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Abstract 

Background Multi‑state models are used to study several clinically meaningful research questions. Depending on 
the research question of interest and the information contained in the data, different multi‑state structures and mod‑
elling choices can be applied. We aim to explore different research questions using a series of multi‑state models of 
increasing complexity when studying repeated prescriptions data, while also evaluating different modelling choices.

Methods We develop a series of research questions regarding the probability of being under antidepressant medica‑
tion across time using multi‑state models, among Swedish women diagnosed with breast cancer (n = 18,313) and 
an age‑matched population comparison group of cancer‑free women (n = 92,454) using a register‑based database 
(Breast Cancer Data Base Sweden 2.0). Research questions were formulated ranging from simple to more composite 
ones. Depending on the research question, multi‑state models were built with structures ranging from simpler ones, 
like single‑event survival analysis and competing risks, up to complex bidirectional and recurrent multi‑state struc‑
tures that take into account the recurring start and stop of medication. We also investigate modelling choices, such as 
choosing a time‑scale for the transition rates and borrowing information across transitions.

Results Each structure has its own utility and answers a specific research question. However, the more complex 
structures (bidirectional, recurrent) enable accounting for the intermittent nature of prescribed medication data. 
These structures deliver estimates of the probability of being under medication and total time spent under medica‑
tion over the follow‑up period. Sensitivity analyses over different definitions of the medication cycle and different 
choices of timescale when modelling the transition intensity rates show that the estimates of total probabilities of 
being in a medication cycle over follow‑up derived from the complex structures are quite stable.

Conclusions Each research question requires the definition of an appropriate multi‑state structure, with more 
composite ones requiring such an increase in the complexity of the multi‑state structure. When a research question 
is related with an outcome of interest that repeatedly changes over time, such as the medication status based on 
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prescribed medication, the use of novel multi‑state models of adequate complexity coupled with sensible modelling 
choices can successfully address composite, more realistic research questions.

Keywords Multi‑state models, Prescribed drug register, Time until medication, Clock approaches, Flexible parametric 
models

Introduction
Multi-state models are used in a variety of epidemiologi-
cal settings, enabling the study of individuals transition-
ing through different states across time, portraying with 
sufficient complexity the real-world issue under study 
and providing useful and meaningful predictions [1–11]. 
Measures that can be estimated via the use of multi-state 
models include, but are not limited to, the probability of 
being in a state (or a cluster of states) across time, the 
probability of transitioning from one state to another, 
the mean length of stay in a state, and the probability of 
ever visiting a state, as well as the hazard rates/ratios for 
each transition. Typical examples of multi-state models 
applications are studying acute [10] or chronic disease 
progression [4, 7], recurrent events such as repeated 
hospitalizations [6] and cost-effectiveness in health 
economic settings [11]. In each setting, the multi-state 
structure used depends on the research question of inter-
est and the information available in the research data. If 
a simple measure such as the probability of an event is 
of interest, then a single event, simple survival analysis 
may suffice. The information available in the data also 
drives which kind of research questions can be explored. 
When the data include information about a state of 
interest repeatedly over time, more complicated multi-
state structures can be implemented, making use of the 
full richness of the data, to answer composite, realistic 
research questions. Accompanying the application of 
more complex multi-state structures, a series of choices 
with regard to modelling the transition rates, such as 
choice of timescale and sharing information across tran-
sitions, are also available.

Following a diagnosis of breast cancer (BC), many 
women experience psychological distress including feel-
ings of sadness, fear, anxiety, and depression. The asso-
ciation between BC diagnosis and the development of 
depression has been previously studied, either using 
logistic regression [12] or survival analysis for time to 
first depression diagnosis [13], with an increased risk of 
depression for individuals diagnosed with BC or can-
cer in general, compared to a matched population com-
parison group. As routine primary care information 
on a diagnosis of depression is often unavailable, many 
researchers turn to administrative drug prescription 
databases in order to study proxy measures of mental 
health on a population level [14–16]. Prescription data 

offers a readily available, affordable, quantifiable, popula-
tion-wide measure of antidepressant drug use which can 
be useful as a proxy of quality of life, including psycho-
logical status over time [17].

Breast Cancer Data Base Sweden 2.0 (BCBaSe 2.0) is a 
linked research database that includes data on dispensed 
drug prescription from the Swedish Prescribed Drug 
Registry both before and after a diagnosis of BC, repeat-
edly over time, from 2006 to 2013, with this informa-
tion also being available for an age-matched population 
comparison group of BC free women [18]. The aim of 
the study is to explore different and novel research ques-
tions using the registry-based repeated prescriptions of 
antidepressants, building from simple ones to more com-
plex, realistic ones by using multi-state structures rang-
ing from single-event survival analysis up to developing 
bidirectional and recurrent multi-state structures that 
account for the recurring start and stop of medication.

Based on the longitudinal nature of the prescribed anti-
depressants data and under certain assumptions, we can 
classify each woman as being on a medication cycle or 
a discontinuation period, a status that can change mul-
tiple times during follow-up. We start from simpler and 
commonly used structures such as a single-event sur-
vival model (two-state structure) studying the risk for 
antidepressant medication initiation (first medication 
cycle), move to a competing risk setting with antidepres-
sants initiation and death as competing events and then a 
three-state illness-death model, allowing an individual to 
transition from medication initiation to the death state. 
We then add a medication discontinuation period state, 
allowing the study of being in the first antidepressant 
medication cycle. A backwards transition from a medica-
tion discontinuation period state back to a new medica-
tion cycle is added (bidirectional structure), allowing an 
individual to be able to transition multiple times between 
a period of medication use and a discontinuation period. 
Then a multi-state structure with recurrent couples of 
medication cycles and discontinuation periods is pro-
posed, allowing for a more flexible modelling of the med-
ication use patterns, with or without sharing information 
across transitions.

