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Abstract 

Background Multiple imputation (MI) is an established technique for handling missing data in observational studies. 
Joint modelling (JM) and fully conditional specification (FCS) are commonly used methods for imputing multilevel 
data. However, MI methods for multilevel ordinal outcome variables have not been well studied, especially when clus-
ter size is informative on the outcome. The purpose of this study is to describe and compare different MI strategies for 
dealing with multilevel ordinal outcomes when informative cluster size (ICS) exists.

Methods We conducted comprehensive Monte Carlo simulation studies to compare the performance of five 
strategies: complete case analysis (CCA), FCS, FCS+CS (including cluster size (CS) in the imputation model), JM, and 
JM+CS under various scenarios. We evaluated their performance using a proportional odds logistic regression model 
estimated with cluster weighted generalized estimating equations (CWGEE).

Results The simulation results showed that including CS in the imputation model can significantly improve estima-
tion accuracy when ICS exists. FCS provided more accurate and robust estimation than JM, followed by CCA for mul-
tilevel ordinal outcomes. We further applied these strategies to a real dental study to assess the association between 
metabolic syndrome and clinical attachment loss scores. The results based on FCS + CS indicated that the power of 
the analysis would increase after carrying out the appropriate MI strategy.

Conclusions MI is an effective tool to increase the accuracy and power of the downstream statistical analysis for 
missing ordinal outcomes. FCS slightly outperforms JM when imputing multilevel ordinal outcomes. When there is 
plausible ICS, we recommend including CS in the imputation phase.

Keywords Multiple imputation, Multilevel data, Ordinal outcomes, Generalized estimating equations, Informative 
cluster size

Introduction
Multilevel ordinal outcomes commonly appear in obser-
vational studies. In a study of dental disease, maximum 
clinical attachment loss (CAL) – recorded on each tooth 
using an ordinal scoring system – is used to assess peri-
odontal health. In this context, each subject contributes 

multiple outcomes of interest (CAL) and they are clus-
tered within a subject. Therefore the correlation between 
the outcomes within the same subject needs to be 
accounted for in the analysis. Generalized linear mixed 
effect model (GLMM) and generalized estimating equa-
tions (GEE), which are both extensions of the generalized 
linear model (GLM), are the two most popular methods 
to model such multilevel data. GLMM gives cluster-
specific inference while marginal models using GEE give 
population-average inference.

Both GLMM and GEE assume that cluster size (CS) 
and the outcome of interest are independent given the 
covariates. However, this assumption can be violated 
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when CS changes with the degree of the outcome. For 
example, in periodontitis, the probability of losing a 
tooth increases with the severity of the disease. Hence 
patients with advanced periodontitis tend to have 
fewer number of teeth, or smaller CS, compared to 
patients with good oral health. This type of situation, 
when the outcome is dependent on CS conditional 
on the observed covariates, is referred to as informa-
tive cluster size (ICS). ICS also presents in many other 
research settings, such as in reproductive toxicology, 
neuroimaging data, etc. [1-4]. Examining the correla-
tion coefficient between the outcome and cluster size 
is a common approach to detect ICS [5-7] as well as 
testing for the effect of cluster size in a model that 
regresses the outcome against cluster size and other 
predictors [5, 6]. To handle ICS, Seaman et al. summa-
rized a number of methods based on GLMM and GEE 
[8]. Including the CS as a covariate in the model is one 
of the solutions, but it changes the interpretations of 
the other coefficients included in the model. When the 
interest is in making marginal inference, Williamson 
et al. and Benhin et al. both proposed cluster weighted 
GEE (CWGEE), which provides an unbiased estimator 
when ICS exists [9, 10] and can be used to model ordi-
nal outcomes [11]. Based on CWGEE, Benhin et  al. 
proposed a Wald test for ignorability of cluster sizes by 
comparing the estimators between GEE and CWGEE 
under the null hypothesis of igonorability [10].

