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Abstract 

Background In network meta-analysis, estimation of a comparative effect can be performed for treatments that are 
connected either directly or indirectly. However, disconnected trial networks may arise, which poses a challenge to 
comparing all available treatments of interest. Several modeling approaches attempt to compare treatments from 
disconnected networks but not without strong assumptions and limitations. Conducting a new trial to connect a dis-
connected network can enable calculation of all treatment comparisons and help researchers maximize the value of 
the existing networks. Here, we develop an approach to finding the best connecting trial given a specific comparison 
of interest.

Methods We present formulas to quantify the variation in the estimation of a particular comparative effect of interest 
for any possible connecting two-arm trial. We propose a procedure to identify the optimal connecting trial that mini-
mizes this variation in effect estimation.

Results We show that connecting two treatments indirectly might be preferred to direct connection through a new 
trial, by leveraging information from the existing disconnected networks. Using a real network of studies on the use of 
vaccines in the treatment of bovine respiratory disease (BRD), we illustrate a procedure to identify the best connect-
ing trial and confirm our findings via simulation.

Conclusion Researchers wishing to conduct a connecting two-arm study can use the procedure provided here to 
identify the best connecting trial. The choice of trial that minimizes the variance of a comparison of interest is network 
dependent and it is possible that connecting treatments indirectly may be preferred to direct connection.

Keywords Network meta-analysis, Clinical trial design, Evidence synthesis

Background
Network meta-analysis (NMA) enables estimation of 
comparative effects of treatments that are directly con-
nected as well as those that are indirectly connected. 
Through such direct or indirect comparisons, research-
ers and clinicians are able to obtain comparisons of 
treatments available in an entire evidence network, 
where a network is defined as a collection of trials that 
compare some number of treatments for a given clinical 
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outcome [1]. Networks are often referred to as graphs, 
which consist of nodes, e.g., treatments, and edges (or 
links) that represent direct comparisons between treat-
ments. The studies included in a NMA of treatments 
are ideally randomized controlled trials identified as a 
result of a systematic review such that the included tri-
als are consistent with the assumptions of an NMA. The 
transitivity assumption states that each subject in a trial 
must have been eligible for enrollment in all other trials. 
If this assumption is violated, then the estimates of the 
direct and indirect comparative effects may not be valid. 
Further, the consistency assumption states that pairwise 
comparisons between treatments must be able to be writ-
ten as a function of the baseline treatment. Again, this 
assumption is vital for proper estimation of the direct 
and indirect comparative effects.

The evidence base for treatments is often driven by 
the interests of individual researchers and funding agen-
cies that fail to consider how to maximize the value of 
the entire evidence base. As a result, networks of trials 
can be disconnected, in which there is neither a direct 
or indirect route to compare all treatments. Conversely, 
a connected network is one in which there is a path, or 
edge, “linking”, or connecting, every treatment to all oth-
ers. Disconnected networks may arise when there is no 
common standard of treatment or when there are many 
available treatments [2]. Such networks pose difficulties 
when researchers wish to make comparisons between 
all possible treatments. Similarly, the issue of discon-
nected experimental design with respect to treatments 
has been studied [3], where the focus has been on check-
ing and avoiding disconnected treatments in one single 
experiment.

There are several proposed approaches for dealing 
with disconnected networks in NMA. One approach 
relies on the use of non-randomized evidence to con-
nect the networks [4]. The use of non-randomized evi-
dence, often referred to as real world evidence (RWE), 
assumes that the expected response to a control treat-
ment is constant between historical studies and the ran-
domized studies [5]. This assumption is thought to be 
both unlikely and associated with bias [1]. Component 
network meta analysis (CNMA) has been proposed as 
an alternative [1]. While CNMA addresses the issues of 
using RWE, in terms of not relying on the aforemen-
tioned assumptions, the networks must be of a certain 
form. That is, the treatments must consist of common 
treatment components occurring in both networks 
(i.e., disconnected networks can be bridged together 
only if the networks are made up of multi-component 
treatments that are common to each network). There 
are both additive and two-way interaction models 
for CNMA, but in order to connect a disconnected 

network, the authors note that at least some treatments 
must consist of components and the sub-networks need 
a “sufficient” number of common components. Another 
modeling approach to analyze disconnected networks 
is through random baseline effects [6]. This method has 
been found to be appropriate for two example data sets, 
but the authors note that there is a risk for the assump-
tions regarding the normality and exchangeability of 
the baseline treatments effects to be violated in other 
data sets. There are also several population adjust-
ment methods for disconnected networks proposed 
[7] and in the case of dose-response modeling, there 
are methods to make comparisons between treatments 
belonging to disconnected sub-networks [8]. All of the 
methods mentioned here show motivation for connect-
ing disconnected networks, but all are limited in their 
own ways.

Given the strong reliance on assumptions in the afore-
mentioned approaches, researchers may decide to design 
new studies that connect a disconnected network. While 
there are many methods that discuss how to design a trial 
within an existing connected network [9–13], we are una-
ble to identify literature for designing a connecting trial 
for a disconnected network. In this paper, we formalise 
an approach to connecting two components of a discon-
nected network, which we refer to as sub-networks, with 
a new two-arm trial, based on an approach that mini-
mizes the variance of a comparative effect estimation 
between two treatments of interest. The sub-networks 
themselves must meet the aforementioned assumptions 
of NMA. After deriving variance formulas for a particu-
lar effect size estimate under a connecting trial, we pro-
pose a straightforward computational procedure to guide 
researchers conducting a trial. We confirm these results 
through a simulation study. We conclude that given a 
comparison of treatments, the best connecting two-arm 
trial in terms of minimizing the estimation variation is 
network dependent and can be found through a straight-
forward computational procedure.