The bidirectional structure along with the recurrent 
multi-state structure enabled us to study, among others, 
the total probability of being and total length of stay in 
a medication cycle on a population level or conditional 
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on entering a medication cycle, making use of the full 
richness of information found in the prescribed drug reg-
ister. The simpler structures do not make full use of the 
richness of the data, answering simpler, yet still impor-
tant research questions. We also advocate sensitivity 
analyses to investigate how probability estimates derived 
from the more complex structures, are influenced by dif-
ferent medication cycle definitions or different timescale 
approaches when modelling the transition intensity rates.

Methods
Multi‑state structures
Figure  1 provides an overview of the multi-state struc-
tures used in the current study, from the simplest struc-
tural approach (Fig. 1A Single-event survival analysis) to 
the most complex model (Fig. 1G: MSM with recurrent 

medication cycles/medication discontinuation periods 
with restrictions applied). The graphs presented in Fig. 1 
were produced via the interactive web-tool MSMplus 
[19]. The traits, results, interpretation, advantages and 
drawbacks of each structure are presented in the results 
section.

Table  1 corresponds each multi-state structure with 
a specific research question in terms of interpreta-
tion of probabilities. In addition to probabilities, other 
measures of interest can be derived and presented 
such as transition intensity rates and ratios as well as 
restricted expected length of stay (or length of stay 
for short) in each state, probability of ever visiting a 
state and many more, each with a different interpreta-
tion depending on the multi-state structure used. For 
example, in a 3-state Illness-Death model, the length of 

Fig. 1 Multi‑state structures overview. A Single‑event survival analysis, B Competing risks, C 3 –state Illness‑Death model, D Multi‑state model with 
medication discontinuation state (4‑state Unidirectional model), E Bidirectional structure between medication cycles and discontinuation periods 
(4‑state Bidirectional model), F MSM structure with recurrent medication cycles and discontinuation periods, G Recurrent MSM structure with 
restrictions—“Emulated bidirectional” structure
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stay in the medication use state can be interpreted as 
the life expectancy of an individual after their antide-
pressant medication initiation. Transition intensity rate 
ratios and restricted expected length of stay measures 
as derived from the different multi-state approaches 
are presented and interpreted in Additional file 1 (Fig-
ures A2 and A3). The main focus of this study is on the 
medication cycle and discontinuation period states. 
Therefore, we discuss and interpret the estimated 
measures of each multi-state structure in the context of 
those two states.

Single event survival analysis
If our interest lied in time to first antidepressant medi-
cation, a simple hazard model would suffice. In this case, 
the individual is at risk of transitioning from an initial, 
medication-free state to the first medication cycle (med-
ication initiation) (Fig.  1A). In this type of analysis, the 
rate of that transition is the estimate of interest, as well as 
the relevant risk differences and risk ratios between dif-
ferent groups. In this simple, two-state multi-state model, 
the derived probability is interpreted as the probability 
of ever been prescribed medication in the hypothetical 
situation that the individual cannot die due to any causes. 
This structure fails to account for the fact that individuals 
diagnosed with BC have higher risk of dying compared 
to healthy individuals. Due to this fact, the derived prob-
abilities potentially overestimate the outcome of interest, 
that is, the probability of ever antidepressant medica-
tion initiation up until time t . The approach that follows 

considers the competing risk of death when estimating 
probabilities of antidepressants initiation.

Competing risks
If we use a competing events structure, we allow the 
individual found in the initial medication-free state to 
experience either the medication initiation state or the 
competing event of death (Fig. 1B). This approach takes 
into account the competing risk of death in the estima-
tion of the probability of experiencing the first antide-
pressants medication. We can interpret this probability 
as “the probability of antidepressant medication initiation 
up to time t after the start of the follow-up”. Even though 
the competing risks approach considers the competing 
risk of death, it does not permit the individual to leave 
the state of experiencing the first medication use. Thus, 
more complex multi-state structures are in need if our 
interest lies not only until but also after the first medica-
tion use.

Three‑state illness‑ death multi‑state model
If we allow a transition between the medication initia-
tion and the absorbing state of death, the individual can 
experience death after medication initiation (Fig.  1C). 
This structure allows the study of the probability of hav-
ing experienced the first medication use while also allow-
ing individuals who have entered this state to move to the 
death state. However, the medication initiation state con-
sists of people who either stayed in a medication cycle 
for the rest of their follow-up or, more likely, moved on 
to discontinuation periods or subsequent medication 

Table 1 Interpretation of probabilities estimated from each multi‑state structure

The list above is not an exhaustive list of multi-state structures that can be used and research questions that can be addressed. The estimated measures can be 
compared between the exposure groups of interest. We highlight in bold the subtle differences in phrasing the research questions when interpreting the probabilities 
of multi-state structures D, E, F and G  (1st,a, the current medication cycle)

Multi‑state structure Research questions answered in terms of probabilities

Single‑event survival analysis of time to antidepressant medication initia‑
tion (Fig. 1A)

What is the probability of ever been prescribed medication in the hypo‑
thetical situation that the individual cannot die due to any causes?

Competing risks for time to medication initiation with death as a compet‑
ing event (Fig. 1B)

What is the probability of ever been prescribed medication up to time t  
after the start of the follow‑up, accounting for the fact that individuals may 
die?

3‑state Illness‑Death model adding a transition from medication initiation 
to death (Fig. 1C)

What is the probability of ever been prescribed medication and still be alive 
up to time t  after the start of the follow‑up?