While CAL cannot be measured on missing teeth 
(which leads to the issue of ICS), we observed that 
some CAL measurements were also missing on exist-
ing teeth for unknown reasons in the motivated den-
tal study. Removing the teeth with missing CAL values 
from the analysis will produce inconsistency between 
CS and the number of observed outcomes for some of 
the subjects. Furthermore, marginal models using GEE 
assume that missing data are unrelated to observed 
and unobserved variables. Therefore when the interest 
is in making marginal inference, missing data problems 
are often dealt by multiple imputation (MI) [12, 13]. 
Briefly, MI involves three phases: imputation phase, 
analysis phase, and pooling phase. In the imputation 
phase, the missing values are filled with plausible val-
ues estimated from the posterior predictive model. 
This process is repeated M times, creating M differ-
ent complete datasets. Then in the analysis phase, a 
statistical model is fitted to each of the M complete 
datasets, leading to M unique estimates and variance-
covariance matrices of the parameters. Finally, in the 
pooling phase, the M parameter estimates and vari-
ances are pooled to create one set of parameters and 
variance estimates [14].

There are two main strategies for MI: joint model-
ling (JM) and fully conditional specification (FCS), 
also known as MI with chained equation (MICE). JM 
assumes that partially observed data follow a multivari-
ate normal distribution [12]. Therefore, imputed cat-
egorical variables may have implausible values falling 
outside the range or in between the categories. Round-
ing off or latent normal variables was suggested to 
impute categorical data. However, rounding off contin-
uous variable into categorical variable has been ques-
tioned for introducing bias in the estimates of interest 
[15]. FCS imputes each incomplete variable one at a 
time based on an imputation model that assumes the 
distribution of the variable. For example, missing val-
ues from a binary variable can be imputed from a logis-
tic regression model. Hence FCS requires a unique 
specification of the imputation model for each vari-
able with missing values [16]. Both strategies have been 
implemented in mainstream statistical programming 
languages including R and standalone software. R pack-
ages that perform MI based on JM include norm [17], 
cat [18], mix [19], pan [20] and jomo [21]. There is also 
a standalone software REALCOM-IMPUTE [22] that 
performs JM imputation. However, only REALCOM-
IMPUTE and jomo handle multilevel categorical data 
through a latent normal approach. The R package mice 
is the most commonly used R package to implement 
FCS, which provides many options for model specifica-
tion [23]. However, mice has limited options to impute 
multilevel data. Other packages, such as micemd 
[24] and miceadds [25], as extensions for mice, pro-
vide more options for different types of variables in 
multilevel data. Nevertheless, micemd does not deal 
with ordinal data and miceadds uses predictive mean 
matching to impute ordinal data. Recently, Enders 
et al. developed a standalone software Blimp that uses 
a latent probit approach to impute multilevel ordinal 
data [26], providing a better alternative to impute mul-
tilevel ordinal data using FCS.

To summarize, the R package jomo and the standalone 
software Blimp are two most popular tools to impute 
missing multilevel ordinal data. Although their perfor-
mances on imputing multilevel continuous and binary 
data have been compared in many different aspects [27-
29], their performances on imputing multilevel ordinal 
outcomes, especially when ICS exists, have not been 
studied yet. Kombo et al. compared FCS and JM for ordi-
nal longitudinal data with monotone missing data pat-
terns [30], but many multilevel data, such as clustered 
dental data, do not follow a monotone missing data 
pattern.
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The objective of this paper was to compare the per-
formances between JM and FCS when imputing mul-
tilevel ordinal outcomes that are subject to ICS. Two 
available software were used: jomo package  in R for 
JM and Blimp for FCS. For each of the JM and FCS 
approaches, we additionally assessed whether the inclu-
sion of CS in the imputation model improved param-
eter estimation of the analysis model. Since we were 
interested in the population-average inference, param-
eters in the analysis model were estimated by CWGEE 
with proportional odds logit. Extensive simulation 
studies were conducted to assess the performance of 
each imputation model under different scenarios and 
different missing patterns.

Methods
Motivating example: the VADLS study
Our study was motivated by the Veterans Affairs Den-
tal Longitudinal Study (VADLS), which was a closed-
panel longitudinal study that monitored oral health 
and diseases of male subjects from the greater Boston 
metropolitan area [31]. The health status of the sub-
jects was measured approximately every three years. 
For illustration, we focused on one cycle of the lon-
gitudinal study, which included 241 subjects with a 
total of 5,100 teeth. We were interested in assessing 
the association between metabolic syndrome (MetS) 
and increasing CAL scores [32]. The baseline charac-
teristics of the variables are given in Supplementary 
Table S1. CAL score was a level-1 (tooth/member 
level) ordinal variable of four categories (0: < 2mm, 1: 
2-2.9mm,2: 3-4.9mm, 3: ≥ 5mm) with the higher score 
indicating worse prognosis of periodontal disease. We 
modelled the association between MetS (yes/no) and 
ordinal CAL scores using the proportional odds logis-
tic regression model adjusting for the following level-2 
(subject/cluster level) variables: age, smoking status 
(ever-smoker/never-smoker), and education levels 
(high school/some college/college graduate). These 
variables have been shown to be associated with CAL 
scores in previous studies [32, 33]. The marginal analy-
sis model had the following form:

where CALij is the CAL score recorded on the jth tooth of 
the ith subject, j = 1, ..., ni , i = 1, ...,N  , ni is the CS (num-
ber of teeth) for subject i, and N is the total number of 
subjects. Two issues existed in producing valid inference 