Methods
To consider how to best connect two sub-networks from 
a disconnected network, we focus on minimizing the 
variance of a specific comparative effect size between two 
treatments, which we call a comparison of interest (COI). 
Here, the term treatment is generic and could refer to 
any active intervention or a placebo. Our goal is to form 
a connected network, where a connected network is for-
mally defined as one in which, for any two treatments 
(A,B), there exists an ordered sequence of treatments 
( t1, t2, . . . , tk ), k ≤T-2, where T is the total number of 
treatments, such that:
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Treatments A and t1 are both included in one or 
more trials,
Treatments t1 and t2 are both included in one or 
more trials,
......,
Treatments tk and B are both included in one or 
more trials.

For treatments (A,B) that are included in the same trial, 
the comparison is direct and the ordered sequence is 
empty. Within such a network, the difference in effects 
between any two treatments can be evaluated through 
the path “linking”, or connecting, the treatments. In this 
section, we establish formulas for the variation of a par-
ticular COI under several scenarios. The organization of 
the section is as follows. We review the variance estima-
tion of a comparative effect size in a traditional two-arm 
trial. We then review general notation and variance esti-
mation of a comparative effect under a fixed effects NMA 
model. Next, we establish the notation and properties of 
disconnected networks. Last, we derive variance formu-
las under the connection of two disconnected sub-net-
works using a two-arm trial.

Estimating the variance of a comparison of interest 
in a traditional two‑arm trial
Suppose we conduct a two-arm trial with a binary out-
come using treatments A and B, with a total fixed sample 
size n such that nA + nB = n . Let ri denote the number 
of events in the subjects belonging to treatment group i, 
i ∈ {A,B} . Then the number of events ri follows a bino-
mial distribution; that is, ri ∼ binomial(ni, pi) , where pi 
is the probability of an event occurring in treatment i. 
Through a Bernoulli generalized linear model, we have

Here, β0 is the log-odds of the probability of an event 
occurring in subjects in treatment group A, and β1 is the 
log-odds ratio of treatment B to treatment A. We can 
estimate the coefficients β0 and β1 using a maximum like-
lihood approach and obtain the information matrix. The 
comparative effect of treatment B to A is of interest ( β̂1 ), 
and it follows that

  Let Var(β̂1) := σ 2
A,B represent the estimated within-trial 

variance for the comparative effect size of treatment B to 
A. Note that in the context of NMA, β1 is written as µAB . 
We will utilize this derivation in our proposed procedure 
for connecting two disconnected sub-networks.

(1)log(
pi

1− pi
) = β0 + β1I(i=B).

(2)Var(β̂1) =
1

nApA(1− pA)
+

1

nBpB(1− pB)
.

Fixed effects NMA model: notation and estimating 
the variance of a COI
Now, consider a network of T treatments with J studies, 
and nj arms in the jth study. Let µb = (µAB,µAC ,µAD, . . .)

′ 
be the vector of comparative effect parameters of all 
treatments to the baseline treatment A. This is called the 
vector of basic parameters.

Let yj denote the observed comparative effect size for 
the jth study, yj = (yj,1, . . . , yj,nj−1)

′ , and y = (y′1, . . . , y
′
J )
′. 

Let µj be the vector of comparative effect sizes for the 
jth study, µj = (µj,1, . . . ,µj,nj−1)

′ , and µ = (µ′
1, . . . ,µ

′
J )
′. 

Then we have

where ǫj is assumed to be normally distributed and inde-
pendent across studies with covariance Sj corresponding 
to the estimated within-trial variances. The distribu-
tion of y is then MVN(µ , S ), where S is a block diagonal 
matrix with each block Sj . Since µ is a linear combination 
of µb , it can be written as µ = Xµb , where X is the design 
matrix of size J

j=1 nj × (T − 1) . The distribution of y is 
then MVN(Xµb , S) . The maximum likelihood estimate of 
µb and its variance are

Similar notation and derivations are provided below for 
disconnected networks.

Notation and properties of disconnected networks
Suppose that the network of studies presented above 
is actually composed of K disconnected sub-net-
works. We can rewrite the vector of basic parameters 
as µb = (µAB,µAC ,µAD, . . .)

′ = (µ′
D1,µ

′
D2, . . . ,µ

′
DK )

′ , 
where µ′

Dk is the sub-vector corresponding to the 
basic parameters for treatments in the (disconnected) 
sub-network k compared to the overall baseline treat-
ment, A.

Since the K sub-networks are not connected, we can 
rewrite the design matrix X and variance matrix S as 
block diagonal matrices corresponding to the compo-
nents from the K sub-networks, denoted by the sub-
scripts Dk, for k = 1, . . . ,K :

where

(3)yj = µj + ǫj , j = 1, . . . , J ,

(4)
µ̂b = (X ′S−1X)−1X ′S−1y,

Var(µ̂b) = (X ′S−1X)−1.

(5)

y =









yD1
yD2
...

yDK









=









XD1 0 . . . 0
0 XD2 . . . 0
...

...
. . .

