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Abstract 

Background In many clinical trials the study interest lies in the comparison of a treatment to a control group regard‑
ing a time to event endpoint like time to myocardial infarction, time to relapse, or time to a specific cause of death. 
Thereby, an event can occur before the primary event of interest that alters the risk for or prohibits observing the lat‑
ter, i.e. a competing event. Furthermore, multi‑center studies are often conducted. Hence, a cluster structure might be 
observed. However, commonly only the aspect of competing events or the aspect of the cluster structure is modelled 
within primary analysis, although both are given within the study design. Methods to adequately analyze data in such 
a design were recently described but were not systematically compared yet.

Methods Within this work we provide a systematic comparison of four approaches for the analysis of competing 
events where a cluster structure is present based on a real life data set and a simulation study. The considered meth‑
ods are the commonly applied cause‑specific Cox proportional hazards model with a frailty, the Fine and Gray model 
for considering competing risks, and extensions of the latter model by Katsahian et al. and Zhou et al.

Results Based on our simulation results, the model by Katsahian et al. showed the best performance in bias, square 
root of mean squared error, and power in nearly all scenarios. In contrast to the other three models this approach 
allows both unbiased effect estimation and prognosis.

Conclusion The provided comparison and simulations help to guide applied researchers to choose an adequate 
method for the analysis of competing events where a cluster structure is present. Based on our simulation results the 
approach by Katsahian et al. can be recommended.

Keywords Competing events, Time‑to‑event, Cluster

Background
The aim of many clinical trials is the comparison of two 
treatment groups regarding the occurrence of one spe-
cific event among many competing events. For exam-
ple, a specific cause of death is of primary interest but 
another absorbing event (like another cause of death) 

occurs before the primary event of interest and hence 
the latter cannot be observed. Furthermore, clinical trials 
are often conducted at multiple treatment centers, which 
leads to a cluster structure. Commonly, the Cox propor-
tional hazards model [1] is applied to investigate the time 
until the first event takes place, i.e. cause-specific analysis 
is applied. In this model, competing events are censored, 
while the treatment effect on the probability of occur-
rence of the event of interest is estimated [2]. Therefore, 
there is only one possible event during the estimation 
process. However, this can lead to an invalid analysis of 
the cumulative probabilities. Another frequently used 
approach is the Fine and Gray model [3] where individu-
als experiencing a competing event are not censored but 
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remain in the risk set for the primary event of interest. 
The treatment effect is now estimated using a subdistri-
bution hazard. Existing cluster structures are still mostly 
ignored in this evaluation of clinical trials with compet-
ing risks. This is considered problematic because it is 
assumed that existing cluster structures lead to a depend-
ency of failure times within clusters [4, 5]. Ignoring these 
correlations might result in underestimation of variance 
of the group-specific regression parameters. Therefore, 
to address this problem, new approaches which analyze 
event times in competing risks settings that also take 
cluster structures into account, are needed. Usually com-
peting risks are defined by the following properties:

• There are multiple events possible, but only one can 
occur at a time.

• In clinical trials, one event is always of primary inter-
est.

• In general, researchers are interested in the first time 
the event occurs.

The aim of this work is therefore to compare the per-
formance of different models used for analyzing survival 
data in settings with competing risks regarding their 
accuracy in the presence of cluster structures. In this 
paper, we compare two newer approaches by Katsahian 
et  al. [4, 5] and Zhou et  al. [6] which explicitly address 
this topic and contrast them to the commonly used Fine 
and Gray model [3] which addresses competing risks but 
not the cluster structure as well as the cause-specific Cox 
proportional hazards based model with a frailty term [7–
9] which incorporates the cluster structure but ignores 
the presence of competing risks. However, in contrast 
to Katsahian et  al. and Zhou et  al. we are mainly inter-
ested in the effect estimation and not prognosis, i.e. we 
consider bias, square root of mean squared error, and 
empirical power for the estimated treatment effect and 
do not consider the performance of the models regarding 
prognosis. This is due to our focus on clinical trials where 
the main aim is to estimate a treatment effect. Hence, it 
is evaluated whether the models by Katsahian et al. and 
Zhou et al. can also be used for unbiased effect estima-
tion and not only for prognosis. If both, effect estimation 
and prognosis, could be possible with one model this 
would be optimal.