(1)
logit

{

Pr(CALij ≤ c)
}

=�c + �1MetSi + �2agei + �3smokingi

+ �41(edui = some college)

+ �51(edui = college graduate), c = 1, 2, 3

from Equation (1). First, the number of teeth per subject 
ranged from 1 to 28. The Spearman correlation coeffi-
cient of the mean CAL score per subject and the num-
ber of teeth per subject was -0.41 (95% CI: (-0.44, -0.38)), 
indicating the presence of ICS in this data. Supplemen-
tary Fig.  S1 shows that the mean CAL score decreased 
as the number of teeth per participant increased. There-
fore, CWGEE was applied for estimation. Second, CAL 
scores were missing in 19% of all existing teeth. Hence, 
MI was applied to make use of all available data in model 
fitting. In addition to CAL, three other level-1 variables 
that measure the prognosis of periodontitis were avail-
able: probing pocket depth (PPD), radiographic alveolar 
bone loss (ABL), and tooth mobility (Mobil). PPD, ABL, 
and Mobil were also recorded using ordinal scoring sys-
tems and were correlated with each other as well as CAL. 
Although PPD, ABL, and Mobil were not included in the 
analysis model, they were included in the imputation 
model to help impute missing CAL.

Ordinal regression with CWGEE
In the dental study, our goal was to obtain the mar-
ginal inference of the association between MetS and 
periodontal health of a typical tooth from a randomly 
selected subject. GEE is appealing not only because the 
estimator of β is almost as efficient as the maximum 
likelihood estimator but also because it provides a con-
sistent estimator of β even under a misspecified within-
subject association among the repeated measurements 
in sufficiently large samples [34]. Due to ICS, estimation 
using GEE will have oversampled healthy teeth, resulting 
in biased coefficient estimations [5]. To overcome this 
challenge, Williamson et al. and Benhin et al. proposed 
CWGEE [9, 10], which weighs the GEE by the inverse of 
CS. Let Yij denote the ordinal outcome with C > 2 cate-
gories and X ij = (Xij1, ...,Xijp)

T  denote the sets of p fixed 
covariates for the jth member (tooth) of the ith cluster 
(subject). The model for the ordinal outcome using pro-
portional odds logistic regression is expressed as

For estimation, it is common to re-express the C-cate-
gory outcome Yij as a set of C − 1 binary outcomes, such 
that

and write the model as a set of C − 1 logistic regression 
models for each binary outcome [35]:

logit{Pr(Yij ≤ c)} = ηc + XT
ij β , c = 1, ...,C − 1.

Uij,c =
1 Yij ≤ c,
0 Yij > c

c = 1, ...,C − 1

logit{E(Uij,c)} = logit{Pr(Uij,c = 1)} = �c + X
T
ij
� , c = 1, ...,C − 1.
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Let µij = E(U ij) , where U ij = (Uij,1, ...,Uij,C−1)
T . Then 

the estimations of (η1, ..., ηC−1,β) are obtained by solving 
the following CWGEE,

where Dij = ∂µij/∂β , V ij = A
1/2
ij QijA

1/2
ij  and Aij is 

the diagonal matrix containing the variance of U ij , 
where Var(U ij) = µij(1− µij) , and Qij includes 
the pairwise correlation between Uij,c and Uij,c′ for 
c, c′ = 1, ...,C − 1, c �= c′ . Note that with these estimating 
equations, we assume a “working independence” struc-
ture between the teeth within a subject which is con-
ventional in CWGEE [9]. A robust variance-covariance 
matrix � for (η̂1, ..., η̂C−1, β̂) is estimated from the sand-
wich variance estimator, which has the form

where

and

MI with multilevel ordinal data
MI is a Monte Carlo technique in which missing val-
ues are replaced by a set of simulated values drawn 
from the posterior predictive distribution P(Ymiss|Yobs) , 
where Ymiss and Yobs are unobserved sample data and 
observed sample data, respectively. JM and FCS are 
two main strategies for MI: JM assumes a multivari-
ate normal model for all variables while FCS specifies 
a unique model for each variable and imputes each of 
them sequentially. For either strategy, the imputation 
phase can be summarized into two steps for one single 
continuous incomplete variable [28]: 