...
0 0 . . . XDK

















µD1
µD2
...

µDK









+ ǫ,
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and yDk are the observed comparative effects sizes for all 
studies in the kth sub-network.

Then we have

With this notation, there are T − 1 basic parameters. 
The rank(X) = T − K  , where K is the number of discon-
nected sub-networks. Thus, µ̂b is not unique. Further, 
we propose the following lemma with regards to discon-
nected sub-networks.

Lemma 1 A set of K sub-networks are disconnected if 
and only if the design matrix for the entire network can be 
written in the form

with µb =
(

µD1,µD2,µD3, . . .µDK

)′.

Proof
⇐ The design matrix is written so that each block cor-
responds to a sub-network, Dk for k = 1, . . . ,K  . That is, 
estimates of comparative effect sizes from any given sub-
network Dk can be written as linear combinations of 
parameters unique to sub-network Dk. Any sub-network 
Dk then depends solely on its own parameters and not on 
parameters from any other network. Thus, it follows that 
the entire network must be disconnected.

⇒ This follows directly from the setup above.   

With the aforementioned general notation and prop-
erties of disconnected networks, we can now consider 

cov(ǫ) = S =









SD1 0 . . . 0
0 SD2 . . . 0
...

...
. . .

...
0 0 . . . SDK









(6)

�̂b =

⎡
⎢
⎢
⎢
⎣

(X �

D1
S−1

D1
XD1)

−X �

D1
S−1

D1
y
D1

(X �

D2
S−1

D2
XD2)

−X �

D2
S−1

D2
y
D2

⋮

(X �

DK
S−1

DK
XDK )

−X �

DK
S−1

DK
y
DK

⎤
⎥
⎥
⎥
⎦

,

Var(�̂b) =

⎡
⎢
⎢
⎢
⎣

(X �

D1
S−1

D1
XD1)

− 0 … 0

0 (X �

D2
S−1

D2
XD2)

− … 0

⋮ ⋮ ⋱ ⋮

0 0 … (X �

DK
S−1

DK
XK )

−

⎤
⎥
⎥
⎥
⎦

.













XD1 0 0 . . . 0
0 XD2 0 . . . 0
0 0 XD3 . . . 0
...

...
...

. . .
...

0 0 0 . . . XDK













,

variance estimation of a comparative effect size of inter-
est when connecting two disconnected sub-networks 
with a two-arm trial.

Estimating the variance of a comparison of interest 
under a new connecting two‑arm trial
Consider a special case of the disconnected sub-networks 
above. That is, suppose that there are only K = 2 discon-

nected sub-networks. Researchers wish to connect these 
two disconnected sub-networks with the goal of estimat-
ing a specific comparative effect size, or COI, as precisely 
as possible.

We first consider the case when the connecting trial is 
also the COI. We define this as a direct trial. Intuitively, 
all of the information about the comparison should be 
captured by the new observed trial data, so the variance 
of the comparison is the new within-trial variance. That 
is, the connecting trial encompasses all of the evidence 
for the comparison as the variance of the comparison of 
interest is the variance of the estimate of the compara-
tive effect from the connecting trial. We develop this idea 
more formally below.

Suppose that we have two existing, disconnected sub-
networks, with network one consisting of treatments 
t11, t12, . . . , t1m1 and network two consisting of treatments 
t21, t22, . . . , t2m2 . Without loss of generality, consider t11 
as the overall baseline treatment. We write the network 
model as:

where

and µD1,µD2 correspond to the basic parameters with 
respect to the overall baseline treatment, t11 . Connecting 
the two sub-networks with a study including the baseline 
treatment t11 , say with treatment t21 , gives us the model 
formulation:

(7)
[

yD1
yD2

]

=

[

XD1 0
0 XD2

][

µD1
µD2

]

+ ǫ,

cov(ǫ) =

[

SD1 0
0 SD2

]

,
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where

Here, yt11,t21 is the data from the new connecting trial 
and σ 2

t11,t21 is the new within-trial variance from the con-
necting trial. We partition XD2

 column-wise into XD21 
and XD22 and partition µb such that the comparative 
effect size of interest is isolated. Then,

From this we see that finding Var(µ̂t11,t21) , which is the 
variance of our COI under this setup, relies on inverting 
the matrix

We now show that the variance of the COI, i.e., 
Var(µ̂t11,t21) , simplifies to σ 2

t11,t21.

Proof

In order to show that the Var(µt11,t21) = σ 2
t11,t21

 when two 
disconnected sub-networks are connected using t11 and t21 , 
we use the following facts: 

1. Given a block matrix 
M =

[

E F
G H

]

 , where 
E,F ,G,H

 

are n× n, n×m,m× n,m×m matrices with H 
invertible, 

 and 

2. If the above E is scalar, 

(8)





yD1
yD2
yt11,t21



 =





XD1 0 0
0 XD21 XD22
0 1 0









µD1
µt11,t21
µ
∗
D2



+ ǫ,

cov(ǫ) =





SD1 0 0
0 SD2 0

0 0 σ 2
t11,t21



.

(9)Var
�
�̂D1, �̂�t11,t21

, �̂
∗

D2

�
=

⎡
⎢
⎢
⎣

(X �

D1
S
−1

D1
XD1)

−1 0

0

�
(X �

D2
S
−1

D2
XD2) +

�
𝜎
2−1

t11,t21
0

0 0

��−1
⎤
⎥
⎥
⎦
.

