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Abstract 

Background Failure time data frequently occur in many medical studies and often accompany with various types of 
censoring. In some applications, left truncation may occur and can induce biased sampling, which makes the practical 
data analysis become more complicated. The existing analysis methods for left-truncated data have some limitations 
in that they either focus only on a special type of censored data or fail to flexibly utilize the distribution information of 
the truncation times for inference. Therefore, it is essential to develop a reliable and efficient method for the analysis 
of left-truncated failure time data with various types of censoring.

Method This paper concerns regression analysis of left-truncated failure time data with the proportional hazards 
model under various types of censoring mechanisms, including right censoring, interval censoring and a mixture 
of them. The proposed pairwise pseudo-likelihood estimation method is essentially built on a combination of the 
conditional likelihood and the pairwise likelihood that eliminates the nuisance truncation distribution function or 
avoids its estimation. To implement the presented method, a flexible EM algorithm is developed by utilizing the idea 
of self-consistent estimating equation. A main feature of the algorithm is that it involves closed-form estimators of 
the large-dimensional nuisance parameters and is thus computationally stable and reliable. In addition, an R package 
LTsurv is developed.

Results The numerical results obtained from extensive simulation studies suggest that the proposed pairwise 
pseudo-likelihood method performs reasonably well in practical situations and is obviously more efficient than the 
conditional likelihood approach as expected. The analysis results of the MHCPS data with the proposed pairwise 
pseudo-likelihood method indicate that males have significantly higher risk of losing active life than females. In 
contrast, the conditional likelihood method recognizes this effect as non-significant, which is because the conditional 
likelihood method often loses some estimation efficiency compared with the proposed method.

Conclusions The proposed method provides a general and helpful tool to conduct the Cox’s regression analysis of 
left-truncated failure time data under various types of censoring.

Keywords Cox model, EM algorithm, Interval censoring, Left truncation, Partly interval-censored data

Introduction
Failure time data are frequently encountered in various 
scientific areas, including clinical trials, epidemiology 
surveys, and biomedical studies. A key feature of such 
data is the presence of censoring, which usually poses 
great computational challenges for their analysis [1, 2]. 
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The type of censoring that has been investigated most 
is apparently right censoring [3–6]. Other types of cen-
sored data that often occur in practice include interval-
censored and partly interval-censored data [7–13]. In 
particular, Gao et  al. [10] recently proposed an efficient 
semiparametric estimation approach for the analysis of 
partly interval-censored data under the accelerated fail-
ure time model. Zhou et al. [13] also studied the analysis 
of partly interval-censored failure time but via the trans-
formation models.

For failure time data, in addition to censoring, left 
truncation also often arises due to the use of cross-sec-
tional sampling strategy and can substantially complicate 
the data analysis. For example, in the Canadian Study 
of Health and Aging Study, the failure time of inter-
est is defined as the duration from the onset of demen-
tia to death [14]. Since only dementia patients who had 
not experienced the death at the enrollment are included 
in the study, the patient’s death time is expected to suf-
fer from left truncation, where the truncation time is the 
gap time between the onset of dementia and the enroll-
ment. Therefore, the sampled patients are no longer rep-
resentative of the whole population under study, and it is 
well-known that ignoring the left truncation in the data 
analysis often leads to biased parameter estimation.

Due to the ubiquity of left truncation in failure time 
studies, extensive efforts have been devoted to the 
method developments for the analysis of the left-trun-
cated failure time data under various types of censor-
ing scheme [15–25]. For instance, Wang et  al. [16] 
considered the left-truncated and right-censored data, 
and developed a conditional estimation approach under 
the proportional hazards (PH) model, while Pan and 
Chappell [17] investigated the analysis of left-truncated 
and interval-censored data and suggested a marginal like-
lihood approach and a monotone maximum likelihood 
approach for the PH model. Gao and Chan [24] discussed 
the same model and data structure as Pan and Chappell 
[17], but further assumed that the truncation times fol-
low the uniform distribution, which is usually referred to 
as the stationary or length-biased assumption in the liter-
ature. However, it is worth noting that this approach may 
produce biased parameter estimation when the length-
biased assumption is violated in practical applications. 
For the left-truncated and partly interval-censored data, 
Wu et al. [25] provided a conditional likelihood approach 
for the PH model in the presence of a cured subgroup.

In addition to the work described above, Huang and 
Qin [14] also studied left-truncated and right-censored 
data and proposed an estimation procedure for the addi-
tive hazards model by combining a pairwise pseudo-
score function and the conditional estimating function. 
This approach is appealing since it utilizes the marginal 

likelihood of the truncation times and can thus improve 
the estimation efficiency. In addition, the employed pair-
wise pseudo-likelihood can eliminate nuisance parame-
ters from the marginal likelihood of the truncation times, 
leading to an estimating equation function with tracta-
ble form, and can yield more efficient estimation com-
pared with the conditional estimating equation approach. 
Inspired by the work of Huang and Qin [14], Wu et  al. 
[26] proposed a pairwise likelihood augmented estima-
tor for the PH model with the left-truncated and right-
censored data. Furthermore, Wang et al. [27] considered 
the analysis of left-truncated and interval-censored data 
with the PH model, and developed a sieve maximum like-
lihood estimation procedure by accommodating the pair-
wise likelihood function of the truncation times.