1. Draw θ , the parameters of the imputation model, 
from the posterior distribution using complete data 
P(θ |Yobs);

2. Update the imputation by drawing plausible val-
ues for Ymiss from the posterior predictive model 
P(Ymiss|Yobs, θ).

(2)
N
∑

i=1

1

ni

ni
∑

j=1

D
T
ij V

−1
ij (U ij − µij) = 0,

�̂ = Ĥ
−1

M̂Ĥ
−1

,

Ĥ =

N
∑

i=1

1

ni

ni
∑

j=1

D̂
T

ij V̂
−1

ij D̂ij ,

M̂ =

N
∑

i=1

{

1

ni

ni
∑

j=1

D̂
T

ij
V̂

−1

ij
(U ij − �̂�ij)

}{

1

ni

ni
∑

j=1

D̂
T

ij
V̂

−1

ij
(U ij − �̂�ij)

}T

.

To sample parameters of the imputation model, Bayes-
ian modelling is commonly employed by specifying a 
prior distribution of θ . Gibbs sampler, an iterative com-
putational algorithm, is often used to yield an empirical 
estimate of each parameter’s marginal posterior dis-
tribution [26]. For multilevel data, random effects are 
included in the imputation model to account for the 
correlation between members within the same cluster 
[26, 27].

Following the variables in the dental study, suppose 
we have a level-1 ordinal incomplete outcome variable 
Yij (CAL) with CY  categories as well as three “auxiliary” 
level-1 ordinal variables, M1,ij (PPD), M2,ij (ABL), and 
M3,ij (Mobil) with CM1 , CM2 , and CM3 categories respec-
tively. The auxiliary variables are not of direct interest 
in the analysis but can improve imputation accuracy if 
included in the imputation model. In addition, we have 
a level-2 continuous covariate Xi and a level-2 binary 
covariate Zi , which are both fully observed. These 
covariates are included in both the analysis and imputa-
tion models. In the next two subsections, we describe 
how data consisting of the aforementioned variables are 
multiply imputed with R package jomo and software 
Blimp.

Joint modelling with R package jomo
JM imputes missing data by assuming that partially 
observed variables follow a multivariate normal distri-
bution. In the R package jomo, categorical variables are 
substituted with latent normal variables during Gibbs 
sampling and then converted back to discrete values 
using thresholds [21]. For categorical variables with C lev-
els, we need C − 1 latent normal variables, each of which 
has a fixed variance of 1 and covariance with the other 
latent normal variables of 0.5 [36]. To deal with multi-
level data, a multivariate version of linear mixed effects 
model can be used. In this paper, we considered the ran-
dom intercepts model since only the level-1 outcomes 
contained missing data. Let Y ∗

ij,c , M
∗
1,ij,c,M

∗
2,ij,c , and M∗

3,ij,c 
be the latent normal variables for Yij ,M1,ij ,M2,ij ,M3,ij in 
level c respectively. Then, we can construct a multivari-
ate random intercepts model as the multilevel imputation 
model:

Y ∗
ij,c

= �Y ,0 + �Y ,1Xi + �Y ,2Zi + uY ,i,c + �Y ,ij,c , c = 1, ...,CY − 1

M∗
1,ij,c

= �M1 ,0
+ �M1 ,1

Xi + �M1 ,2
Zi + uM1 ,i,c

+ �M1 ,ij,c
, c = 1, ...,CM1

− 1

M∗
2,ij,c

= �M2 ,0
+ �M2 ,1

Xi + �M2 ,2
Zi + uM2 ,i,c

+ �M2 ,ij,c
, c = 1, ...,CM2

− 1

M∗
3,ij,c

= �M3 ,0
+ �M3 ,1

Xi + �M3 ,2
Zi + uM3 ,i,c

+ �M3 ,ij,c
, c = 1, ...,CM3

− 1
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Then, the imputed latent variables are converted back 
to discrete values as follows:

and similarly for M1,ij ,M2,ij ,M3,ij.