(X ′
D2S

−1
D2XD2)+

[

σ 2−1

t11,t21
0

0 0

]

.

det(M) = det(E − FH−1G)det(H).

M
−1 =

[
(E − FH

−1
G)−1 − (E − FH

−1
G)−1FH−1

−H−1
G(E − BH

−1
G)−1 H

−1 +H
−1
G(E − FH

−1
G)−1FH−1

]
.

det(M) = (E − FH−1G)det(H).

3. If the rank of a square matrix J  of size n× n is less 
than n, det(J ) = 0.

Now, we can write

where D is invertible and X ′
D2S

−1
D2XD2 is not full rank, 

which follows directly from the aforementioned model 

parameterization for disconnected networks. By facts 
1-3, we have that the (1, 1)th element of the inverse is

which completes the proof.   

The results here are limited to the case when the COI 
is exactly the connecting trial (i.e., a direct trial). We now 
present variance formulas for indirect trials. We define 
a partially indirect connecting trial as one that involves 
exactly one of the two treatments in the COI, and a com-
pletely indirect trial involves neither of the two treat-
ments in the COI.

Consider again two existing, disconnected sub-net-
works, with sub-network one consisting of treatments 
t11.t12, . . . , t1m1

 and sub-network two consisting of treat-
ments t21, t22, . . . , t2m2 , with t11 as the overall baseline 
treatment. The two sub-networks are connected through 
a new trial including treatments t11 and t21 such that the 

within-trial variance is σ 2
t11,t21 . We have shown above that 

Var(µ̂t11,t21) = σ 2
t11,t21 . We will now show that for any COI 

µt1i ,t2j for i = 2, . . . ,m1, j = 2, . . . ,m2 the variance of the 
estimate of the COI can be written as the sum of σ 2

t11,t21
 

(X ′
D2S

−1
D2XD2)+

[

σ 2−1

t11,t21
0

0 0

]

=

[

A B
C D

]

+

[

σ 2−1

t11,t21
0

0 0

]

=

[

A+ σ 2−1

t11,t21
B

C D

]

,

= (A+ σ 2−1

t11,t21
− BD−1C)−1

= (A− BD−1C + σ 2−1

t11,t21
)−1

= (0+ σ 2−1

t11,t21
)−1

= σ 2
t11,t21

,
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and additional variance terms from sub-networks. Note 
that the COI in this case is not obtained from the con-
necting trial.

Proof

To start, suppose we are interested in a comparison 
between the overall baseline t11 and an arbitrary treat-
ment from sub-network two, t2j , j = 2, . . . ,m2 . By inde-
pendence and consistency assumptions [14], we have the 
following:

where σ
2
t21,t2j,pooled is a pooled variance from the NMA 

analysis on sub-network 2. This is an example of a par-
tially indirect connecting trial as defined earlier. If we are 
interested in a non-baseline comparison between treat-
ments t1i and t2j , i = 2, . . . ,m1, j = 2, . . . ,m2 , it follows 
that

This is an example of a completely indirect connecting 
trial. Thus, we have shown that when connecting two 
arbitrary sub-networks with a single two-arm indirect 
trial, the variance of any comparative effect size of inter-
est is the sum of the new within-trial variance σ 2

t11,t21 and 
additional variance parameters that correspond to the 
individual sub-networks.   

Under the assumption that σ 2
t11,t21 is constant across 

all possible trials, the best connecting trial will always 
be direct (i.e., exactly the COI), which is clear from the 
variance structure presented above. However, in the 
case of binomial responses, the assumption of constant 
within-trial variance is not appropriate; instead, we 
can use information from the existing network to esti-
mate the risk of all of the treatments. This will provide 
insight on the variance in the new trial. The choice of 
trial that minimizes a COI is then network dependent, 
and it may not always be the case that the best connec-
tion is direct. Connecting treatments indirectly may 
result in a lower variance estimate under certain con-
ditions, which we will explore through our real data 
application.

(10)
Var

(

µ̂t11,t2j

)

= Var
(

µ̂t11,t21 + µ̂t21,t2j

)

= σ 2
t11,t21

+ σ 2
t21,t2j,pooled

,

(11)

Var
(

µ̂t1i ,t2j

)

= Var
(

µ̂t11,t1i + µ̂t11,t21 + µ̂t21,t2j

)

= σ 2
t11,t1i,pooled

+ σ 2
t11,t21

+ σ 2
t21,t2j,pooled

.

Simple example
To illustrate a network of trials, we have included an exam-
ple in Fig.  1 of a network consisting of two disconnected 
sub-networks, with sub-network one having treatments 
A, B, and C and sub-network two having treatments D, E, 
and F. In this case, a new trial has been conducted between 
treatments C and E to connect sub-networks one and two. 
If the researchers are originally interested in a comparison 
between C and E, this is a direct connecting trial, other-
wise, it is an indirect connecting trial.