In the following, we will consider regression analysis 
of left-truncated failure time data under the PH model 
and various types of censoring mechanism, including 
the interval censoring, right censoring and a mixture of 
them. Specifically, motivated by Huang and Qin [14] and 
Wu et  al. [26], we propose a nonparametric maximum 
likelihood estimation (NPMLE) approach by combin-
ing the conditional likelihood of the failure times with 
the pairwise likelihood obtained from the marginal like-
lihood of the truncation times, rendering an efficient 
estimation for the PH model. A flexible EM algorithm 
that can accommodate various types of censored data 
will be developed to implement the NPMLE. Through 
the desirable data augmentation, the objective func-
tion in the M-step of the algorithm has a tractable form, 
and one can estimate the regression coefficients and the 
nuisance parameters related to the cumulative baseline 
hazard function separately. In particular, by utilizing the 
spirit of self-consistent estimation equation, we obtain 
the explicit estimators of the possibly large-dimensional 
nuisance parameters, which can greatly relieve the com-
putational burden in the optimization procedure. The 
numerical results obtained from extensive simulation 
studies demonstrate that the proposed method is com-
putationally stable and reliable and can improve the esti-
mation efficiency of the conditional likelihood approach. 
In other words, the proposed method provides a general 
and helpful tool to conduct the Cox’s regression analysis 
of left-truncated failure time data under various types of 
censoring.

The remainder of this paper is organized as follows. 
In Section Notation, model, and likelihood, we will first 
introduce some notation, data structure and the model, 
and then present the observed data likelihood function. 
Section Estimation procedure presents the developed EM 
algorithm to implement the NPMLE. In Section Simula-
tion studies, extensive simulation studies are conducted 
to evaluate the empirical performance of the proposed 
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method, followed by an application to a set of real data 
in Section  An application. Section  Discussion and con-
cluding remarks  gives some discussion and concluding 
remarks.

Notation, model, and likelihood
Consider a failure time study involving left trunca-
tion, and for a subject from the target population, let T ∗ 
denote the underlying failure time, that is, the time to 
the onset of the failure event. Let A∗ be the underlying 
truncation time (i.e. the time to the study enrolment), 
which is assumed to be independent of T ∗ , and Z∗ be the 
p-dimensional vector of covariates. For a subject enrolled 
in the study (i.e. satisfying T ∗ ≥ A∗ ), denoted by T, A and 
Z the failure time, the truncation time and the vector of 
covariates, respectively. Then (T ,A,Z) has the same joint 
distribution as (T ∗,A∗,Z∗) conditional on T ∗ ≥ A∗.

Let f and S denote the density and survival functions of 
T ∗ , respectively. Let h be the density function of A∗ . Then 
the joint density function of (T, A) at (t, a) is

where f(t)/S(a) is the conditional density of T given A, 
S(a)h(a)/

∫∞
0 S(u)h(u)du is the marginal density of A. 

To describe the effect of Z∗ on the failure time T ∗ , we 
assume that T ∗ follows the PH model with the condi-
tional cumulative hazard function of T ∗ given Z∗ taking 
the form

In the above, �(t) is an unspecified baseline cumulative 
hazard function and β denotes a p-dimensional vector of 
regression coefficients.

As mentioned above, censoring always exists in failure 
time studies. Define � = 1 if T can be observed exactly 
and 0 otherwise. If � = 0 , let (L,  R] be the smallest 

f (t)h(a)

∫ ∞

0
S(u)h(u)du

=
f (t)

S(a)
×

S(a)h(a)

∫ ∞

0
S(u)h(u)du

, (0 ≤ a ≤ t),

(1)�(t | Z∗) = �(t) exp(Z∗⊤β).

interval that brackets T with L ≥ A . Clearly, T is left-
censored if L = A , T is right-censored if R = ∞ , and T is 
interval-censored if R < ∞ . In the sequel, notations with 
the subscript i represent the corresponding sample ana-
logues. Therefore, we have partly interval-censored data if 
the obtained data consist of n independent observations 
denoted by (Ai,Ti,�i,Zi) if �i = 1 and (Ai, Li,Ri,�i,Zi) 
if �i = 0 for i = 1, . . . , n . Notably, the data above reduce 
to interval-censored data if �i = 0 for i = 1, . . . , n , and 
right-censored data if Ri = ∞ for i = 1, . . . , n.

Let S(t | Zi) = exp{−�(t) exp(Z⊤
i β)} and 

�(t) = d�(t)/dt . Assume that (Li,Ri) is conditionally 
independent of (A∗,T ∗) given A∗ ≤ T ∗ and Z∗ , and that 
A∗ is independent of Z∗ , the observed data likelihood 
function takes the form

 where

 and

In the above, LCn (β ,�) is the conditional likelihood 
of {�iTi, (1−�i)Li, (1−�i)Ri,�i} given (Ai,Zi) , and 
LMn (β ,�, h) is the marginal likelihood of Ai given Zi . 
Note that the observed data likelihood Ln(β ,�, h) has an 
intractable form due to the complex data structure and 
the involvement of the nuisance functions � and h. For 
the estimation, it is apparent that performing direct max-
imization of Ln(β ,�, h) with respect to all parameters is 
quite challenging and unstable even after approximat-
ing � and h with some smooth functions with finite-
dimensional parameters. To address this issue, in the 
next section, we will develop a flexible EM algorithm by 
introducing some Poisson latent variables in the data 
augmentation procedure, which can greatly simplify the 
form of LCn (β ,�) . In addition, by following Liang and 
Qin [28] and others, we will employ the pairwise likeli-
hood approach to eliminate the nuisance function h 
from the marginal likelihood LMn (β ,�, h) . The above two 

(2)Ln(β ,�, h) = LCn (β ,�)× LMn (β ,�, h),

LCn (β ,�) =

n

i=1

{�(t) exp(Z⊤
i β)S(Ti | Zi)}

�i{S(Li | Zi)− S(Ri | Zi)}
1−�i

S(Ai | Zi)

=

n

i=1

�(t) exp(Z⊤
i β) exp{−(�(Ti)−�(Ai)) exp(Z

⊤
i β)}

�i

× exp{−(�(Li)−�(Ai)) exp(Z
⊤
i β)}

− exp{−(�(Ri)−�(Ai)) exp(Z
⊤
i β)}

1−�i

,

LMn (β ,�, h) =

n
∏

i=1

S(Ai | Zi)h(Ai)
∫∞
0 S(u | Zi)h(u)du

.
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manipulations make the estimation procedure appealing 
and easily implemented.