Fully conditional specification with Blimp software
Instead of assuming variables with missing data fol-
low a multivariate normal distribution, FCS assumes a 
unique distribution for each variable with missing val-
ues. Based on the distribution of the variable, a unique 
type of imputation model can be specified (e.g. linear 
regression for continuous variable, logistic regression 
for binary variable). The FCS procedure for our data 
can be summarized as follows for iteration t: 

1. Yij is drawn from the following distribution: 

 where σ 2
ǫ,Y  is the within-cluster residual variance.

2. After updating Yij , M1,ij is now treated as the outcome 
and Yij and other covariates are treated as predictors. 
M1,ij is drawn from the following distribution: 

3. After updating M1,ij , repeat the above steps to update 
M2,ij and M3,ij.

The above steps are standard for multilevel FCS, which 
are implemented in the R package mice [23]. This 
approach is flexible and useful in many applications, but 
the imputation model options in mice for incomplete 
level-1 variables are limited to continuous or binary vari-
ables. Enders et al. extended mice to handle incomplete 
nominal and ordinal variables and developed the soft-
ware program Blimp [26].

with

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

uY ,i,1

…

uY ,i,CY −1

uM1 ,i,1

…

uM3 ,i,CM3
−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∼ MVN (0,�u), and

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�Y ,ij,1

…

�Y ,ij,CY −1

�M1 ,ij,1

…

�M3 ,ij,CM3
−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∼ MVN (0,�� )

Yij =

⎧

⎪

⎨

⎪

⎩

1, Y ∗
ij,1

> 0 & Y ∗
ij,1

> Y ∗
ij,c

for c ≠ 1 or CY

2, Y ∗
ij,2

> 0 & Y ∗
ij,2

> Y ∗
ij,c

for c ≠ 2 or CY

…

C , Y ∗
ij,c

< 0 for c ≠ CY

Y
(t)

ij(miss)
∼ N (�Y ,0 + �Y ,1M

(t−1)

1,ij
+ �Y ,2M

(t−1)

2,ij
+ �Y ,3M

(t−1)

3,ij
+

�Y ,1Xi + �Y ,2Zi + uY ,0, �
2

�,Y
),

M
(t)

1,ij(miss)
∼ N (�M1 ,0

+ �M1 ,1
Y

(t)

ij
+ �M1 ,2

M
(t−1)

2,ij
+ �M1 ,3

M
(t−1)

3,ij
+

�M1 ,1
Xi + �M1 ,2

Zi + uM1 ,0
, �2

�,M1

).

In Blimp, for ordinal data, the cumulative probit model 
is used to link the distribution of latent variables to dis-
crete outcomes using a threshold parameter. We can 
update the imputation model for Yij in step 1 to:

Then the imputed latent variable is converted to an ordi-
nal variable using the following function:

which finalize the imputation of Y in iteration t. We then 
repeat steps 2 and 3 similarly to other variables M1,ij , 
M2,ij , and M3,ij until all missing data are imputed.

Imputation model for data with ICS
In MI, the imputation model needs to include all the fea-
tures of the analytical model [37]. The existence of ICS 
indicates that the outcome Yij is dependent on ni and 
ignoring this relationship in the imputation model may 
lead to an inefficient and biased estimation of the poste-
rior distribution. One way to deal with this is to include 
ni in the imputation model to account for the dependence 
between the missing Yij values and ni . Taken FCS as an 
example, Y ∗(t)

ij(miss) in Equation (3) can then be rewritten as

Note that ni is only included in the imputation phase 
to account for additional variance of Yij , thus potentially 
improving the imputation accuracy. In the analysis model, 
ICS is accounted for by CWGEE as in Equation (2). In 
an extensive simulation study, we compared the effect of 
including versus omitting ni in the imputation model for 
both JM and FCS.

Simulation studies
Simulation setting
We evaluated the performance of five missing data 
approaches for multilevel ordinal outcomes with ICS 
through comprehensive Monte Carlo simulation stud-
ies: 1) Complete-case analysis (CCA); 2) FCS without 
CS as a predictor (FCS); 3) FCS with CS as a predictor 

(3)
Y

∗(t)

ij(miss)
∼ N (�Y ∗ ,0 + �Y ∗ ,1M

(t−1)

1,ij
+ �Y ∗ ,2M

(t−1)

2,ij
+ �Y ∗ ,3M

(t−1)

3,ij
+

�Y ∗ ,1Xi + �Y ∗ ,2Zi + uY ∗ ,1, 1).

