7664

ρXY = 0.7, ρX = 0.8 0.6042 0.638 - 0.7888 0.819 0.818

ρXY = 0.7, ρX = 0.9 0.6028 0.6263 - 0.7889 0.808 0.8078

n0 = n1 = 100 n0 = n1 = 125

ρXY = 0.5, ρX = 0.6 0.8442 0.859 0.859 0.9134 0.9272 0.9261

ρXY = 0.5, ρX = 0.7 0.8426 0.8567 0.8558 0.9134 0.9244 0.9242

ρXY = 0.5, ρX = 0.8 0.8442 0.8536 0.8524 0.9134 0.9211 0.9213

ρXY = 0.5, ρX = 0.9 0.8418 0.8488 0.8489 0.9129 0.9182 0.9176

ρXY = 0.6, ρX = 0.7 0.8642 0.8864 0.8853 0.9288 0.9433 0.9428

ρXY = 0.6, ρX = 0.8 0.8644 0.8811 0.8804 0.9285 0.9396 0.9389

ρXY = 0.6, ρX = 0.9 0.8646 0.8765 0.875 0.9292 0.9354 0.9346

ρXY = 0.7, ρX = 0.8 0.8924 0.914 0.9139 0.9458 0.9598 0.9592

ρXY = 0.7, ρX = 0.9 0.892 0.9064 0.9058 0.9447 0.9552 0.954

n0 = n1 = 150

ρXY = 0.5, ρX = 0.6 0.9536 0.9618 0.9608

ρXY = 0.5, ρX = 0.7 0.9529 0.9598 0.9587

ρXY = 0.5, ρX = 0.8 0.9522 0.9576 0.9571

ρXY = 0.5, ρX = 0.9 0.9531 0.9554 0.955

ρXY = 0.6, ρX = 0.7 0.9658 0.9732 0.9733

ρXY = 0.6, ρX = 0.8 0.9643 0.9714 0.9711

ρXY = 0.6, ρX = 0.9 0.963 0.9683 0.9679

ρXY = 0.7, ρX = 0.8 0.9756 0.9834 0.9833

ρXY = 0.7, ρX = 0.9 0.9748 0.9815 0.9808
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optimal pre-post allocation. Designers can obtain the 
prior information of correlation structure based on 
some examples of clinical trials (e.g., Table III in [5]). 
Besides, an adaptive design can be further considered 
to estimate those correlations during the interim anal-
ysis. One can start the design with prior information 
based on other examples of clinical trials. During the 
interim analysis, one can use Stage 1 data to estimate 
the correlation structure, then adapt the sample size 
formula and the pre-post allocation for Stage 2.

Extensions of the ANCOVA model include the con-
siderations of different time intervals between measure-
ments and alternative correlation structures such as an 
autoregressive structure:

In clinical trial designs, the time intervals of pre-
treatment visits and post-treatment visits could be 
equally spaced. However, if the time interval between 
the visits increases, the correlation tends to decline 
[5]. When the time intervals between visits are not 
equally spaced, one can consider an autoregressive 
structure or a more general correlation structure that 
assumes the correlations between all pairs of measure-
ments are different. We leave this as future work for 
more thorough investigations. Like many other statis-
tical methods, the proposed ANCOVA model could 
also be extended to adjust for covariates other than 
the baseline measurement of the outcome and further 
improve precision [20]. Similar to the idea of measur-
ing the pre-treatment outcome multiple times, collect-
ing other covariates multiple times may help further 
improve the framework. However, one needs to care-
fully address the potential correlation between the key 
covariate in ANCOVA (e.g. average baseline scores) 
and other covariates. Another possible extension is in 
observational studies. Though our method is proposed 
under the framework of classic clinical trials, it shares 
some similarities with the Difference-in-Difference 
(DID) technique, which is a quasi-experimental design 
applied in observational settings where exchangeability 

cannot be assumed between the treatment and control 
groups. Though DID is a technique to remove biases in 
the post-intervention period after data collection, how 
to adapt our method to this scenario and obtain the 
optimal pre-post allocation before the data collection 
could be a future research topic.

There are still remaining questions to be discussed. 
Several authors, including Liang and Zeger [15] and 
Tango [10], have recommended analyzing the pre-
treatment measurements as additional outcomes 
through mixed effect models rather than treating 
them as covariates. Comparison between using a sin-
gle baseline as a covariate or dependent variable were 
discussed by Liu et al. [21] and Wan [22]. It would be 
interesting to compare the repeating baselines sample 
size calculation between the ANCOVA model and the 
linear mixed effect model, then consider the optimal 
pre-post allocation of linear and logistic mixed effect 
model for both continuous and binary outcomes. It is 
noteworthy that the ANCOVA model might be mis-
specified for the discrete outcomes. Extension to dis-
crete responses with non-linear models can be a future 
direction to deal with this issue. Regarding non-linear 
models, it would be helpful to strengthen the theoreti-
cal analysis for logistic mixed-effect models by simula-
tion studies or closed-form formulations.

Another future direction is the three-arm clini-
cal trial, which includes an experimental treatment, 
an active reference treatment, and a placebo group 
[23–25]. Besides, one can further consider, given a 
constraint of the total cost, how to obtain the optimal 
choice of sample size and the number of pre-treatment 
and post-treatment visits to maximize the power func-
tion. Generally speaking, if the costs of each pre-post 
visit are high, one can tend to select a larger sample 
size. In contrast, if the expense of recruiting each 
patient is high, then we would expect to get a smaller 
sample size but repeat more pre-treatment and post-
treatment measurements.

Although using both screening and baseline can be 
more powerful than using a single baseline, sometimes 
there are ethical concerns about having multiple pre-
treatment visits in clinical trials. For trials and diseases 
that require treatment immediately after the baseline 
visit, it could be impractical and unethical to repeat 
the pre-treatment measurements [5]. Finally, a poten-
tial benefit of repeating pre-post measurements is to 
reduce the impact of missing values in the ANCOVA 
analysis, especially for missing baseline data. This also 
merits further discussion.
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Conclusion
We address the advantages of using multiple pre-treat-
ment and post-treatment measurements in randomized 
clinical trials. For the ANCOVA model, the sample size 
formula under general correlation structures is con-
sidered, and we derive the optimal number of pre/post 
measurements given the total number of visits. Repeti-
tion of the follow-up measurements is generally more 

beneficial than repeating the baselines, but the latter 
can provide nonnegligible improvement of the effi-
ciency in repeated measures designs. Simulation stud-
ies are conducted for binary measurements, which have 
similar conclusions as for the linear model.

Abbreviations
ANCOVA  Analysis of covariance
GEE  Generalized estimating equations

Fig. 2 The calibrated power of multiple binary outcomes using GEE Model 2, with total number of visits M = 10 , sample size per group 
n = n0 = n1 = {50, 100, 150} under different ρXY , ρX and ρY . The number of pre-treatment measurements S = {1, . . . , 9} . The optimal number of 
pre-treatment visits Sopt are highlighted in red points
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