Estimation procedure
To estimate β and � , we adopt the NPMLE approach and 
develop an EM algorithm for its implementation. For 
this, we will first discuss the data augmentation and then 
present the pairwise likelihood method as well as the 
E-step and M-step of the algorithm.

Data augmentation
First note that the likelihood function above depends 
on �(t) only through its values at the finite observation 
times, exactly-observed failure times and truncation 
times. Let t1 · · · < tKn < ∞ denote the ordered sequence 
of these unique time points, and assume that �(t) is a 
step function at tk with the non-negative jump size �k for 
k = 1, . . . ,Kn . Then the conditional likelihood LCn (β ,�) 
can be re-expressed as

where θ = (β⊤, �1, . . . , �Kn)
⊤.

To simplify LC1n(θ) , for the ith subject, we intro-
duce a set of new independent latent variables 
{Wik; k = 1, 2, · · · ,Kn} relating to t1, t2, · · · , tKn respec-
tively, where Wik is a Poisson random variable with mean 
�k exp(Z

⊤
i β) . Then LC1n(θ) can be equivalently expressed as

where Wik |tk=Ti denotes the variable in 
{Wik; k = 1, 2, · · · ,Kn} that satisfies tk = Ti.

Define R∗
i
= (1 − Δi)(LiI(Ri = ∞) + RiI(Ri < ∞)) + ΔiTi , and 

let p{Wik | �k exp(Z
⊤
i β)} be the probability mass func-

tion of Wik with mean �k exp(Z⊤
i β) . By treating the latent 

variables Wik ’s as observable, the augmented likelihood 
function is given by

LC
1n
(�) =

n
∏

i=1

[

Kn
∏

k=1

𝜆
I(Ti=tk )

k
exp(Z⊤

i
�) exp

{

−
∑

Ai≤tk≤Ti

𝜆k exp(Z
⊤

i
�)

}]Δi

×

[

exp

{

−
∑

Ai≤tk≤Li

𝜆k exp(Z
⊤

i
�)

}

−I(Ri < ∞) exp

{

−
∑

Ai≤tk≤Ri

𝜆k exp(Z
⊤

i
�)

}]1−Δi

,

LC
2n
(�) =

n
�

i=1

�

P

�

�

Ai≤tk<Ti

Wik = 0

�

P
�

Wik �tk=Ti
= 1

�

�Δi

×

⎡

⎢

⎢

⎣

P

�

�

Ai≤tk≤Li

Wik = 0

�

P

�

�

Li<tk≤Ri

Wik > 0

�I(Ri<∞)
⎤

⎥

⎥

⎦

1−Δi

,

LC (�) =

n
∏

i=1

Kn
∏

k=1

p{Wik ∣ 𝜆k exp(Z
⊤

i
�)}I(Ai≤tk≤R

∗
i
)

=

n
∏

i=1

Kn
∏

k=1

[

{𝜆k exp(Z
⊤

i
�)}Wik

Wik !
exp{−𝜆k exp(Z

⊤

i
�)}

]I(Ai≤tk≤R
∗
i
)

,

which subjects to the constraints that ∑
Ai≤tk<Ti

Wik = 0 
and Wik |Ti=tk = 1 if �i = 1 , 

∑

Ai≤tk≤Li
Wik = 0 

and 
∑

Li<tk≤Ri
Wik > 0 if �i = 0 and Ri < ∞ ; and 

∑

Ai≤tk≤Li
Wik = 0 if �i = 0 and Ri = ∞.

Pairwise likelihood
Since the density function h in the marginal likelihood 
LMn (β ,�, h) is a nuisance function, we follow the work 
of Liang and Qin [28] and apply the pairwise likelihood 
method to LMn (β ,�, h) to eliminate h. Note that, for 
i  = j , by conditioning on (Zi,Z j) and having observed 
(Ai,Aj) but without knowing the order of Ai and Aj , the 
pairwise pseudo-likelihood of the observed (Ai,Aj) is 
given by

where

Therefore, the pairwise likelihood LPn(θ) of all pairs is 
given by

Notably, through the above manipulation, LP(θ) 
depends on the parameters in the survival model, β and 
�1, . . . , �Kn , but not on the density function h of trunca-
tion time A∗.

EM algorithm
Combing the augmented likelihood LC(θ) with the pair-
wise likelihood LP(θ) , and taking into account the dif-
ferent magnitudes of LC(θ) and LP(θ) , we can derive the 
composite complete-data log-likelihood as follows

In the E-step of the algorithm, we take the conditional 
expectations with respect to the latent variables Wik ’s 
in l(θ) , and for notational simplicity, we will ignore the 
conditional arguments including the observed data and 
the estimate of θ at the lth iteration denoted by θ (l) in all 

S(Ai ∣Z i )h(Ai )

∫ ∞

0
S(a ∣Z i )h(a)da

×
S(Aj ∣Z j )h(Aj )

∫ ∞

0
S(a ∣Z j )h(a)da

S(Ai ∣Z i )h(Ai )

∫ ∞

0
S(a ∣Z i )h(a)da

×
S(Aj ∣Z j )h(Aj )

∫ ∞

0
S(a ∣Z j )h(a)da

+
S(Ai ∣Z j )h(Ai )

∫ ∞

0
S(a ∣Z j )h(a)da

×
S(Aj ∣Z i )h(Aj )

∫ ∞

0
S(a ∣Z i )h(a)da

=
1

1 + Rij(�)
,

Rij(�) =
S(Ai ∣ Z j)S(Aj ∣ Z i)

S(Ai ∣ Z i)S(Aj ∣ Z j)

= exp

[

Kn
∑

k=1

{

I(tk ≤ Ai) − I(tk ≤ Aj)
}

𝜆k

{

exp(Z⊤

i
�) − exp(Z⊤

j
�)

}

]

.