The approach by Katsahian et  al. uses an alternative 
estimation method, which has already been used in the 
context of standard survival analysis and has now been 
extended for competing risks settings. In addition, it uses 
a specific weighting technique by which individuals who 
have already experienced an event from a competing 
cause are weighted in the model. Individuals are consid-
ered to be at risk until they experience either the event of 

interest or censoring. The main interest of the approach 
by Zhou et al. is to assess marginal effects of covariates 
on the cumulative incidence function for the occurrence 
of an event of interest conditional on the covariates. The 
strength of this model is, that it takes into account both 
dependencies of failure times and censoring times.

The performance of the models is examined and com-
pared using a Monte Carlo simulation study considering 
different relevant clinical settings. As mentioned above, 
as performance measures bias, square root of mean 
squared error, and empirical power for the effect estima-
tion are considered.

Hence, we provide a neutral comparison as proposed 
by [10, 11]. Thereby, we highlight the properties of com-
monly used methods in the context of clustered compet-
ing risk data, as well as methods that have been proposed 
but are not used in clinical practice to analyze such data. 
The Cox proportional hazards model with frailty was 
chosen because it is the most frequently applied method 
in clinical trials where a time to event endpoint is of 
interest and a cluster structure is present due to different 
clinical centers involved. Although the competing risks 
structure is not considered in this method, it has been 
recommended for the primary analysis of randomized 
controlled trials [12]. The Fine and Gray model is of inter-
est, since it is commonly used for the analysis of survival 
data where competing events are present. We wanted to 
investigate to which extend this method, although theo-
retically not fully appropriate for the setting at hand, dif-
fers from the ’correct’ methods or whether it might yield 
acceptable results in practice. The two ’newer’ methods 
were chosen because they were proposed for the analy-
sis of clustered competing risk data and model a hazard 
ratio. Other methods that were described in the litera-
ture were additive models [13] or models with copulas 
[14]. The additive model does not result in a hazard 
ratio and is thus not comparable to the other methods 
[13]. Furthermore, additive models are not as common 
as multiplicative models in survival analyses. The cop-
ula approach produces an estimate which describes the 
degree of acceleration which was not our main interest 
[14].

This paper is structured as follows: We will start by 
the separate presentation of the statistical models. 
Afterwards we will present and compare the obtained 
simulation results of each model. In the end we discuss 
the methods and results and finish the article with a 
conclusion.

Methods
We consider a two-arm multi-center clinical study with 
an intervention I and a control C, where the primary 
endpoint (PE) is a time to event endpoint. Further, we 
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assume that a competing event (CE) might be observed. 
The competing event might occur before the primary 
event of interest. Moreover, adminstrative censoring is 
assumed. The individuals i = 1, ..., n are randomized in 
a 1  :  1 allocation to the two groups within each center 
( k = 1, ...,K ) , where K is the total number of centers (i.e. 
clusters). We consider a two-sided test problem, i.e. test 
for difference with

Null-hypothesis:

 and
Alternative hypothesis:

Thereby, βPE = log(HRPE) denotes the treatment effect 
for the primary endpoint of interest (HR = hazard ratio).

The following sections describe the methods evaluated 
in this work.

Cox proportional hazards model with frailty
In the Cox proportional hazards model [1] the hazard for 
an individual i = 1, ..., n within a two-group comparison 
is modelled as follows:

 where �0(t) refers to a common cause-specific baseline 
hazard, i.e. the instantaneous baseline risk for an individ-
ual to experience an event of one specific type (primary 
event of interest) at time t given no prior event. Xi is the 
treatment indicator, i.e. Xi = 1 if individual i belongs to 
the intervention group (I), and Xi = 0 for the control 
group (C). βPE is the corresponding coefficient.