Proposed procedure
We propose a general selection procedure to find the 
optimal two-arm trial to connect a disconnected network 
when the COI is between two disconnected treatments 
of interest, c1 and c2 , from sub-network one and sub-net-
work two, respectively. The steps are as follows: 

1. Consider all possible connecting two-arm trials.
2. For each connecting two-arm trial, do the following: 

a Create a new fully connected network consisting 
of the two previously separated networks and the 
new trial. Set the new design matrix X such that 
the overall baseline is the baseline from network 
one. Append a new row corresponding to the 
connecting trial.

b Calculate the within-trial variance σ 2
t1,t2 (based on 

Eq. 2) as 

for given treatments t1 and t2 . Fix n1 = n2 = n/2 , 
where n is the total sample size in the connecting 
trial, and set p1, p2 as the risks of treatments t1, t2.

c Use Eq.  11 (or equivalently, Eq.  4) to determine 
the variance of the COI between treatments c1 
and c2 , Var(µ̂c1,c2).

σ 2
t1,t2

=
1

n1p1(1− p1)
+

1

n2p2(1− p2)

Fig. 1 Example network of trials. An example of a disconnected 
network of trials that has been connected through a new trial. 
One subnetwork consists of treatments A, B, and C, while the other 
subnetwork consists of treatments, D,E and F. A trial with treatments 
C and E connects the two sub-networks, represented by the dashed 
line
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3. Find the optimal connecting two-arm trial that mini-
mizes Var(µ̂c1,c2).

In practice, the risks used in the above selection proce-
dure, p1 and p2 , can be estimated from existing data in 
the following manner: 

1. Analyze each network separately using a frequentist 
based fixed-effects model for NMA.

2. For each sub-network, calculate the risk of all 
treatments. To do so, obtain estimates of the risks 
of the baseline treatment, pb , from the literature. 
Then, for any other treatment t the risk pt is calcu-
lated as 

(12)
pt =

pb
1−pb

eLORt,b

1+
pb

1−pb
eLORt,b

=
pbe

LORt,b

1+ pbe
LORt,b − pb

,

where LORt,b is the estimated log-odds ratio of treat-
ment t to baseline b from the network meta-analysis 
conducted in step 1.

Application and simulation
In this section, we use a real data set to illustrate our pro-
cedure for identifying the best connecting two-arm trial 
based on the methods above. We then conduct a simula-
tion study to confirm our findings and verify the variance 
formulas we presented. All analysis is performed using R 
version 4.1.1.

Real data application procedure
We apply our methods to data from a previously pub-
lished network meta-analysis on the use of bacterial and 
viral vaccines for the prevention of bovine respiratory 
disease (BRD) in beef cattle [15]. A total of 53 studies 
reported morbidity due to BRD, with the full network 
shown in Fig. 2. The outcome of interest is an indicator 
for morbidity and all studies reported log-odds ratios. 
When conducting a network meta-analysis, the authors 

Fig. 2 Full network of studies relating to BRD. The entire network of 53 studies, showing the disconnected nature of the studies. Only the 
treatments that will be used throughout this paper have been labeled
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focused on the largest sub-network; that is, the authors 
did not use all of the information related to BRD due to 
the disconnected nature of the full network. Here, we 
focus on the two largest sub-networks, which are the two 
sub-networks with treatments labeled in Fig. 2.

The two sub-networks that are used throughout the 
remainder of this paper are shown in more detail in 
Figs. 3 and 4. These two sub-networks will be referred to 
from this point forward as networks one and two, respec-
tively. Network one includes 17 vaccines from a total of 
14 studies. Two of these studies were three-arm trials, 
one was a four-arm trial, and the remainder were two-
arm trials. Network two includes six vaccines from three 
studies, with one four-arm trial and two two-arm trials.

Suppose that the researchers would like to connect the 
two largest sub-networks with the goal of estimating a 
comparison between two vaccines as precisely as possi-
ble, for example, the comparison between the two chosen 
baselines (N and E). Note that these baseline treatments 
were chosen without loss of generality. Also, we refer to 
the vaccines as treatments to ensure the language is con-
sistent with the above discussion. Researchers would like 
to know if it is better to connect the two treatments N 
and E directly, or if it would be better to leverage infor-
mation from indirect comparisons and connect the 

sub-networks elsewhere. To determine the best connect-
ing two-arm trial given a COI, we can apply the proposed 
selection procedure outlined in the Methods section. In 
this case, there are a total of 102 (17 x 6) possible two-
arm trials.

The results from a network meta-analysis of sub-net-
works one and two are shown in Tables 1 and 2. We then 
consider several possibilities for the total sample size of 
the new connecting trial, n, and find the connecting trial 
such that the variance of µ̂N ,E is minimized (e.g., the COI 
is between treatments c1 = N  and c2 = E ), as shown in 
Table 3. This is an example of the COI being the baseline 
to baseline comparison.

Based on these results, we can see that there are condi-
tions when the best connecting trial is not a direct trial 
of the two treatments involved in the comparison. Practi-
cally, however, there is not a large difference between the 
variance of the best trial and variance of the direct trial. 
As the sample size increases, the best connecting trial is 
the direct trial since as the sample size in the connecting 
trial increases, so does the precision in the comparative 
effect size estimate.

Now suppose that researchers are not interested in a 
baseline-to-baseline comparison of the two sub-networks 
(this might occur if one of the baselines is no longer a 

Fig. 3 Detailed network plots for sub-network one. The detailed network plot for sub-network one, where the node size corresponds to the total 
number of studies involving that treatment, and the width of the connecting line corresponds to the number of direct comparisons between 
treatments
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feasible treatment). In the case that the COI is treatments 
L-G, the best connecting trial is shown in Table 4. In this 
case, there is a much larger difference between the vari-
ance of the best connecting trial and the variance of the 
direct trial.