LP(θ) =
∏

i �=j

{1+ Rij(θ)}
−1.

l(�) =
1

n

n
∑

i=1

Kn
∑

k=1

I(Ai ≤ tk ≤ R∗

i
)
[

Wik log{𝜆k exp(Z
⊤

i
�)} − 𝜆k exp(Z

⊤

i
�)

− log(Wik !)
]

−
1

n(n − 1)

∑

i≠j

log{1 + Rij(�)}.
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conditional expectations. This step yields the following 
objective function

We now present the expressions of E(Wik) ’s in lE(θ) . 
Specifically, in the case of �i = 1 (exactly-observed Ti ), 
we have E(Wik) = 0 if Ai ≤ tk < Ti , and E(Wik) = 1 if 
Ti = tk . In the case of �i = 0 and Ai ≤ Ti ≤ Li (left cen-
soring), we have

In the case of �i = 0 and Ri < ∞ (interval censoring), we 
have E(Wik) = 0 if Ai ≤ tk ≤ Li , and

In the case of �i = 0 and Ri = ∞ (right censoring), we 
have E(Wik) = 0 if Ai ≤ tk ≤ Li.

Differentiating lE(θ) with respect to β and �k ’s yields 
the following composite score functions

and

where Q
(m)

ij
(t;�) =

{

Z
⊗m
i

exp(Z⊤

i
�) − Z

⊗m
j

exp(Z⊤

j
�)

}{

I(t ≤ Ai) − I(t ≤ Aj )

} for 
m = 0 or 1, Z⊗0 = 1 and Z⊗1 = Z.

Specifically, at the (l + 1) th iteration, based on esti-
mating equation U�k

(θ) = 0 , one can derive a self-con-
sistent solution to update each �k :

By combining the discussion above, the proposed EM 
algorithm can be summarized as follows: 

Step 0:  Choose initial values for β(0) and �(0)k  for 

lE (�) =
1

n

n
∑

i=1

Kn
∑

k=1

I(Ai ≤ tk ≤ R∗

i
)[E(Wik ) log{𝜆k exp(Z

⊤

i
�)} − 𝜆k exp(Z

⊤

i
�)]

−
1

n(n − 1)

∑

i≠j

log{1 + Rij(�)}.

E(Wik ) =
𝜆
(l)

k
exp(Z⊤

i
�
(l))

1 − exp
�

−
∑

Ai≤tk≤Li
𝜆
(l)

k
exp(Z⊤

i
�
(l))

� , if Ai ≤ tk ≤ Li .

E(Wik ) =
𝜆
(l)

k
exp(Z⊤

i
�
(l))

1 − exp
�

−
∑

Li<tk≤Ri
𝜆
(l)

k
exp(Z⊤

i
�
(l))

� , if Li < tk ≤ Ri .

U
�
(�) =

1

n

n
�

i=1

Kn
�

k=1

I(Ai ≤ tk ≤ R∗

i
)Z i{E(Wik ) − 𝜆k exp(Z

⊤

i
�)}

−
1

n(n − 1)

�

i≠j

∑Kn

k=1
𝜆kQ

(1)

ij
(tk )

1 + R−1
ij
(�)

,

U
𝜆k
(�) =

1

n

n
∑

i=1

I(Ai ≤ tk ≤ R∗

i
)

{

E(Wik )

𝜆k

− exp(Z⊤

i
�)

}

−
1

n(n − 1)

∑

i≠j

Q
(0)

ij
(tk )

1 + R−1
ij
(�)

,

(3)

𝜆
(l+1)

k
=

1

n

∑n

i=1
I(Ai ≤ tk ≤ R∗

i
)E(Wik )

1

n

∑n

i=1
I(Ai ≤ tk ≤ R∗

i
) exp(Z⊤

i
�
(l)) +

1

n(n−1)

∑

i≠j

Q
(0)

ij
(tk ;�

(l) )

1+1∕Rij (�
(l) )

.

k = 1, . . . ,Kn , and set l = 0.
Step 1:  At the (l + 1) th iteration, calculate each E(Wik) 

based on the observed data and the parameter 
estimates at the lth iteration.

Step 2:  Update each �k with the closed-form expres-
sion (3).

Step 3:  Update β by solving the estimation equation 
Uβ(θ) = 0 with the one-step Newton-Raphson 
method, and increase l by 1.

Step 4:  Repeat Steps 1 - 3 until the convergence is 
achieved.

The resulting estimators of β and �(t) are denoted as 
β̂ and �̂(t) =

∑

tk≤t �̂k , respectively, where �̂k is the esti-
mate of � for k = 1, . . . ,Kn . For the standard error esti-
mation of β̂ and �̂(t) , we propose to simply employ the 
nonparametric bootstrap approach ([29], for example), 
and the numerical results below suggest that it seems 
to work well in finite samples. The numerical results 
also indicate that the performance of the proposed 
algorithm is quite robust to the choices of the initial 
values of β and �k’s. In the practical implementation of 
the proposed algorithm, one can simply set the initial 
value of each regression parameter to 0 and the initial 
value of each �k to 1/Kn . The algorithm is declared to 
achieve convergence if the sum of the absolute differ-
ences between two successive estimates of all param-
eters is less than a small positive constant, say 0.001. 
We implement the proposed algorithm under the Rcpp 
environment, which guarantees that the computation is 
efficient and tractable.