This model can be extended to model heterogeneity 
in the data due to e.g. clustered data like within a multi-
center trial. This extension is given as follows [8, 9]:

This model is also called frailty model [7–9], where u 
are independent and identically distributed from some 
positive scale family with expected mean value of 0 and 
variance θ . Within this work we assume a gamma distri-
bution with u ∼ log(Ŵ( 1

θ
,
1

θ
)) . Zi is a vector of indicator 

variables, i.e. Zi = 1 if an individual i belongs to the clus-
ter of interest and otherwise Zi = 0.

In a competing risks setting this approach is used as 
cause-specific analysis where the competing event time 
point is assumed as a censored time point. Thereby, a 
cause-specific treatment effect can be given, i.e. it allows 
one to estimate the effect of the treatment on the rate of 
occurrence of the primary outcome of interest in those 

(1)H0 : βPE = 0

(2)H1 : βPE �= 0.

(3)�i(t) = �0(t)exp(βPEXi)

(4)�i(t) = �0(t)exp(βPEXi + uZi).

subjects who are currently event free. Within a frailty 
model the treatment effect is conditional on the frailty.

For effect estimation the maximum likelihood approach 
can be used.

The partial log-likelihood with gamma frailty is given as 
[8, 9]:

Thereby, the risk set Ri is defined at the time of failure ti 
for the ith individual as

δi indicates the event time point ( δi = 1 ) or censoring 
time point ( δi = 0 ). uk is the independent and identically 
distributed frailty for center k.

Fine and Gray model
Fine and Gray [3] proposed a semi-parametric propor-
tional hazards model for the subdistribution of a com-
peting risk to assess the treatment effect on the marginal 
probability function. The hazard formulation for the pri-
mary event of interest is given as:

As before Xi is the treatment indicator and βPE is the 
corresponding coefficient. The baseline subdistribution 
hazard for the primary event of interest is �0,PE(t).

Within this model clustered data structure is not 
considered.

For effect estimation the partial log-likelihood can be 
used and is given as follows[3]:

Thereby, the risk set Ri defined at the time of failure for 
the ith individual is given as

with ǫ indicating the cause of failure and t the event 
times. Please note, that the risk sets, i.e. individuals 

(5)

lCox =

n

i=1

δi (βPEXi + uZi)

− log

j∈Ri

exp(βPEXj + uZj)

+
1

θ

K

k=1

(uk − exp(uk)).

(6){j : (tj ≥ ti)}.

(7)�i,PE(t) = �0,PE(t)exp(βPEXi).

(8)

lFG =

n
�

i=1

I(ǫi = PE) ·

�

βPEXi

−log





�

j∈Ri

exp(βPEXj)







.

(9){j : (tj ≥ ti) ∪ (tj ≤ ti ∩ ǫj �= PE)}
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at risk for an event, for this marginal approach and the 
cause-specific approach will usually not be the same.

Approach by Katsahian et al.
In 2006 Katsahian et al. [5] introduced the random effects 
model for the subdistribution hazard as an extension of 
the classical Fine and Gray model. It offers the opportu-
nity to consider clustered event data appropriately in the 
model. In contrast to the standard model, frailties and 
random center effects are now integrated into the subdis-
tribution hazard, resulting in the following modification 
of the subdistribution hazard of the individual i:

As before Xi is the treatment indicator, βPE the corre-
sponding coefficient, and the baseline subdistribution 
hazard for the primary event of interest is �0,PE(t) . u is 
the frailty vector, where frailties are considered inde-
pendent and normally distributed with mean 0 and vari-
ance θ . Zi is a vector of indicator variables, i.e. Zi = 1 if 
individual i belongs to the cluster of interest and other-
wise Zi = 0.

For estimation the following log-likelihood function is 
used [4]:

Thereby

In this formula ti describes the minimum of the observed 
failure time and the censoring time of the individual i and 
ti ∧ t=min(ti, t) . ωi(t) describes the weighting of the indi-
vidual i at time t, according to its censoring status, where 
Ĝ(·) describes the Kaplan-Meier estimate of the survival 
function of the censoring times. This formula shows that 
individuals who did not experience an event before time t 
(t ≤ ti) are fully considered in the model ( ω1(t)=1). In case 
of t > ti two situations must be distinguished:

• If individual i experienced an event ( ǫi = PE ) or was 
censored prior to time t, the weight is zero ( ωi = 0).