4‑state unidirectional multi‑state model with a medication discontinua‑
tion state (Fig. 1D)

What is the probability of being in the 1st medication cycle since start of 
follow up/ since entering the 1st medication cycle?

4‑state Bidirectional multi‑state structure with medication discontinuation 
state (Fig. 1E)

What is the probability of being in a medication cycle (or in a medication 
discontinuation period) since the start of follow‑up or given entering one?

Recurrent events multi‑state structure (with or w/o restrictions)
(Fig. 1F and G)

• What is the total probability of being in a medication cycle since the start 
of follow‑up or given entering the  1st,  2nd,  3rd one?
• What is probability of being in the current medication cycle given 
entering the  1st,  2nd,  3rd medication cycle or the  1st,  2nd,  3rd discontinuation 
period?
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cycles. The 3-state Illness-Death multi-state model, as 
it is called, is not able to discern this issue and thus is 
not appropriate for studying the probability of being in 
a medication cycle or the length of stay in that cycle. A 
multi-state model that includes a discontinuation period 
state would allow for the study of being in the first medi-
cation cycle.

Four‑state multi‑state model with a discontinuation period 
state
By adding a discontinuation period-state (Fig.  1D), the 
individual is now allowed to either go to the absorbing 
state of death or to a medication discontinuation period 
after entering the  1st medication cycle state. This addition 
allows us to shift our focus from the probability of ever 
been prescribed medication to “the probability of being 
in the  1st medication cycle” at time t since the start of 
follow-up or time since entering the  1st medication cycle. 
Under this structure, the estimated probability for the  1st 
medication discontinuation period can be interpreted as 
“the probability of ever having exited the  1st medication 
cycle and still be alive up to time t ”, consisting of people 
who either stayed in a medication discontinuation state 
for the rest of their follow-up or experienced additional 
medication cycles later on during follow-up. Thus, if 
probability of being in the  1st medication discontinuation 
period and subsequent medication cycles and medication 
discontinuation periods is of interest, we need to allow 
an individual to be able to leave the  1st discontinuation 
period and enter in a new medication cycle.

Four‑state bidirectional model
A bidirectional multi-state structure can be built by 
allowing the individual to re-enter a medication cycle 
after entering a medication discontinuation period 
(Fig.  1E). Therefore, a back-transition is inserted from 
the discontinuation period state to the medication cycle 
state, allowing the individual to move back and forth 
multiple times -without a limit- among these states. The 
existence of the fourth state (discontinuation period) and 
the double transition arrow between this state and the 
medication cycle state serves a certain purpose. Allow-
ing for a medication-free state that is different from the 
initial “Start of follow up” state and putting a back-tran-
sition towards a medication cycle allows the transition 
rate for a next medication cycle to differ from the tran-
sition rate from the starting state to the first medication 
cycle. Despite its simple application and interpretation, 
this structure imposes the same transition rates between 
a medication cycle and a discontinuation period (and 
vice-versa) irrespectively of the number of previous med-
ication cycles (or discontinuation periods). While a time-
varying covariate of previous medication cycles could 

be added in the transition rate models, the estimation of 
measures other than the transition rates and ratios is not 
possible under the Markov or the semi-Markov assump-
tion. This means that an individual has the same transi-
tion rate from a medication cycle to a discontinuation 
period (and vice-versa) no matter how many previous 
cycles they may have experienced, an assumption that is 
not very realistic in our setting. A recurrent multi-state 
structure allows for the separate modelling of a transi-
tion rate between each subsequent couple of medication 
cycle and discontinuation period (and vice-versa) thus 
accounting for past transitions via its own structure and 
is described below.

Recurrent multi‑state model
A flexible approach when dealing with recurring states 
is to fit a recurrent multi-state structure that consists of 
repeated, ordered events/couples of medication cycles- 
discontinuation periods (Fig.  1F). This structure can be 
more flexible than the bidirectional model structure, 
as it allows the separate modelling of each transition 
rate without imposing same transition rates every time 
an individual moves from a medication cycle to a dis-
continuation period (and vice-versa). Due to recurrent 
states gradually becoming sparsely populated, there is 
a need for setting a threshold to the number of medica-
tion cycles and discontinuation periods to be modelled. 
In the case of this study, a maximum of six medication 
cycles are modelled, with subsequent medication cycles 
and discontinuation periods being ignored. Individuals 
that enter the  6th medication cycle are characterized as 
chronic antidepressant medication users and stay in this 
state until the end of their follow-up or move towards the 
death state.

By applying the current multi-state structure, we can 
estimate probabilities with useful clinical interpretation 
such as “What is the total probability of being in a medi-
cation period or a discontinuation period since the start 
of follow-up (total probability on a population level) or 
given entering the 1st , 2nd , . . . ,Kth medication cycle or 
discontinuation period?”, taking into account past medi-
cation cycles via the multi-state structure itself, a trait that 
the aforementioned bidirectional model lacked. However, 
using recurrent multi-state structures comes with its own 
drawbacks. A small to moderate increase in the number 
of states can greatly increase the structural complexity. 
Apart from the starting state (start of follow-up) and the 
absorbing state (death), there will be K  medication cycle 
states ( 1st , 2nd , 3rd , . . . ,Kth ) and K − 1 post-medication 
period states ( 1st , 2nd , 3rd , . . . ,Kth

− 1 ), leading to tran-
sitions having sparse data as state order progresses. This 
data sparsity can make transition-specific estimations 
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troublesome, leading to convergence issues and low pre-
cision. Keeping the modelling of the covariate effects and 
the baseline transition rates simple or applying restric-
tions to the transition rates via shared parameter estima-
tion for certain transitions, can address, at least partially, 
these issues.