Simulation studies
Simulation studies were conducted to assess the empiri-
cal performance of the proposed estimation procedure. 
In the study, the failure time T ∗ was generated from 
model (1) with Z = (Z1,Z2)

⊤ , Z1 ∼ Bernoulli(0.5) , 
Z2 ∼ Uniform(−0.5, 0.5) , β = (β1,β2)

⊤ = (1, 1)⊤, and 
�(t) = t2 , which corresponds to the Weibull distribu-
tion with the scale parameter 1 and the shape param-
eter 2. The truncation time A∗ was generated from 
either Uniform(0, τ ∗ ) or exponential distribution with 
rate θ∗ , where τ ∗ or θ∗ was chosen to yield about 50% 
average truncation rate. Note that when the trunca-
tion time follows the uniform distribution or satisfies 
the stationary assumption, we have the length-biased 
data, a special type of the left-truncated data as dis-
cussed above. Under the left truncation mechanism, 
the observed failure time T was equal to T ∗ if T ∗ > A∗ . 
We firstly considered the situation with left-truncated 
and partly interval-censored data. To construct cen-
soring, for each subject, we mimicked the periodical 
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follow-up study and generated a sequence of examina-
tion times with the first observation time being A∗ and 
the gap times of two successive observation times being 
0.05+ Uniform(0, 0.5) . Then we used the above simu-
lated failure time T instead of the interval-censored 
observation if interval length is less than 0.2 to con-
struct the uncensored or exactly observed T. The length 
of study was set to be 1.5, beyond which no further 
examinations were conducted.

For comparison, we considered the following three 
competing methods: the proposed pairwise pseudo-like-
lihood method (Proposed method), the NPMLE method 
without adjusting for the left truncation (Ignoring trun-
cation) and the conditional likelihood method (CL 
method). Specifically, in the supplementary materials, we 
developed an EM algorithm with Poisson latent variables 
to implement the conditional likelihood method, and 
the “Ignoring truncation” method can be implemented 
with the EM algorithm by setting each Ai = 0 . We set 
n = 100 , 300 or 500, and used 1000 replicates. Under 
the above configurations, the proportions of exactly-
observed failure times ranged from 4% to 26% ; left cen-
soring rates ranged from 16% to 37% ; right censoring 
rates ranged from 7% to 33% and interval censoring rates 
ranged from 24% to 58%.

Table  1 presents the simulation results for the esti-
mated regression parameters and the cumulative hazards 
function at t = 0.4 , 0.8 or 1.2 with partly interval-cen-
sored data. They include the estimated bias (Bias) given 
by the average of the 1000 estimates minus the true value, 
the sample standard error (SSE) of the 1000 estimates, 
the average of the 1000 standard error estimates (SEE), 
and the 95% empirical coverage probability (CP) yielded 
by the normal approximation. Specifically, the standard 
errors of the proposed pairwise pseudo-likelihood esti-
mators were calculated via the nonparametric bootstrap-
ping with 100 bootstrap samples. For CL and “Ignoring 
truncation” methods, we followed Zeng et  al. [30] and 
proposed to adopt the profile likelihood approach to per-
form the variance estimation. This approach is simple 
and easy to implement, but can only provide the vari-
ance estimation for the estimated regression parameter, 
finite-dimensional parameter of interest. Thus, the SEEs 
of the cumulative hazards function estimates of the CL 
and “Ignoring truncation” methods were not available in 
Table  1. Given that �(t) is always positive, we used the 
log-transformation and constructed its confidence band 
with the delta method as Mao and Lin [31] among oth-
ers. For any t, the confidence interval of �(t) is given by 
[�̂(t) exp{−z0.975σ̂ (t)/�̂(t)}, �̂(t) exp{z0.975σ̂ (t)/�̂(t)}] , 
where �̂�(t) is the standard error estimate of Λ̂(t) , and z0.975 

is the upper 97.5th percentile of the standard normal 
distribution.

One can see from Table  1 that the estimators of the 
proposed pairwise pseudo-likelihood method are virtu-
ally unbiased, the corresponding sample standard error 
estimates are close to the average standard error esti-
mates, and the empirical coverage probabilities are all 
around the nominal value 95%, implying that the nor-
mal approximation of the asymptotic distribution of the 
proposed estimator seems reasonable. In addition, one 
can clearly find that the proposed method is more effi-
cient than the conditional likelihood method, and this 
efficiency gain can be anticipated since the proposed 
method utilizes the information of the marginal distri-
bution of the truncation time. Since the generated data 
are subject to biased sampling, as seen from Table 1, the 
“Ignoring truncation” method is expected to yield much 
larger estimation biases than the proposed and the con-
ditional likelihood methods.

In the second study, we considered the left-trun-
cated and interval-censored data. For this, we gener-
ated the truncation time A∗ in the same way as before, 
and set the first examination time being A∗ . The gap 
time of two successive observation times was set to be 
0.05+ Uniform(0, 0.5) , and the other model specifica-
tions were kept the same as above. Then we had the left-
truncated and interval-censored data by contrasting the 
generated T with the observation times. Under the afore-
mentioned simulation setups, the left censoring rates 
were from 20% to 56% ; the right censoring rates ranged 
from 7% to 32% ; interval censoring rates ranged from 27% 
to 67% . The simulation results summarized in Table  2 
again indicate that the proposed method performs rea-
sonably well and has some advantages over the condi-
tional likelihood and the “Ignoring truncation” methods.