(10)�i,PE(t) = �0,PE(t)exp(βPEXi + uZi).

(11)

lKat =

n
�

i=1

I(ǫi = PE)

�

(βPEXi + uZi)

− log





n
�

j=1

wj(ti)exp(βPEXj + uZj)









−
1

2

�

K · log(2πθ)+
u
′
u

θ

�

.

(12)ωi(t) = I(ti ≥ t ∪ ǫi �= PE)
Ĝ(t)

Ĝ(ti ∧ t)
.

• If individual i experienced a competing event prior to 
time t, the individual weighting is done using 
ωi(t) =

Ĝ(t)

Ĝ(ti∧t)
 . In summary, individuals who have 

experienced a competing event ( ǫi = CE ) remain at 
risk until some kind of censoring occurs Ci > t ( Ci 
denotes the censoring time of individual i).

Approach by Zhou et al.
Zhou et  al. [6] described a marginal proportional sub-
distribution hazards model which provides the ability to 
evaluate marginal effects of covariates on the cumulative 
incidence function. An existing correlation between indi-
viduals of the same cluster, due to unobserved factors, can 
be accounted for in settings of clustered competing risks. 
Within the marginal proportional subdistribution haz-
ards model individuals within one cluster are considered 
as independent observations and the correlation between 
these individuals remains completely unspecified. Using 
the independence assumption, the Fine and Gray meth-
odology can be used to estimate the cumulative incidence 
function and the effects of prognostic factors. However, 
the variance estimator allows not only the consideration 
of correlations between failure times but also the consid-
eration of existing dependencies between the individual 
censoring times within a cluster. The variance estima-
tion does not require any specification of the dependency 
between the individuals.

The main interest of the model is to assess the effect of 
the covariates on the marginal cumulative incidence func-
tion for the occurrence of event type PE conditional on the 
covariates. Thereby, the subdistribution hazard for PE is 
defined as:

The baseline subdistribution hazard for the primary 
event of interest is �0,PE(t) . Xik is the indicator for an indi-
vidual belonging to a specific treatment and cluster k with 
corresponding coefficient βPE.

For effect estimation the log-likelihood is given as:

The number of individuals in a cluster is denoted by nk . 
Risk set within a cluster k is defined via:

(13)�i,PE(t) = �0,PE(t)exp(βPEXik).

(14)

lZhou =

K
�

k=1

nk
�

i=1

I(ǫik = PE)

�

βPEXik

− log





�

j∈Rik

exp(βPEXjk)







.

(15){j : (tjk ≥ tik) ∪ (tjk ≤ tik ∩ ǫjk �= PE)}.
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Simulation study
To provide a systematic comparison of the methods 
described in the previous sections, we conducted a simu-
lation study with the statistic software R (Version 4.0.2) 
[15]. We used the packages survival [16], coxme [17], and 
crrSC [18] for the analysis.

R uses the Mersenne twister [19] for generating ran-
dom numbers.

We considered a competing risks setting with one pri-
mary event and one competing event. Within each pro-
portional cause-specific hazards are assumed for the two 
groups, i.e. a constant treatment effect over time.

To gain first insights into the performance of the four 
methods we considered scenarios with independent 
competing events.

Since we assumed a multi-center trial, different cluster 
counts are considered, as well as stratified randomization 
(i.e. stratum = center). Within each center, i.e. a cluster, 
the observations might be more correlated than between 
clusters. To model this we assumed a cluster-specific 
additional parameter. To be more precise a gamma-dis-
tributed frailty is added to the common baseline hazard 
(see formula 4).

The event times are generated as described by Bender 
et al. [20] for the two event processes, i.e. each individual 
gets an event time for the primary event of interest and 
the competing event. Of those the earlier time is assigned 
to the individual. If both times are larger than the admin-
istrative censoring time point, this censoring time point 
is used. Within the approach by Bender et al. the center-
specific frailty can be incorporated, see e.g. [21, 22].