Emulated bidirectional structure‑ recurrent model 
with restrictions
Under reasonable assumptions, sharing information 
across transitions of a multi-state structure in order to 
address the data sparsity issue described above is pos-
sible by imposing constraints in the parameter estima-
tion. For the recurrent multi-state structure described 
(Fig. 1F), it can be assumed that transition rates towards 
death are not influenced by the number of past medica-
tion cycle states. This translates in transition rates from 
all medication cycle states to death being restricted to 
be the same and transition rates from all discontinua-
tion period states to death to also be the same. Addition-
ally, it can be assumed that each new transition between 
medication cycle and discontinuation period (and vice-
versa) has a common underlying relationship with the 
time to experiencing the transition event (same shape) 
but on different scale (proportional). This translates to 
imposing commonly shaped, proportional transition 
rates from medication cycles to discontinuation peri-
ods and vice-versa. This group of assumptions/ restric-
tions conceptually simplify the recurrent multi-state 
structure back to a bidirectional-like structure which we 
refer to as “Emulated bidirectional” (Fig.  1G). Contrary 
to the previous structure (Fig. 1F) where the parameters 
of each transition were estimated separately, the joint 
parameter estimation among multiple transitions of the 
current structure (Fig.  1G) is computationally challeng-
ing and leads to excessive memory usage. Due to limita-
tions in the maximum memory allocation (150 GB), this 
structure was fit to a sub-sample of the study, including 
all the cases and randomly choosing 2 BC- free individu-
als per BC case (1:2), while time-dependent effects of the 
case variable were allowed only for the transition from 
the starting state (start of follow-up) to the  1st medica-
tion cycle and death. The advantages of emulating a bidi-
rectional structure by applying restrictions to the initial 
recurrent structure is that we can tackle the issue of 
sparse data in high order states, gain precision in the esti-
mations and conceptually simplify the multi-state struc-
ture back to a bidirectional-like structure, while allowing 
for different transition rates between each couple of 
medication cycle and discontinuation period states (and 
vice-versa). However, the “Emulated bidirectional” struc-
ture carries some of the drawbacks of the unrestricted 
recurrent multi-state model, making the assumption that 

individuals that enter the  6th medication cycle are charac-
terized as chronic antidepressant medication users, while 
the initial bidirectional structure is free of this limitation. 
Additionally, due to its excessive memory usage, there are 
limitations as to how flexibly we can model the baseline 
transition rates and the covariate effects.

Modelling the transition rates
Each transition-specific hazard (transition intensity rate) 
is estimated as a function of time via the use of FPSM 
[20] (Model expressions provided in Additional file  1) 
via the merlin package in Stata [21]. In all transitions, 
the baseline transition intensity rate is modelled with 
restricted cubic splines with four degrees of freedom 
( df = 4 ). The timescale used for all transitions will be 
time since entering each state, known as semi-Markov or 
clock reset approach. As we aim to explain the main con-
cepts of different multi-state structures, we limit to sim-
ple modelling of the age at diagnosis/start of follow-up, 
with the main covariate of interest being the diagnosis 
of BC. For all transitions, the effect of age at diagnosis/ 
start of follow-up is included with main effects as a cat-
egorical variable with four groups, namely " < 50  years 
old", "50–59  years old", "60–69  years old", "70  years old 
plus". The main covariate of interest is the group that 
each individual belongs according to diagnosis (“BC free 
individual”, “BC diagnosis”) and is included in the models 
as a categorical covariate (case status). Time-dependent 
effects of the case status variable (non-proportional haz-
ards) are allowed in the model via the use of restricted 
cubic splines with 3 df  for all transitions towards a medi-
cation discontinuation state and the transition from start 
of follow-up towards death for all structures except the 
“Emulated Bidirectional” one due to memory usage limi-
tations. Interaction terms between the age groups and 
the case status covariate were also included in the mod-
els. All predictions will refer to the age group 60–69 years 
of age at baseline. To derive the measures of interest, 
individuals of a specific covariate pattern are simulated 
based on the transition-specific FPSMs and the matrix 
of possible transitions via Stata predictms command, a 
simulation-based approach of time to events. For more 
details, see the study from Crowther and Lambert [22].

Timescale approaches
For multi-state structures, similarly with simpler survival 
settings, the choice of timescale for the transition rates 
is an additional factor that should be taken into consid-
eration [23]. Under a clock forward approach (Markov 
assumption) all the transitions of a multi-state structure 
have a common timescale t which refers to the time since 
diagnosis/start of follow-up when modelling the tran-
sition intensity rates among the different states and the 
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probability for a future state depends only on the current 
state. Under the clock reset approach (also semi-Markov 
or Markov renewal model), the transition intensity rate 
between two states is a function of the time t since enter-
ing the current state [5, 9]. A mix of these two approaches 
can also be used (clock mix), if, based on subject matter 
knowledge, certain transition rates are more likely to be 
functions of time since the start of the follow-up while it 
is more natural for others to be functions of time since 
entering the current state. In the present setting, transi-
tions rates towards death could be modeled with time t 
since the start of follow-up as the timescale (clock for-
ward) while transitions to non-death states (medication 
cycles and discontinuation periods) could be modeled 
with time t since entering the current state as timescale 
(clock reset approach) arguing that it is more natural 
for these rates to be functions of time since entering the 
current state (e.g. time since entering current medica-
tion cycle). While the clock mix approach may be a more 
natural choice for modelling the transitions, we chose to 
use the clock reset approach for the main analyses. Pre-
dictions derived from the clock forward and clock mix 
approaches that are conditional on a state other than the 
starting state of the process, should be also conditional 
on a left truncation time s greater than 0, as in the cur-
rent setting, all individuals start from the same initial 
state (Start of follow-up) at time 0. On the other hand, 
under the clock reset approach with time of left trun-
cation s equal to time r of entering the state we want to 
condition on, the predictions are not dependent on r 
itself. This means that under the clock reset approach the 
predicted probabilities can also be reported on time since 
entering each conditional state, for example, time since 
entering the kth medication cycle, which is more relevant 
to the research questions posed. Predictions based on 
the clock forward and the clock mixed approaches were 
also derived via a sensitivity analysis and can be found in 
Additional file 1 (Figure A4).