We further illustrate that it is possible for trials 
involving completely indirect connections to be bet-
ter than a direct connection given a COI. Continuing 
with the COI as L-G, results in Table 5 show that it is 
possible that a trial involving neither treatment L nor 
G may be better than a direct trial including both. For 

Fig. 4 Detailed network plots for sub-network two. The detailed network plot for sub-network two, where the node size corresponds to the total 
number of studies involving that treatment, and the width of the connecting line corresponds to the number of direct comparisons between 
treatments

Table 1 Estimates of means and standard errors from sub-
network one on the log-odds ratio scale, with N as the baseline 
treatment. Risks are estimated based on Eq. 12

Treatment µ̂b

√

Var(µ̂b) Estimated Risk

N - - 0.3704

A -0.1710 0.1475 0.3315

A-G 0.1507 0.8317 0.4062

B-S -0.4294 0.4105 0.2769

D-F -0.1541 0.3506 0.3353

H 0.0508 0.0754 0.3823

I -0.4005 0.2946 0.2827

L -2.7726 1.0992 0.0355

M -0.4068 0.5774 0.2815

O 0.4055 0.9593 0.4688

P 0.0445 1.0435 0.3801

D-J 0.3900 0.2751 0.4649

Q 0.0445 1.0435 0.3809

R 0.3345 0.7682 0.4511

T -0.4414 0.3568 0.2745

Y -0.3589 0.4705 0.2912

Z 0.2692 0.8129 0.4351

Table 2 Estimates of means and standard errors from sub-
network two on the log-odds ratio scale, with E as the baseline 
treatment. Risks are estimated based on Eq. 12

Treatment µ̂b

√

Var(µ̂b) Estimated Risk

E - - 0.3831

E-O -0.2249 0.3220 0.3316

E-P -0.6267 0.3334 0.2492

E-Q -0.7243 0.3350 0.2314

G -0.8122 1.2042 0.2161

E-C -0.0976 0.0775 0.3604
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a fixed sample size of n = 6 , the best trial that does not 
include L or G is the trial DJ-E, in which the variance 
of the COI, Var(µ̂L,G) = 5.4843 . This is smaller than 
the case when the trial is direct between L-G, in which 
Var(µ̂L,G) = 11.7115 . Results for additional sample 
sizes up to n = 20 are shown in Table  5. These results 
confirm that it is possible for a trial involving neither 

of the treatments involved in a COI to be better than a 
direct connection. The best connecting trial for the the 
COI L-G is direct with sample sizes n ≥ 50 and results 
are the same as those in Table 4.

As a concluding example, we consider the COI I-EQ. 
Neither of the treatments involved in this comparison 
have extreme risks, and this illustrates a case where the 
difference between the best connecting trial and the 
direct trial is larger than in the case of N-E. In fact, for 
n = 6 this is the COI that results in the largest difference 
between the best connecting trial and the direct trial 
(excluding comparisons involving treatment L). Results 
are shown in Table 6.

Table 3 The variance in estimation of the comparison of 
interest, Var(µ̂N,E) , using the best connecting trial when the 
comparison of interest is N to E compared to the variance using a 
direct trial of N to E

Var(µ̂N,E)

n Best Connecting Trial Direct Trial

6 DJ-E 2.8260 2.8397

8 H-E 2.1221 2.1298

10 H-E 1.6988 1.7038

12 H-E 1.4166 1.4199

14 H-E 1.2151 1.2170

16 H-E 1.0639 1.0649

18 H-E 0.9463 0.9466

20 N-E 0.8519 0.8519

50 N-E 0.3408 0.3408

100 N-E 0.1704 0.1704

200 N-E 0.0852 0.0852

500 N-E 0.0341 0.0341

1000 N-E 0.0170 0.0170

Table 4 The variance in estimation of the comparison of 
interest, Var(µ̂L,G) , using the best connecting trial when the 
comparison of interest is L to G compared to the variance using a 
direct trial of L to G

Var(µ̂L,G)

n Best Connecting Trial Direct Trial

6 DJ-G 4.5914 11.7115

8 H-G 3.7483 8.7837

10 H-G 3.2414 7.0269

12 H-G 2.9035 5.8558

14 H-G 2.6621 5.0192

16 H-G 2.4811 4.3918

18 H-G 2.3403 3.9038

20 N-G 2.2273 3.5135

50 L-G 1.4054 1.4054

100 L-G 0.7027 0.7027

200 L-G 0.3513 0.3513

500 L-G 0.1405 0.1405

1000 L-G 0.0703 0.0703

Table 5 The variance in estimation of the comparison of 
interest, Var(µ̂L,G) using the best completely indirect connecting 
trial when the comparison of interest is L to G compared to the 
variance using a direct trial of L to G

Var(µ̂L,G)

n Best Completely Indirect Connecting 
Trial

Direct Trial

6 DJ-E 5.4843 11.7115

8 H-E 4.7804 8.7837

10 H-E 4.3571 7.0269

12 H-E 4.0750 5.8558

14 H-E 3.8734 5.0192

16 H-E 3.7222 4.3918

18 H-E 3.6046 3.9038

20 N-E 3.5103 3.5135

Table 6 The variance in estimation of the comparison of 
interest, Var(µ̂I,EQ) , using the best connecting trial when the 
comparison of interest is I to EQ compared to the variance using 
a direct trial of I to EQ