In Table  1 the simulation scenarios are listed. In Col-
umn 2 the baseline hazard for the primary event of inter-
est is given and in Column 3 the baseline hazard for the 
competing event. Columns 4 and 5 show the assumed 
hazard ratio for the primary event and the competing 
event, respectively. Columns 6 and 7 show the assumed 
logarithmic hazard ratio for the primary event and the 
competing event, respectively. In Column 8 the assumed 
variance for the gamma distributed frailty is given ( θ ). In 
the last column the cluster count is given.

For Scenario 1 the baseline hazards for the two event 
types are the same. The hazard ratios differ but point into 
the same direction. Here, also no center-specific distribu-
tion is assumed, i.e. θ = 0 . Nevertheless, three different 
cluster counts are considered for all scenarios which are 
depicted in scenarios a-c. Within Scenario 2 a moderate 
center-specific effect is assumed. In Scenario 3 the haz-
ard ratios for the two event types change, i.e. an effect is 
only assumed for the primary event but not for the com-
peting event.

Within Scenarios 4 and 5 the difference between cent-
ers increases since a higher frailty variance is assumed. 

For Scenarios 6-13 the baseline hazards change for 
either the primary event of interest or the competing 
event but else similar hazard ratios and frailty variances 
are assumed.

For all scenarios 250 individuals in total per data set 
were generated with about 125 in each treatment group, 
i.e. allocated using a binomial distribution. A follow-up 
of two years was assumed. For each scenario 2000 data 
sets were simulated and analyzed.

For performance comparison we considered the mean 
and standard deviation of estimated logarithmized haz-
ard ratios for the primary event of interest as well as the 
corresponding absolute bias, square root of the mean 
squared error, and the empirical power.

Our primary interest is hence how the underlying 
treatment effect is estimated by the different models. 
Although it might also be of interest to evaluate the 
model performances regarding the cluster effect esti-
mation, this cannot be done adequately. The proposed 
methods do not estimate the number of clusters but the 
cluster variance. The methods differ in their estimation 
approach for the cluster variance and are also different 
from our data simulation approach and thus it cannot be 
defined what a misspecification for the cluster structure 
would mean.

Application data set
To further illustrate the four approaches we used a data 
set (center) that is publicly available within the package 
named crrSC [23] of the statistic software R. The data 
set named center consists of multi-center bone mar-
row transplantation data and includes 400 patients from 
153 transplant centers. The primary event of interest is 
“Acute or chronic Graft-versus-Host-Disease (GvHD)”. 
The competing event is “death” (without GvHD). We are 
interested in the influence of the source of stem cells, i.e. 
peripheral blood vs. bone marrow.

Results
Results of simulation study
In Tables 2 and 3 the results of the simulation study are 
displayed. Figure 1 further illustrates the results.

Note that the models by Fine and Gray, Katsahian et al., 
and Zhou et al. can only estimate the least false parame-
ter due to our simulation set-up (which is basically based 
on the Cox model with frailty). This is due to the property 
that these models originally aim to get a prognosis taking 
into acount the competing event and do not focus on the 
estimation of the treatment effect. However, we want to 
evaluate whether one of the models can also produce an 
unbiased treatment effect estimate.

It can be seen that independent of the cluster struc-
tures, i.e. cluster count or correlation, the Cox model 
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with frailty and the method by Katsahian et al. yield the 
smallest bias and square root of the mean squared error. 
Overall, these two models show very similar estimation 
results. The results of the Fine and Gray model and the 
model by Zhou et  al. are also quite similar. Hence, bias 
and square root of the mean squared error coincide but 

are in some scenarios considerably higher compared to 
the results within the Cox model or the model by Katsa-
hian et al. The bias and square root of the mean squared 
error within the Fine and Gray model and the model by 
Zhou et al. is higher in scenarios where the assumed haz-
ard ratio for the competing event is not equal to 1.