Study sample, inclusion criteria, definition of medication 
cycles
Breast Cancer Data Base Sweden 2.0 (BCBaSe 2.0) was 
created to provide a register-based research resource 
with data on an unselected cohort of women (and men) 
with BC in Sweden [18]. The BCBaSe 2.0 database 
includes information on individuals diagnosed with BC 
between 1992 and 2012 (n = 68,450) identified in three 
Swedish Regional Clinical Breast Cancer Registers [24] 
and age and sex-matched individuals as a population 
comparison group (ratio 1:5) without a history of breast 
cancer (n = 343200) at the end of the year of diagnosis 
of the index case, with the individuals of the comparison 
group living in the same county as the case. The mean age 

at inclusion was 61.8 years (range 19–102) and the cohort 
has been followed up until 31 December 2013. Loss to 
follow-up due to migration is taken account by censor-
ing the individual at the date of emigration. By means of 
record linkages to national demographic and health care 
population-based registers, information on dispensed 
prescribed drugs is available. The Prescribed Drug Reg-
ister was initiated on July  1st, 2005, with unique patient 
identifiers for all dispensed prescriptions in Sweden. The 
register includes, among other information, dispensed 
item (substance, brand name, formulation and package), 
date of prescription and dispensing, dispensed amount, 
dosage, defined daily doses (DDD).

The initial sample of this study consists of 113296 
women from the BCBaSe 2.0 database that have been 
diagnosed with invasive BC (n = 18904) and their 
healthy-matched population comparators (n = 94983), 
with diagnosis date (or start of follow-up for the healthy-
matched individuals) between July 1, 2006 and Decem-
ber  31st, 2012 with no prescribed antidepressants for at 
least 12 months prior the start of follow-up. Out of the 
sample, 591 women who were initially BC-free became 
BC cases during follow-up. These women are censored at 
their diagnosis date and only their initial cohort period 
are kept, while the rest of their follow-up period as BC 
cases plus the corresponding BC-free comparators are 
dropped, yielding a final sample size of 110769, with 
18313 women with invasive BC diagnosis and 92454 
cancer-free women. The information on dispensed anti-
depressants is derived from the Prescribed Drug Register, 
via the Anatomical Therapeutic Chemical (ATC) classifi-
cation system, using the code N06A. All individuals were 
followed from their diagnosis date/ start of follow-up 
until death, emigration, or 31/12/2013, whichever came 
first. The study is approved by the Regional Ethical Com-
mittee of Karolinska Institutet, Stockholm, Sweden (pro-
tocol number: 2013/1272–31/4).

The main measures presented in this study are the 
probability of being in an antidepressant medication 
cycle or a medication discontinuation period. Therefore, 
it is important to define how the follow-up of an individ-
ual can be divided into such period intervals. According 
to previous studies [25–27] using prescription data, an 
individual is considered to be on medication use during 
the time interval between two consecutive prescription 
dates, provided that these dates are less than 3  months 
apart. We can classify an individual as entering in a new 
antidepressant medication cycle if the new prescription 
date is more than 3 months away from any previous pre-
scription date. Consecutive prescription dates that are 
less than 3 months apart are considered to be part of the 
same medication cycle. Each medication cycle ends at a 
date that is equal to the last prescription date that is less 
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than 3  months after the previous prescription date plus 
the duration of the medication given on that date as esti-
mated by the defined daily dose (DDD) and the number 
of packs of the drug prescribed. This duration is set to a 
minimum of 3  months and to a maximum equal to the 
distance of the last prescription date of the current medi-
cation period and the first prescription date of the next 
medication cycle minus 1 day, in order to keep the defini-
tion of the medication cycles consistent.

A non-medication period is derived as complementary 
to the medication cycles. If an individual is not in a medi-
cation cycle, then they are by default in a non-medication 
period. The non-medication period before the first pre-
scription date (antidepressants initiation) and after the 
start of follow-up can be called the pre-initiation period 
(Start of follow-up state). All other non-medication peri-
ods are essentially defined as medication discontinuation 
periods. The 3-month distance used for the definition of 
the medication periods is based on the so-called 90-day 
rule in Sweden [25]. However, there is no absolute thresh-
old based on which medication periods can be defined. 
In Sect. 3.2 we perform a sensitivity analysis, presenting 
results of the multi-state structures based on a 4-month 

and a 5-month distance between prescription dates when 
defining the medication cycles.

Results
Table  2 shows the number and percentage of individu-
als with or without prescribed antidepressant medica-
tion in regards with the date of diagnosis/ starting date of 
follow-up (Table 2A). The descriptives of Table 2B and C 
greatly depend on the definition of the medication cycle, 
for example, the median duration of the first medica-
tion cycle is 3  months, equal to the minimum stay in a 
medication cycle under the 90-day rule used to define the 
cycles.