Note that Wu et  al. [26] considered the left-trun-
cated and right-censored data and proposed an itera-
tive estimation procedure to implement the pairwise 
pseudo-likelihood method. It is clear that the pro-
posed method can deal with such data too. Therefore, 
one may be interested in comparing the performance 
of the proposed method with that of Wu et  al. [26]. To 
investigate this, we generated the failure time T ∗ from 
model (1) with Z = (Z1,Z2)

⊤ , Z1 ∼ Bernoulli(0.5) , 
Z2 ∼ Uniform(−1, 1) , β1 = β2 = 1 , and �(t) = t2 . The 
truncation time A∗ was generated in the same way as 
before. The right censoring time C was generated inde-
pendently from Uniform(0,Cmax) , where Cmax were cho-
sen to yield about 30% right censoring rate. The results 
given in Table  3 imply that the two methods can both 
perform well and give similar performance.
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An application
We apply the proposed method to a set of real data aris-
ing from the Massachusetts Health Care Panel Study 
(MHCPS) discussed in Pan and Chappell [17], Gao and 
Chan [24] and others. In 1975, the MHCPS enrolled 
elderly people who had not lost the active life in Massa-
chusetts to evaluate the effect of gender (male or female) 
on the time to loss of active life. To determine when indi-
viduals in the study lost the active life, three subsequent 

follow-ups were taken at the 1.25, 6, and 10 years after 
the study enrolment. Therefore, age of the loss of active 
life, the defined failure time of interest T ∗ , cannot be 
recorded exactly and suffered from interval censoring. 
In the MHCPS, since subjects who had lost the active life 
before the study were not enrolled, the age of the loss of 
active life was subject to left truncation with the trunca-
tion time A∗ being the age at enrolment [17]. Therefore, 
we had left-truncated and interval-censored data. After 

Table 1 Simulation results with partly interval-censored data, including the estimated bias (Bias), the sample standard error (SSE) of 
the estimates, the average of the standard error estimates (SEE), and the 95% empirical coverage probability (CP)

Note: “Proposed method” denotes the proposed pairwise pseudo-likelihood method, “CL method” denotes the conditional likelihood method, and “Ignoring 
truncation” denotes the NPMLE approach that ignores the existence of left truncation

Proposed method CL method Ignoring truncation

n Par True Bias SSE SEE CP Bias SSE SEE CP Bias SSE SEE CP

A
∗ follows 

the uniform 
distribution

100 β1 1 0.041 0.246 0.254 96.6 0.061 0.290 0.278 92.7 0.192 0.273 0.311 94.1

β2 1 0.045 0.403 0.408 95.6 0.055 0.492 0.467 93.7 0.180 0.474 0.445 90.8

�(0.4) 0.16 0.009 0.094 0.087 95.6 0.002 0.092 – – -0.084 0.043 – –
�(0.8) 0.64 -0.037 0.165 0.161 93.9 -0.048 0.164 – – -0.245 0.103 – –
�(1.2) 1.44 -0.038 0.240 0.248 93.5 -0.067 0.240 – – -0.445 0.209 – –

300 β1 1 0.008 0.134 0.129 93.5 0.013 0.156 0.151 93.1 0.120 0.148 0.306 95.9

β2 1 0.012 0.212 0.212 94.6 0.025 0.248 0.253 95.2 0.146 0.244 0.305 92.4

�(0.4) 0.16 0.020 0.067 0.064 94.2 0.020 0.067 – – -0.081 0.026 – –
�(0.8) 0.64 0.020 0.104 0.105 95.3 0.020 0.107 – – -0.240 0.061 – –
�(1.2) 1.44 -0.028 0.179 0.189 96.5 -0.024 0.182 – – -0.436 0.116 – –

500 β1 1 0.014 0.101 0.099 95.4 0.018 0.115 0.117 96.0 0.154 0.101 0.197 79.6

β2 1 0.014 0.161 0.163 94.6 0.020 0.191 0.193 95.0 0.146 0.193 0.219 85.7

�(0.4) 0.16 0.012 0.048 0.048 96.7 0.012 0.048 – – -0.081 0.018 – –
�(0.8) 0.64 0.010 0.076 0.075 95.0 0.009 0.077 – – -0.244 0.044 – –
�(1.2) 1.44 -0.012 0.133 0.131 94.6 -0.012 0.135 – – -0.443 0.094 – –

A
∗ follows the 

exponential 
distribution

100 β1 1 0.045 0.242 0.251 94.9 0.062 0.272 0.266 93.1 0.146 0.266 0.294 95.3

β2 1 0.047 0.396 0.405 95.3 0.071 0.451 0.453 95.3 0.149 0.435 0.435 90.5

�(0.4) 0.16 0.009 0.083 0.080 95.5 0.009 0.085 – – -0.068 0.046 – –
�(0.8) 0.64 -0.036 0.159 0.160 93.7 -0.038 0.159 – – -0.178 0.114 – –
�(1.2) 1.44 -0.042 0.234 0.240 92.7 -0.042 0.235 – – -0.280 0.251 – –

300 β1 1 0.011 0.131 0.133 95.9 0.016 0.147 0.148 94.9 0.084 0.137 0.250 97.4

β2 1 -0.001 0.210 0.217 95.9 0.007 0.228 0.246 96.7 0.082 0.229 0.294 95.6

�(0.4) 0.16 0.017 0.053 0.053 96.5 0.017 0.054 – – -0.065 0.025 – –
�(0.8) 0.64 0.014 0.097 0.093 93.8 0.013 0.100 – – -0.173 0.066 – –
�(1.2) 1.44 -0.016 0.184 0.182 94.5 -0.015 0.184 – – -0.300 0.140 – –

500 β1 1 0.012 0.100 0.101 95.2 0.016 0.115 0.113 94.4 0.069 0.116 0.263 92.3

β2 1 0.010 0.165 0.167 94.7 0.008 0.187 0.188 94.7 0.097 0.173 0.247 92.3

�(0.4) 0.16 0.014 0.044 0.045 95.3 0.015 0.044 – – -0.067 0.020 – –
�(0.8) 0.64 0.013 0.075 0.073 94.6 0.013 0.077 – – -0.174 0.061 – –
�(1.2) 1.44 -0.003 0.136 0.138 97.5 -0.003 0.138 – – -0.292 0.118 – –
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deleting a small amount of unrealistic records of the raw 
data, 1025 subjects with the age ranging from 65 to 97.3 
were considered in the current analysis. In particular, the 
right censoring rate is 45.8%.