Table 1 Simulation Scenarios

Scen. =Scenario; log=natural logarithm; �0,PE(t) , �0,CE (t) , HRPE , and HRCE are the baseline hazards and hazard ratios for the primary endpoint (PE) and competing 
event (CE), respectively

Scen. �0,PE(t) �0,CE (t) HRPE HRCE log(HRPE) log(HRCE ) θ cluster count

1a 4 · t 4 · t 0.5 0.7 −0.69 −0.36 0 5

1b 10

1c 25

2a 4 · t 4 · t 0.5 0.7 −0.69 −0.36 0.5 5

2b 10

2c 25

3a 4 · t 4 · t 0.7 1 −0.36 0 0.5 5

3b 10

3c 25

4a 4 · t 4 · t 0.5 0.7 −0.69 −0.36 1 5

4b 10

4c 25

5a 4 · t 4 · t 0.7 1 −0.36 0 1 5

5b 10

5c 25

6a t−0.5 4 · t 0.5 0.7 −0.69 −0.36 0.5 5

6b 10

6c 25

7a t−0.5 4 · t 0.7 1 −0.36 0 0.5 5

7b 10

7c 25

8a t−0.5 4 · t 0.5 0.7 −0.69 −0.36 1 5

8b 10

8c 25

9a t−0.5 4 · t 0.7 1 −0.36 0 1 5

9b 10

9c 25

10a 4 · t t−0.5 0.5 0.7 −0.69 −0.36 0.5 5

10b 10

10c 25

11a 4 · t t−0.5 0.7 1 −0.36 0 0.5 5

11b 10

11c 25

12a 4 · t t−0.5 0.5 0.7 −0.69 −0.36 1 5

12b 10

12c 25

13a 4 · t t−0.5 0.7 1 −0.36 0 1 5

13b 10

13c 25
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The results seen for the bias or square root of the 
mean squared error are also reflected in the empirical 
power. The power for the Cox model and the model by 
Katsahian et  al. coincide and exceed those of the Fine 
and Gray model and the model by Zhou et al. in nearly 
all scenarios (depending on the underlying simulated 
hazard ratio). The power of the model by Zhou et  al. 

is higher than that observed for the model by Fine and 
Gray in all scenarios except the first where no cluster 
variance is assumed.

For the Cox model with frailty, 1 and 2 data sets pro-
duced an convergence error in Scenarios 10a and 11a, 
respectively and hence could not be included in the 
comparison.

Table 3 Simulation Results

Scen. =Scenario; log=natural logarithm; F-G= Fine-Gray; HR=Hazard ratio

Scen. bias for primary log(HRPE)
√

mean squared error for primary log(HRPE)

Cox-frailty F-G. model Katsahian et al. Zhou et al. Cox-frailty F-G. model Katsahian et al. Zhou et al.