Αpplication of the multi‑state models
Single event survival analysis
Figure 2a shows the estimated survival probabilities (not 
having medication up until time t ) for the group of the 
matched population comparison and the BC cases while 
Fig. 2c shows the probability of medication initiation up 
to time t which is 1− S(t) . The cases have a higher proba-
bility for antidepressant medication initiation, with a 20% 

Table 2 Descriptive statistics for prescribed antidepressant medication. Prescribed antidepressant medication use for BC cases, 
BC‑ free population comparators and both, in relation to the start of follow‑up, for individuals with start of follow‑up on or after 
01/07/2006 (A), Distribution of number of antidepressant medication cycles across individuals among those with at least one 
prescription (B), Median duration of the first five medication cycles and discontinuation periods (C). Prescribed Drug Register data 
available from 01/07/2007 onwards

A BC‑ free individuals BC cases Both

N (%) N (%) N (%)

Women with no prescriptions within a year prior to or after the start 
of follow‑up)

76,413 (82.7) 14,051(76.7) 90,464(81.7)

Women with prescriptions more than a year prior the start of 
follow‑up only

5199(5.6) 902(4.9) 6101(5.5)

Women with prescriptions only after the start of the follow‑up 8338(9) 2680(14.6) 11,018(9.9)

Women with prescriptions more than 12 months prior and after the 
start of follow up

2504(2.7) 680(3.7) 3184(2.9)

92,454 (100) 18,313 (100) 110,767 (100)

B Number of antidepressant medication cycles after the start of follow up among those with at 
least one prescription (N = 14,202)

Number of individuals (N, %) 1 2 3 4 5 6

6 645
46.79%

2 803
19.74%

1653
11.64%

1070
7.53%

752
5.30%

496
3.50%

7 8 9 10 11  > 11

310
2.18%

220
1.55%

116
0.82%

79
0.56%

36
0.25%

23
0.15%

C

1st 2nd 3rd 4th 5th

Median medication cycles duration (years) 0.25
(3 months)

0.27 0.33 0.34 0.4

Median discontinuation period duration(years) 0.23 0.15 0.11 0.09 0.8
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probability for at least one prescription of antidepres-
sants compared to 10% for the BC-free women within 
6 years since start of follow-up. These are the probabili-
ties of ever been prescribed medication in the hypotheti-
cal situation that the individual cannot die due to any 
causes and thus tend to overestimate the true probabili-
ties of ever been prescribed medication. Figure 2b show 
that BC cases have almost 3 times higher hazard rate 
for first medication use at 1 year since start of follow-up 
compared to the BC-free individuals.

Competing risks
In Fig. 3a, the probability of ever been prescribed medi-
cation (medication initiation) is derived for the BC cases 
and the BC-free individuals, having accounted for the fact 
that the rate of death is much higher for the women diag-
nosed with BC (red versus blue dash-dot lines of Fig. 3c). 
It can be observed that in this setting, the estimates from 

the single-event survival analysis are very close to the 
ones derived by the competing risks approach (Fig.  2c 
versus Fig. 3a), as death due to BC does not seem to be 
a strong competing event for time until antidepressant 
medication initiation.

Three‑state illness‑death multi‑state model
The derived probability in Fig.  3b can be interpreted as 
the probability of ever been prescribed medication and 
still be alive up to time t after the start of the follow-up. 
For the population comparison group, the transition rate 
from medication initiation towards death is low (Fig. 3d) 
so the probability estimates of Fig.  3b are very close to 
those of Fig. 3a (Competing risks structure). However, for 
women diagnosed with BC, the transition rate towards 
death both before and after the first medication use is 
higher (Fig.  3d). For this reason, the estimated prob-
abilities of experiencing the first medication use and still 

Fig. 2 Single‑event survival analysis estimates over follow‑up time. Medication‑free survival probability (a), Hazard ratio for antidepressant 
medication initiation (b), probability of antidepressant medication initiation (c) for BC‑free individuals and cases
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being alive for BC cases are lower than the probability of 
experiencing the first medication use derived from the 
competing risks approach.

Four‑state multi‑state model with a discontinuation period 
state
Figure 4a depicts the probability of being in the  1st medi-
cation cycle as a function of time t since the start of 
follow-up while Fig.  4b shows the probability of being 
in the  1st medication cycle and the probability of head-
ing towards the  1st medication discontinuation period 
and still be alive, as a function of time since entering the 
cycle. The overall probability of being in the  1st medica-
tion cycle (Fig. 4a) is higher for the cases (red) compared 
with the BC-free individuals (blue line). The probability 

of staying in the  1st medication cycles state is higher for 
the cases for the first 1.5 years since entering the medica-
tion cycle.

Four‑state bidirectional model
Figure 5 depicts the probability of being in a medication 
cycle since the start of the follow-up (5a), and the prob-
ability of being in a medication cycle or discontinuation 
period, given that an individual starts in a medication 
cycle (Fig. 5b). In Fig. 5a, the BC cases present a higher 
overall probability of being in a medication cycle com-
pared to the BC-free individuals over the follow-up time. 
In Fig. 5b it can be observed that BC cases have higher 
probabilities of being in a medication cycle and lower 
probabilities of being in a medication discontinuation 

Fig. 3 Competing risks approach and 3‑state Illness‑Death model derived probabilities and transition intensity rates. The hazard rates towards 
death for the BC‑free individuals (with or without medication) are approximately 0.001
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period compared to BC-free individuals as a function of 
time since entering a medication cycle.