Var(µ̂I,EQ)

n Best Connecting Trial Direct Trial

6 DJ-E 3.0250 3.5180

8 H-E 2.3211 2.6385

10 H-E 1.8978 2.1108

12 H-E 1.6157 1.7590

14 H-E 1.4141 1.5077

16 I-E 1.2575 1.3193

18 I-E 1.1302 1.1727

20 I-E 1.0284 1.0554

50 I-EQ 0.4222 0.4222

100 I-EQ 0.2111 0.2111

200 I-EQ 0.1055 0.1055

500 I-EQ 0.0422 0.0422

1000 I-EQ 0.0211 0.0211
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Simulation
We extend the ideas presented in the Real data applica-
tion procedure section to include the simulation of data 
from new connecting trials to validate our proposed 
method. We use the following procedure to generate 
1000 simulated trials and define the COI to be L-G (that 
is, c1 = L and c2 = G): 

1. Estimate the risks of p1 and p2 as described in the 
Methods section; that is, estimate the risks of the trial 
treatments,   t1 and  t2 ,using the existing network data.

2. For each partially indirect connecting two-arm trial that 
was identified as best (found in Table 4) do the following: 

a Simulate data from the new connecting trial by 
drawing from both a binomial(n1,p1 ) and bino-
mial(n2,p2 ), where n1 = n2 = n/2 and p1, p2 are 
the risks of treatments t1,t2 given by Tables 1 and 
2. Now we have a simulated number of events for 
each of the two treatments involved in the new 
trial, r1 and r2.

b Estimate p̂1 = r1
n1

 and p̂2 = r2
n2 and use the adjust-

ment to account for proportions of 0,1 in [16].
c Create a new fully connected network consisting 

of the two previously separated networks and the 
new trial. Set the new design matrix X where the 
overall baseline is treatment N from network one. 
Append a new row corresponding to the con-
necting trial.

d Append a new element to the vector y as 
log(

p̂2/(1−p̂2)
p̂1/(1−p̂1)

).
e Calculate the within-trial variance σ 2

t1,t2 as 

 for treatments t1,t2.
f Use Eq. 4 to calculate the value of µ̂c1,c2

.

3. Repeat step 2 1000 times and record µ̂c1,c2 in each 
simulated trial.

Results from this simulation are shown in Table  7. Both 
the bias(µ̂c1,c2) and root mean square error, RMSE(µ̂c1,c2) 
are shown. By examining the bias and RMSE in the esti-
mator, we can see that for small sample sizes, a partially 
indirect trial is preferred to a direct trial. This aligns with 
the results found in the real data application.

Verification of formulas
We further simulate data to verify the formulas for esti-
mating the variance of a COI presented in the Methods 

σ 2
t1,t2

=
1

n1p̂1(1− p̂1)
+

1

n2p̂2(1− p̂2)
,

section. As an example, we focus on the case where 
sub-networks one and two are connected through a 
two-arm trial involving treatments N and E. Let σ 2

t1,t2 
denote the within-study variance of the comparison 
between treatments t1 and t2 , and σ 2

t1,t2,pooled be the esti-
mate of the variance of the comparative effect size that 
arises from analysis of the network (i.e., using a fixed 
effects model for NMA). We verify that Eqs.  4 and 11 
produce the same variance estimate. Table  8 shows 
the breakdown of the variance estimate, which is con-
firmed using Eq.  4. Table  9 shows a specific example 
using one data set with a fixed sample size for the con-
necting trial, n = 1000 . Several comparisons of inter-
est between sub-network one and sub-network two 
are considered. The results show that when the COI is 
exactly the connecting trial, the variance of the COI is 
simply the within-trial variance. Otherwise, the vari-
ance is the sum of the new within-trial variance and 
additional variance parameters that correspond to links 

Table 7 Simulation of 1000 trials when the COI is L-G

Best Connecting Trial Direct Trial

n Trial Bias(µ̂L,G) RMSE(µ̂L,G) Bias(µ̂L,G) RMSE(µ̂L,G)

6 DJ-G 0.5128 1.3339 -1.5278 2.8869

8 H-G 0.3076 1.1185 -1.4155 2.5219

10 H-G 0.2441 0.9768 -1.3064 2.3086

12 H-G 0.2437 0.9272 -1.2617 2.1308

14 H-G 0.1923 0.8742 -1.1754 1.9721

16 H-G 0.1592 0.8097 -1.1510 1.8554

18 H-G 0.1401 0.8225 -1.0223 1.5928

20 N-G 0.1063 0.7047 -1.0123 1.5995

Table 8 Variance of comparisons of interest across newly 
connected networks one and two, for all simulated data

COI Connections (No. of Studies) Var(ûc1,c2)

N-E Direct (1) σ 2
N,E

N-EQ Partially Indirect (1, 1) σ 2
N,E + σ 2

E ,EQ

A-EQ Completely Indirect (2, 1, 1) σ 2
N,A,pooled + σ 2

N,E + σ 2
E ,EQ

Table 9 Variance of comparisons of interest across newly 
connected networks one and two for one simulated data set 
with n = 1000

COI Var(ûc1,c2)

N-E 0.01716344

N-EQ 0.1293884 = 0.01716344 + 0.112225

A-EQ 0.1511429 = 0.02175445 + 
0.01716344 + 0.112225
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in the entire network. These results are consistent with 
the formulas presented in the Methods section.