1a ‑0.01 0.34 ‑0.01 0.37 0.20 0.38 0.20 0.41

1b ‑0.01 0.34 ‑0.01 0.36 0.20 0.39 0.20 0.41

1c ‑0.01 0.33 ‑0.01 0.37 0.20 0.38 0.20 0.42

2a ‑0.01 0.34 ‑0.01 0.34 0.22 0.40 0.23 0.40

2b 0.01 0.36 0.01 0.36 0.22 0.42 0.22 0.42

2c 0.03 0.36 0.03 0.36 0.22 0.41 0.23 0.41

3a ‑0.01 0.09 ‑0.01 0.07 0.22 0.24 0.22 0.21

3b ‑0.00 0.08 ‑0.00 0.08 0.22 0.22 0.22 0.22

3c 0.00 0.08 0.00 0.08 0.22 0.21 0.22 0.21

4a ‑0.01 0.35 ‑0.01 0.34 0.20 0.41 0.20 0.40

4b 0.01 0.36 0.01 0.36 0.20 0.41 0.20 0.41

4c 0.02 0.35 ‑0.01 0.35 0.21 0.40 0.21 0.40

5a ‑0.01 0.14 ‑0.01 0.06 0.19 0.27 0.19 0.20

5b 0.00 0.10 0.00 0.07 0.20 0.23 0.20 0.20

5c ‑0.01 0.07 ‑0.01 0.07 0.20 0.21 0.20 0.20

6a ‑0.01 0.23 ‑0.01 0.22 0.21 0.30 0.21 0.29

6b 0.00 0.25 ‑0.00 0.25 0.20 0.30 0.20 0.30

6c 0.01 0.26 0.00 0.26 0.20 0.30 0.20 0.30

7a ‑0.01 0.11 ‑0.01 0.10 0.20 0.22 0.20 0.19

7b ‑0.00 0.11 ‑0.00 0.11 0.29 0.19 0.19 0.19

7c 0.01 0.12 0.00 0.12 0.19 0.30 0.19 0.19

8a ‑0.01 0.19 ‑0.01 0.17 0.18 0.27 0.18 0.23

8b 0.01 0.19 0.00 0.19 0.18 0.25 0.18 0.25

8c 0.00 0.19 ‑0.00 0.19 0.18 0.25 0.18 0.25

9a ‑0.01 0.11 ‑0.01 0.06 0.17 0.22 0.17 0.16

9b 0.00 0.09 0.00 0.08 0.17 0.19 0.17 0.17

9c ‑0.00 0.08 ‑0.01 0.08 0.17 0.17 0.17 0.17

10a 0.01 0.57 0.01 0.58 0.29 0.64 0.29 0.66

10b 0.03 0.59 0.02 0.59 0.28 0.65 0.28 0.65

10c 0.07 0.58 0.06 0.58 0.29 0.62 0.29 0.62

11a ‑0.00 0.15 ‑0.00 0.15 0.29 0.31 0.30 0.30

11b ‑0.00 0.15 ‑0.00 0.15 0.28 0.30 0.28 0.30

11c 0.01 0.15 0.01 0.15 0.28 0.28 0.28 0.28

12a 0.02 0.64 0.01 0.66 0.26 0.69 0.26 0.71

12b 0.04 0.66 0.03 0.66 0.25 0.70 0.26 0.70

12c 0.07 0.66 0.07 0.66 0.27 0.70 0.27 0.70

13a ‑0.00 0.18 ‑0.00 0.16 0.27 0.30 0.27 0.29

13b 0.00 0.17 0.00 0.16 0.25 0.29 0.26 0.29

13c 0.00 0.17 0.00 0.17 0.26 0.29 0.26 0.29
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Results of application
The results of the four different models for the applica-
tion data set are given in Table 4. The source of stem cells 
was peripheral blood for 178 (44.5% ) patients and bone 

marrow for 222 (55.5% ) patients. For patients with periph-
eral blood as source of stem cells 79 (44.4% ) primary 
events of interest were observed and 36 (20.2% ) compet-
ing death events. For patients with bone marrow as source 

Fig. 1 Results of the simulation study: Boxplots for the estimated effects for the primary outcome. Dashed line = true underlying simulated effect; 
log(HRPE) = logarithmic hazard ratio for primary endpoint
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of stem cells 115 (51.8% ) primary events of interest were 
observed and 38 (17.1% ) competing death events. Median 
follow-up was estimated using the reverse Kaplan-Meier 
method and is 1639 days, the maximum observed event 
time for the primary event of interest is 2668 days, and 
maximum observed (censoring) time is 5138 days. The 
estimated hazard ratio for the primary event of interest 
is 0.85 for the Cox model with frailty but for the other 
approaches it is 0.82. For the approach by Fine and Gray 
and Zhou et al. this is in line with the results of our simu-
lation study and hence the method by Zhou et al. seems 
to be an adequate extension for the Fine and Gray model 
when a cluster structure is present. Interestingly, the 
results gained by the approach by Katsahian et al. deviates 
more from the Cox-frailty results than seen in the simu-
lation study. The main difference between our simulation 
study and the example is the number of clusters. Hence, 
this might be one reason but it could also be the cluster 
structure itself, i.e. cluster correlation and underlying 
distribution. To explore this, we altered the number of 
clusters in the example data by joining different clusters 
and present the results of these additional analyses in the 
appendix. However, the number of clusters seems not to 
be the reason for the difference between the Cox model 
results and the results by the approach by Katsahian et al. 
since the pattern of effect estimates remains the same. 
Another difference might be that the cause-specific haz-
ards are not proportional but the subdistribution hazards.