Define Z = 1 if the individual is male and 0 otherwise. 
For the analysis of the MHCPS data, as in the simula-
tion studies, we considered three competing methods: 
the proposed pairwise pseudo-likelihood method (Pro-
posed method), the conditional likelihood approach (CL 

method), and the NPMLE method that ignores the exist-
ence of left truncation (Ignoring truncation). Table  4 
presents the obtained results including the estimated 
covariate effect (Est), the standard error estimate (Std) and 
the associated p-value for testing the covariate effect being 
zero. In the proposed pairwise pseudo-likelihood method, 
as in the simulation study, we employed the nonparamet-
ric bootstrapping with 100 bootstrap samples to calculate 
the standard error of the estimated regression parameter.

Table 2 Simulation results with interval-censored data, including the estimated bias (Bias), the sample standard error (SSE) of the 
estimates, the average of the standard error estimates (SEE), and the 95% empirical coverage probability (CP)

Note: “Proposed method” denotes the proposed pairwise pseudo-likelihood method, “CL method” denotes the conditional likelihood method, and “Ignoring 
truncation” denotes the NPMLE approach that ignores the existence of left truncation

Proposed method CL method Ignoring truncation

n Par True Bias SSE SEE CP Bias SSE SEE CP Bias SSE SEE CP

A
∗ follows 

the uniform 
distribution

100 β1 1 0.057 0.253 0.258 96.1 0.100 0.302 0.262 89.5 0.212 0.290 0.323 93.3

β2 1 0.079 0.408 0.411 95.2 0.114 0.510 0.427 87.4 0.214 0.471 0.451 88.2

�(0.4) 0.16 0.013 0.103 0.104 94.0 0.009 0.103 – – -0.076 0.052 – –
�(0.8) 0.64 -0.053 0.186 0.184 93.9 -0.039 0.185 – – -0.236 0.113 – –
�(1.2) 1.44 -0.033 0.306 0.301 92.1 -0.065 0.308 – – -0.431 0.230 – –

300 β1 1 0.025 0.134 0.132 93.9 0.042 0.155 0.150 93.1 0.154 0.149 0.209 90.3

β2 1 0.016 0.212 0.214 95.3 0.032 0.249 0.244 93.2 0.169 0.250 0.240 83.4

�(0.4) 0.16 0.023 0.075 0.073 96.5 0.022 0.076 – – -0.068 0.034 – –
�(0.8) 0.64 -0.006 0.131 0.132 94.2 0.002 0.127 – – -0.224 0.069 – –
�(1.2) 1.44 -0.021 0.229 0.222 95.2 -0.017 0.225 – – -0.427 0.139 – –

500 β1 1 0.005 0.100 0.100 96.1 0.017 0.121 0.115 94.3 0.132 0.107 0.189 86.6

β2 1 0.022 0.165 0.163 93.6 0.036 0.202 0.189 91.8 0.148 0.188 0.179 75.4

�(0.4) 0.16 0.019 0.059 0.055 93.9 0.018 0.063 – – -0.066 0.028 – –
�(0.8) 0.64 -0.014 0.098 0.101 95.1 -0.008 0.097 – – -0.222 0.057 – –
�(1.2) 1.44 -0.022 0.186 0.182 94.6 -0.019 0.189 – – -0.429 0.107 – –

A
∗ follows the 

exponential 
distribution

100 β1 1 0.084 0.250 0.266 96.8 0.115 0.292 0.259 88.9 0.164 0.273 0.309 94.2

β2 1 0.084 0.411 0.428 96.3 0.125 0.484 0.424 88.9 0.162 0.449 0.437 90.9

�(0.4) 0.16 0.008 0.096 0.101 96.2 0.007 0.097 – – -0.062 0.056 – –
�(0.8) 0.64 -0.046 0.178 0.174 93.6 -0.05 0.179 – – -0.169 0.134 – –
�(1.2) 1.44 -0.043 0.289 0.303 93.5 -0.037 0.290 – – -0.267 0.272 – –

300 β1 1 0.030 0.136 0.135 94.3 0.046 0.152 0.145 92.5 0.126 0.145 0.179 91.4

β2 1 0.019 0.223 0.221 94.9 0.034 0.254 0.239 93.0 0.136 0.248 0.218 82.1

�(0.4) 0.16 0.021 0.066 0.068 95.9 0.023 0.067 – – -0.056 0.035 – –
�(0.8) 0.64 -0.012 0.117 0.116 94.4 -0.005 0.119 – – -0.169 0.079 – –
�(1.2) 1.44 -0.027 0.206 0.211 95.1 -0.235 0.205 – – -0.288 0.161 – –