Recurrent multi‑state model
Figure 6a depicts the total probability of being in a med-
ication cycle/the prevalence of medication use in the 
population since the start of follow-up on a population 
level. While this probability in absolute terms is low, 
cases appear to have more than three times the prob-
ability of being in a medication cycle since their diag-
nosis compared with the comparison group for the first 
2  years of their follow-up. Figure  6b depicts the prob-
abilities for BC cases and BC free individuals of staying 
in their 1st , 2nd and 3rd medication cycle after entering 
each one of them. The probability of staying in a medi-
cation cycle increases with entering each new medica-
tion cycle for both BC cases and BC free individuals, 
with cases having higher probabilities compared to BC 
free individuals in all the three cycles presented here. 
Figure 6c presents the total probability of a participant 
being in a medication cycle (both the current one and all 
the subsequent ones) as a function of time since enter-
ing the 1st , 2nd and 3rd medication cycle (Fig.  6c). The 

total probability of being in a medication period seems 
to increase as the number of past medication cycles 
increases, as a function of time since entering a medi-
cation cycle. An interesting finding is that, given that a 
participant experiences her  3rd medication cycle, a BC-
free individual has higher total probability of being in a 
medication cycle compared to a case.

Emulated bidirectional structure‑ recurrent model 
with restrictions
The estimated probabilities of the “Emulated bidirec-
tional” structure (Fig. 1G) depicted in Fig. 7a, b, and c can 
be interpreted in the same way as those of the recurrent 
multi-state structure without the restrictions (Fig.  1F), 
with the estimations of Fig. 6 being similar in shape and 
scale to those of Fig. 6. It can be observed that, contrary 
to Fig.  6, the estimated probabilities of Fig.  7 are very 
similar for BC cases and BC- free individuals (with the 
exception of Fig.  7a). This is likely because we did not 
allow for time-dependent effects for the case variable 
among the transitions from medication cycles to discon-
tinuation periods (and vice-versa), resulting in time-con-
stant transition intensity rates ratios of BC cases versus 

Fig. 4 Four‑state unidirectional multi‑state model with post‑medication period state. Probability of being in first medication cycle since the start 
of the follow‑up (a), Probability of staying (solid) in the first medication cycle and entering the 1st discontinuation period (dash) for time t since 
entering the cycle (b)
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BC-free individuals that are close to 1 for those transi-
tions (Figure A2b), leading to similar probability esti-
mates of being in the same medication cycle among the 
two groups.

Sensitivity analysis‑ different definitions of medication 
cycle
In Sect.  2.4, we classified an individual as being in an 
antidepressant medication cycle from the first prescrip-
tion date of the cycle (more than 3  months after any 
previous prescription date) up until the last prescrip-
tion date of the cycle, plus an extra time period, the 
maximum between 3  months and the duration of the 
last prescribed medication treatment of the cycle. It is 
of interest to assess whether the estimates derived from 
the multi-state structures are robust to different defini-
tions of the length of a medication cycle. Figure  8 pre-
sents probability estimates for the BC cases- probability 
on a population level of being in a medication cycle and 
the probability of being in a medication cycle after enter-
ing the first medication cycle – under the unidirectional 
(Fig. 1D) and bidirectional 4-state structure (Fig. 1E), the 

recurrent multi-state structure (Fig.  1F) and the “Emu-
lated Bidirectional” structure (Fig.  1G). The thresholds 
of 4 and 5  months are used for the alternative defini-
tions of being in a medication cycle or non-medication 
period. It can be observed that the probability estimates 
derived from each multi-state structure are similar 
under the different definitions of the medication cycles, 
with the exception of the total probability of being in the 
 1st medication cycle given by the 4-state unidirectional 
structure (Fig.  1D) whose estimated probability (being 
in  1st medication cycle) directly depends on the medica-
tion cycle definition. As aforementioned in Sect. 5.4 and 
Table  2, each structure has a different interpretation of 
its estimated probabilities, thus not being directly com-
parable, with the exception of the recurrent multi-state 
model (Fig.  1F) and the Emulated bidirectional model 
(Fig.  1G) that have the same underlying structure. Fig-
ure A4 of Additional file 1 compares the estimated total 
probability on a population level of being in a medica-
tion cycle across the different multi-state approaches, 
the different definitions of the medication cycles for the 
different clock approaches.

Fig. 5 Bidirectional multi‑state structure approach. Probability of being in a medication cycle at time t since the start of the follow‑up (a), 
Probability of being in a medication cycle (solid) or being in a medication discontinuation period (dash) as a function of time t since entering a 
medication cycle (b)
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Discussion
We addressed a variety of research questions when deal-
ing with registry-based repeated prescriptions of anti-
depressants for women with BC diagnosis and BC- free 
population comparators, using multi-state models, 
building up from simple towards complex structures, 
motivating each step of the process. Each step from one 
multi-state structure to the next one allowed the use of 
more information available in the prescription data, thus 
addressing more complex research questions, or added 
more flexibility in the structure or was motivated in order 
to address issues/limitations of the preceding structure. 
While each multi-state structure, no matter how simple, 

has its own utility and answers specific research ques-
tions, we aimed in utilizing the full richness of our data 
with the more complex structures while also considering 
different modelling choices.

If, for example, the research question of interest was 
limited to “What is the probability of ever being pre-
scribed a medication and still be alive up to time t after 
the start of the follow-up”, then, a three-state illness-
death model structure would suffice. However, since we 
wanted to utilize all the information available in the pre-
scribed drug register regarding antidepressants, more 
complex research questions such as the probability of 
being in a medication cycle, including the recurring 

Fig. 6 Recurrent events multi‑state structure. Total probability on a population level of being in a medication cycle since the start of follow‑up (a), 
Probability of staying in current medication cycle since entering it (b), Total probability of being in a medication cycle since entering the  1st,  2nd,  3rd 
medication cycle (c)
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cycles or studying the susceptibility for antidepressant 
medication use given past medication cycles can be 
addressed. Synthetic example datasets with the multi-
state data structures used in this study are provided in 
the Supplementary material. The robustness of the esti-
mated probabilities derived from the different multi-state 
structures for different definitions of being in an antide-
pressant medication cycle was assessed via a sensitivity 
analysis, showing that the complex multi-state structures 
(Recurrent multi-state, Bidirectional, “Emulated bidirec-
tional”) are relatively insensitive to alternative medication 
cycle definitions.