Discussion
The analysis of a time to event endpoint where competing 
events and a cluster structure are present is a challeng-
ing task in cardiovascular or oncologic trials. Therefore, 
we compared four different methods that were proposed 
for those studies to give an overview of their properties 
in different clinical data situations. Here, the focus was on 
treatment effect estimation and not on prognosis which 
was already the focus of the main publications of the 
newly proposed methods [4, 6]. Hence, we extended the 
systematic comparison of the proposed methods to the 
effect evaluation to gain more insights in whether the pro-
posed methods can also be used for unbiased treatment 
effect estimation and not only prognosis. The proposed 
methods differ in their performance and assumptions.

The cause-specific Cox-frailty model estimates the 
effect of the treatment on the rate of occurrence of the 
primary outcome of interest in those subjects who are 
currently free of any events (and conditional on the 
frailty). Since the simulation study does not include cor-
related event types, the true underlying effect for the 
primary endpoint can be estimated without bias, as seen 
in the results of the simulation study. Hence, the cause-
specific Cox model is a good choice and can be recom-
mended if the treatment effect on the rate of occurrence 
is of interest rather than prediction as it was already 
mentioned by Austin et al. and Allison [2, 24].

However, the performance of the model should be 
evaluated in scenarios where the endpoints are more 
correlated.

The Fine and Gray model allows one to estimate the 
effect of the treatment on the absolute risk of the pri-
mary outcome of interest over time, i.e. if one is more 
interested in prognosis. As described by Allison [24] the 
model may not be a good choice if one is interested in 
an unbiased treatment effect in randomized clinical trials 
for the primary event of interest. This is again supported 
by our simulation study. Moreover, it does not incorpo-
rate the cluster structure and hence we recommend to 
use the following model.

Katsahian et  al. described a proportional subdistribu-
tion hazards model which is a frailty model. The model 
is also described as an extension of the Fine and Gray 
model to allow cluster structure, but produces unbiased 
treatment effects for the primary endpoint of interest 
for randomized clinical trials as also seen in the results 
of our simulation study. The model allows to estimate the 
cluster effect, as well as to incorporate this effect in prog-
nostic analyses [4]. The latter is an advantage over the 
Cox-frailty model. Thus, this model can be recommended 
to estimate the treatment effect in clinical trials with 
competing events and a given cluster structure. However, 
it might be of interest to evaluate its performance in a 
setting where the event types are (more) correlated.

The model by Zhou et al. shows similar results in our 
simulation study as for the Fine and Gray model. Since 
this model was also described as extension of the latter, 
this is not surprising. We therefore conclude that if one 
is interested in the prognosis for the patients rather than 
an unbiased treatment effect on occurrence rates to use 
this model if a cluster structure is present in the data with 
competing risks.

Zhou et  al. did conclude the same for their analysis. 
I.e. their simulation showed the potential bias and loss 
of power in hypothesis testing [6]. They hypothesized 
that this may arise from ignoring within-cluster correla-
tions in variance estimation [6]. They also referred to the 
model by Katsahian et al. as an alternative. They further 

Table 4 Application Results

F-G= Fine-Gray; HR=Hazard ratio; PE=Primary endpoint; CI=confidence interval

Model HRPE (95 %-CI) p-value

Cox‑frailty 0.85 (0.63, 1.16) 0.31

F‑G model 0.82 (0.63, 1.07) 0.15

Katsahian et al. 0.82 (0.60, 1.12) 0.22

Zhou et al. 0.82 (0.63, 1.08) 0.16
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described that their method is particularly useful in 
applications with small groups of correlated observations 
where the correlation is mainly a confounding factor.

The application supported the results that the model 
by Zhou et  al. is an appropriate extension of the Fine 
and Gray model in the case of a multi-center trial. 
However, it also supports that more complex simula-
tion studies and evaluation of application might be nec-
essary to shed light on the model by Katsahian et al.

Moreover, other approaches of interest in future 
work might be additive models or models using copu-
las [13, 14].

Conclusion
In conclusion, for clinical studies where two groups 
shall be compared regarding a time to event endpoint 
where competing events and a cluster structure are 
present the approach by Katsahian et al. can be recom-
mended since it allows unbiased effect estimation and 
prognosis [4]. However, extended simulation studies 
are necessary to confirm its application in a broader 
range of data settings. For unbiased treatment effect 
estimation without the focus on prognosis, the Cox 
model with frailty can be used.
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