Discussion
Evidence from an existing NMA is commonly used to 
plan a new trial. When a group of trials are connected in 
a network, several methods have been proposed to iden-
tify trial(s) that achieve a desired power or precision for 
a COI. However, in the case of disconnected networks, 
there is no literature to guide researchers on how to 
design a trial to connect any sub-networks. In this paper, 
we address how to identify connecting trials that mini-
mize the variance of a COI between two disconnected 
sub-networks. We derive variance formulas which lead 
to a straightforward computational procedure to identify 
the best connecting two-arm trial and confirm the results 
via simulation.

The formulas derived in the Methods section of this 
paper have several implications. Eq. 11 shows that under 
a completely indirect connecting trial, the variance 
of any COI can be written as the sum of three compo-
nents: a pooled variance from the first sub-network, the 
within-trial variance from the connecting trial, and a 
pooled variance from the second sub-network. By writ-
ing the variance in this manner, it is clear that the best 
connecting trial may not always be direct, and is instead 
network dependent. Further, from Eq. 2, it holds that as 
n −→ ∞ , σ 2

t1,t2
−→ 0 , where σ 2

t1,t2 is the within-trial vari-
ance for a trial between treatments t1 and t2 . Given a large 
enough sample size, this implies that the best trial will 
always be direct. However, the rate of convergence is net-
work dependent, as σ 2

t1,t2
 is a function of risks from each 

sub-network.
Our proposed procedure is a straightforward way for 

researchers to apply the formulas presented through-
out the paper and determine which trial minimizes the 
variance of a COI. Using a real disconnected network, 
we have shown that there are several cases when an 
indirect trial should be preferred to a direct trial. Prac-
tically, in the baseline-to-baseline example of N-E, the 
differences between a direct trial and a partially indi-
rect trial are not very large. In this case, researchers 
may not be motivated to conduct an indirect trial. How-
ever, when the COI is L-G, there is a notable difference 
between the direct and indirect trial. This difference is 
evident for both a partially indirect connecting trial and 
a completely indirect connecting trial. This is due to the 
extreme risk of treatment L, which makes a direct trial 
less ideal than an indirect trial in terms of the variance of 
the COI. Nonetheless, a key takeaway from this paper is 
exhibited here - in practice, conducting an indirect trial 
may be preferable to a direct trial when connecting two 
sub-networks. Further, it may not always be possible to 

design a direct trial. For example, a feedlot might have 
an existing contractual obligation to use certain prod-
ucts. Conducting a completely indirect trial would enable 
the feedlot to obtain an estimate of comparative efficacy 
of a rival company’s product to make longer term deci-
sions. Similarly, perhaps an older standard of care is the 
baseline in one sub-network but is expensive to use or 
has adverse side effects. For example, a long withdrawal 
for meat consumption will detract from including it as 
a treatment arm, yet because it is a commonly known 
treatment stakeholders may still find the comparison to 
that older standard of care meaningful. Using a partially 
or completely indirect connecting trial enables such a 
comparison.

By simulating realizations from both the best (partially 
indirect) connecting trial and a direct trial of L-G, we 
have confirmed the conclusions of the real data analy-
sis. Conducting an indirect trial leads to less bias, and a 
smaller RMSE, than a direct trial, adding more support 
to our conclusion that the best indirect trial is preferred 
to a direct trial for certain sample sizes. We note that the 
small sample size in the connecting trial is contributing 
to the bias, as discussed in other work [17]. Future simu-
lations may be needed to further validate our proposed 
procedure.

Limitations
The methods presented in this paper are limited to use 
under the assumptions of fixed effects NMA. That is, 
they can be used under the assumptions of transitivity 
and consistency. When any of said assumptions are not 
met, the model needs to be modified and analogous for-
mulas would need to be derived. Further, when design-
ing a trial, researchers may prefer to use a random effects 
model. The methods presented here do not address that 
model, but similar results could be derived under a ran-
dom effect NMA model formulation. In a random effects 
model, there will be an additional assumption of equal 
variances. If this assumption is violated then a more gen-
eral model allowing heterogeneous between-trial vari-
ances could be used to derive formulas [18]. The methods 
here also only consider a single comparison of interest, 
but in practice researchers may be interested in multiple 
treatment comparisons. This is a possible extension to 
our research.

Conclusion
The goal of this paper is to inform researchers that a 
direct trial may not always be the best trial to connect 
sub-networks, and to provide an approach to deter-
mine the best trial. In practice, researchers can simplify 
the procedure by only considering the connecting tri-
als that are of interest to them, rather than all possible 
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connections. With a large enough sample size, the best 
trial will be the direct trials. However, there are reasons 
why despite being interested in a particular comparison 
the feasibility of that comparison may be restricted due 
to cost, availability and adverse facts, in those situations 
researchers can use the procedure proposed to find the 
best connecting trial that does not involve said treatment.

The example used throughout this paper is based on 
livestock populations, however, the approach proposed 
is agnostic to this application. The foundation of the 
method is a valid comparison of NMA networks aris-
ing from a systematic review of trials that are reasonably 
considered to meet the same assumptions for NMA. As 
such, the approach proposed could be applied to any 
group trials related to interventions such as biological 
interventions, pharmaceutical interventions or medical 
devices. Overall, the purpose of this work is to make it 
clear that the best connecting trial is network dependent, 
and this idea is confirmed through both a real data appli-
cation and simulation.
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