As mentioned in the description of the multi-state 
structures used in this study (Sect.  2), even the more 
complex models present limitations. The bidirectional 
model cannot take into account information from past 
medication cycles to estimate probabilities of being or 
length of stay in a new medication cycle. Even though we 
bypass this limitation by applying a recurrent multi-state 
structure, there is still the issue of the rise in the com-
plexity of the structure, leading to an increased number 
of states that progressively become sparsely populated, 
which can cause precision and model convergence issues. 

In addition, there is the limitation of pooling individuals 
in a final, recurrence state  (6th medication cycle), from 
which they can only proceed towards the death state, 
assuming they become, chronic antidepressant users for 
the rest of their follow-up. Even though the restricted 
recurrent multi-state model aims to tackle the precision 
and convergence issues, it still suffers from the chronic 
antidepressant users assumption as well as the assump-
tions made regarding the relations between the transition 
rates which may not necessarily be realistic.

Even though the use of different multi-state struc-
tures have been used before on data for demonstrating 
purposes such as in [2, 9], to our knowledge, this is the 
first work that addresses probability-related research 
questions regarding medication use via a series of multi-
state models of increasing complexity while also con-
sidering multiple modelling choices. Lauseker et  al. [7] 
and Le-Rademacher [28] discuss about different multi-
state structures on clinical data about Chronic Myeloid 
Leukemia (CML) and Acute Myeloid Leukemia (AML) 
respectively, but they apply a single multi-state structure 
comparing modelling choices. Meira-Machado et al. [29] 
evaluate the Markov property of a 3-state Illness-Death 

Fig. 7 Recurrent events multi‑state structure with restrictions (“Emulated bidirectional” structure). Total probability on a population level of being in 
a medication cycle since the start of follow‑up (a), Probability of staying in current medication cycle since entering it (b), Total probability of being in 
a medication cycle since entering the  1st,  2nd,  3rd medication cycle (c)
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model, deriving probability estimates under a semi-
Markov and non-Markov assumption and comparing the 
structure with a single-event survival analysis with the 
intermediate state as a time-varying covariate, but they 
do not explore further multi-state structures.

Another issue to consider is choosing the timescale to 
be used for the transition models of the chosen multi-
state structure. In the main analysis we used time since 
entering current state as the timescale for all transition 
models (“clock reset”). However, we also implemented 
the “clock forward” and the “clock mix” [30] approaches 
as part of a sensitivity analysis in order to explore how 
robust are the estimations of the complex multi-state 

structures for different timescale choices when model-
ling the transition rates (Figure A4 of Additional file 1). 
The “clock reset” and “clock mix” approach give almost 
identical estimates, while the “clock forward” approach 
gives estimates close to the other two approaches. A 
limitation of this study regarding timescales is that we 
assumed that each transition rate is a function of either 
time since the start of follow-up or time since entering 
the current state. However, it can also be assumed that 
each transition rate is a function of multiple timescales 
simultaneously [31]. This modelling assumption can be 
implemented on a multi-state model framework via the 
merlin package in Stata [21] or simLexis library in Epi R 

Fig. 8 Estimated total probabilities of being in a medication cycle across structures for different medication cycle definitions. Total probability of 
being in a medication cycle on a population level (left) or given entering the 1st medication cycle (right) for individuals with BC, 50‑59 years old at 
diagnosis, for different definitions of the medication cycles (3 months versus 4 months versus 5 months) for the multistate structures D, E, F and G
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package [32] and could be compared with the modelling 
approaches used in the current study in future research.

Other measures derived under a MSM framework may 
be of primary interest such as the total length of stay in 
medication cycles over the follow-up time or transition 
rates and rate ratios for experiencing the next medication 
cycle among individuals with different profiles (covari-
ate patterns). Due to space limitations, estimation results 
regarding these measures and their interpretation under 
each multi-state structure are presented in Additional 
file  1. A pseudo-dataset is supplied in Additional file  2 
which can be used by the code in Additional files 3 and 
4 to create the multi-state structures and run the multi-
state models discussed in this study.

Finally, since recurrent multi-state models structures 
are used in this study, it is important to note that recur-
rent events analyses can also be approached either with 
recurrent multi-state models with death as an absorbing 
state or by the joint modelling of recurrent events and the 
terminal event of death [33–35]. However, since the focus 
of this study is on exploring different research questions 
via multi-state models when dealing with registry- based 
prescription data, expanding on the use of joint frailty 
models is out of our scope.

Conclusions
In this study we explored how different research ques-
tions can be addressed, ranging from simple to com-
posite ones, surpassing the single-event and competing 
risks settings, and defining complex bidirectional and 
recurrent multi-state structures, highlighting the impor-
tance of choosing a structure that properly addresses the 
clinical research question of interest in each case. When 
information on an outcome of interest that repeatedly 
changes over time is available, such as the medication 
status based on prescribed medication, in the presence of 
other competing events such as death, the use of novel 
multi-state models of adequate complexity can success-
fully address composite, more realistic research ques-
tions. In addition, during the application of such models, 
there is a number of modelling choices such as the choice 
of timescale for each transition and the borrowing of 
information across transitions that should be explored 
and evaluated.
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