500 β1 1 0.014 0.105 0.102 94.5 0.024 0.116 0.111 93.5 0.100 0.110 0.187 90.4

β2 1 0.017 0.168 0.168 95.0 0.027 0.191 0.185 94.2 0.103 0.190 0.185 82.7

�(0.4) 0.16 0.019 0.054 0.052 97.7 0.017 0.054 – – -0.055 0.027 – –
�(0.8) 0.64 -0.006 0.096 0.099 96.5 -0.003 0.094 – – -0.169 0.063 – –
�(1.2) 1.44 -0.002 0.184 0.184 95.1 -0.200 0.186 – – -0.288 0.131 – –
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One can see from Table 4 that the estimated coefficient 
and the standard error estimate of the proposed method 
are given by 0.122 and 0.060, respectively, meaning that 
males have significantly higher risk of losing active life than 
females. This conclusion is in accordance with that given 
in Gao and Chan [24] where the length-biased assumption 
was made for the truncation time. One can also find from 
Table 4 that the CL method recognized the covariate effect 
as non-significant, which is different from the conclusion 
obtained by the proposed method. This phenomenon may 
arise partly due to the fact the CL method often loses some 
estimation efficiency compared with the proposed method. 
Moreover, the results given in Table  4 suggested that the 
NPMLE method that ignores the existence of left trunca-
tion tended to overestimate the covariate effect, and this 
effect was also recognized as non-significant.

Discussion and concluding remarks
In the preceding sections, we proposed a general or 
unified pairwise pseudo-likelihood approach for the 
analysis of left-truncated failure time data under the 
PH model. The proposed method is quite general and 
flexible since it applies to various types of censored 
data, including the partly interval-censored, interval-
censored, and right-censored data. We devised an EM 
algorithm to calculate the nonparametric maximum 
likelihood estimators, which was shown to be compu-
tationally stable and reliable in finite samples. Numeri-
cal results indicated that, by utilizing the pairwise order 
information of the truncation times, the proposed 
method can indeed yield more efficient estimators 
compared with the conventional conditional likelihood 
estimation approach. An application to the MHCPS 
data demonstrated the practical utility of the proposed 
method.

Notably, in the proposed algorithm, the derivation of 
the self-consistent solution (3) for �k is the desirable fea-
ture, which avoids the use of high-dimensional optimi-
zation procedure. In addition, the estimation equation 
Uβ(θ) = 0 for β has tractable form and can be readily 
solved with some routine optimization procedure, such 
as the Newton-Raphson method. The two desirable 
features both make the proposed algorithm computa-
tionally stable and reliable. There may also exist some 
shortcomings of the proposed method. One is that the 

Table 3 Simulation results for the comparison of the proposed method with Wu et al. (2018)’s method under right censored data, 
including the estimated bias (Bias), the sample standard error (SSE) of the estimates, the average of the standard error estimates (SEE), 
and the 95% empirical coverage probability (CP)

Proposed 
method

Wu et al. (2018)’s 
method

n Par True Bias SSE SEE CP Bias SSE SEE CP

A
∗ follows the uni-

form distribution

100 β1 1 0.025 0.244 0.247 95.0 0.026 0.244 0.227 92.8

β2 1 0.027 0.391 0.398 94.9 0.027 0.391 0.368 93.6

300 β1 1 0.011 0.129 0.133 96.0 0.012 0.129 0.130 95.2

β2 1 0.005 0.246 0.216 94.8 0.005 0.216 0.211 95.1

500 β1 1 0.005 0.100 0.102 95.2 0.005 0.100 0.100 95.1

β2 1 0.002 0.166 0.165 95.1 0.003 0.166 0.162 94.9

A
∗ follows the 

exponential 
distribution

100 β1 1 0.024 0.248 0.257 95.8 0.024 0.248 0.237 94.3

β2 1 0.015 0.398 0.416 95.7 0.015 0.398 0.383 93.6

300 β1 1 0.003 0.134 0.138 95.6 0.003 0.134 0.135 95.3

β2 1 0.008 0.218 0.223 95.4 0.008 0.218 0.219 95.2

500 β1 1 0.010 0.107 0.106 94.7 0.010 0.107 0.105 95.2

β2 1 0.011 0.172 0.171 94.8 0.011 0.172 0.169 94.6

Table 4 Analysis results of the MHCPS data, including the 
estimated covariate effect (Est), the standard error estimate (Std) 
and the p-value

Note: “Proposed method” denotes the proposed pairwise pseudo-likelihood 
method, “CL method” denotes the conditional likelihood method, and “Ignoring 
truncation” denotes the NPMLE approach that ignores the existence of left 
truncation

Method Est Std p-value

Proposed method 0.122 0.060 0.041

CL method 0.133 0.082 0.103

Ignoring truncation 0.156 0.095 0.100
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self-consistent solution (3) may not ensure that the esti-
mate of �k is always non-negative. However, it has been 
our experience that, given a reasonable initial value, the 
negative estimate of �k is unlikely to occur in the simu-
lations. As an alternative, by following Zhou et  al. [32] 
and others, one can attempt to reparameterize each �k as 
exp(�∗k) , where �∗k is the unconstrained parameter to be 
estimated. Another is that we adopted the nonparamet-
ric bootstrap method to calculate the variance of param-
eter estimate, which involves repeated data sampling. 
This procedure will become computationally intensive 
if the sample size is extremely large. Future efforts will 
be devoted to develop a simple variance estimation 
procedure.

There may also exist several potential research direc-
tions for future research. One is that in the proposed 
method, we made a non-informative or independent 
censoring assumption [33, 34]. In other words, the fail-
ure times of interest were assumed to be conditionally 
independent of the observation times given the covari-
ates. However, it is apparent that this assumption may 
not hold in some applications, and thus the generaliz-
ing of the proposed method to the situation of informa-
tive censoring deserves further investigation. In some 
applications, one may also encounter bivariate or mul-
tivariate failure time data [35], and it would be helpful 
to generalize the proposed method to deal with such 
data. Also the extensions of the proposed method to 
other regression models such as the transformation or 
additive hazards models can be useful.
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