Y
(t)
ij(miss) = f (Y

∗(t)
ij(miss)) =



















1, −∞ < Y
∗(t)
ij(miss) < τ1

2, τ1 < Y
∗(t)
ij(miss) < τ2

. . .

C , τC−1 < Y
∗(t)
ij(miss) < ∞,

Y
∗(t)

ij(miss)
∼ N (�Y ∗ ,0 + �Y ∗ ,1M

(t−1)

1,ij
+ �Y ∗ ,2M

(t−1)

2,ij
+ �Y ∗ ,3M

(t−1)

3,ij
+

�Y ∗ ,1Xi + �Y ∗ ,2Zi + �Y ∗ ,3ni + uY ∗ ,1, 1).
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(FCS+CS); 4) Joint modelling without CS as a predictor 
(JM); 5) Joint modelling with CS as a predictor (JM+CS).

To mimic the real dental data, we generated multilevel 
ordinal outcomes of C = 4 categories similar to Equation 
(1). For the jth tooth of the ith subject, the outcome Yij 
was simulated from the following equation:

where Xi was a level-2 continuous variable generated from 
N(0, 22) and Zi was a level-2 binary variable generated 
from Binomial(N , 0.5) . The true values for the parame-
ters were (η1, η2, η3,β1,β2) = (−0.4, 0.8, 1.6,−0.2,−0.5) . 
To make our simulation study more generaliz-
able to other applications, we also simulated out-
comes of C = 3 categories with true values 
(η1, η2,β1,β2) = (−0.4, 0.8,−0.2,−0.5) . In addition to 
outcome Y, we simulated three other auxiliary level-1 
ordinal variables M1 , M2 , and M3 following the same pro-
cedure with different values of intercepts (η1, η2, η3) and 
same value for β1 and β2 in Equation (4).

To simulate the ordinal outcome with ICS, we used the 
bridge distribution [11, 38] to obtain the marginal prob-
ability of success when fitting a proportional odds logistic 
regression model of the form:

where bij follows a bridge distribution with density 
fb(bij|�) =

1

2�

sin(��)

cos(�bij )+cos(��)
 , −∞ < bij < ∞ , 0 < φ < 1 . The 

maximum CS of each subject was set to 28. We used the 
exchangeable correlation structure with parameter τ to 
simulate the correlation between teeth. For each subject 
i, we generated the baseline hazard �i as a function of bi , 
�i =

exp(νb̄i))

1+exp(νb̄i))
 , where b̄i =

∑

j
bij
ni

 with ν representing the 
degree of ICS. The number of teeth for each subject i was 
generated from Binomial(28, �i) . A detailed description 
of the simulation is shown in the Supplementary 
Materials.

We generated missing values through three different 
missing data mechanisms: missing completely at ran-
dom (MCAR), missing at random (MAR), and missing 
not at random (MNAR) [39]. We further considered dif-
ferent levels of missingness on the outcome Y. To gener-
ate missing data, the missingness indicator Rij for the jth 
tooth of the ith subject were generated from the model:

(4)

logit(Pr(Yij ≤ c)) = �c + �1Xi + �2Zi,

c = 1, 2, 3, j = 1..., ni, i = 1, ...,N ,

pij,c = Pr(Uij,c = 1|bij ,Xi,Zi, �1, �2)

=
exp{bij + (�c + �1Xi + �2Zi)�

−1}

1 + exp{bij + (�c + �1Xi + �2Zi)�
−1}

,

logit{Pr(Rij = 1)} =�0 + �1Xi + �2Zi + �3Yij

+ �4M1,ij + �5M2,ij + �6M3,ij .

When α1 = · · · = α6 = 0 , data were MCAR. When 
only α3 = 0 , data were MAR. Otherwise, data were 
MNAR. α0 was used to control the overall missing 
rate. For the outcome Y, we generated missing rates of 
20% and 50%, representing low and high missing rates, 
respectively. For the auxiliary outcomes M1,M2 , and 
M3 , the missing rates were 30%, 30%, 10%, respectively.

Table 1 shows the combination of the various param-
eters when data were MAR and C = 4 . We considered 
two different sample sizes N, 50 and 250. The degrees 
of correlation τ varied from 0, 0.1, 0.3, to 0.6, repre-
senting null, small, moderate, and strong correlations 
between teeth. We varied the degrees of ICS ν from 
0, 0.1, to 0.4, representing null, moderate, and high 
correlation between the outcome and CS. When data 
were MCAR and MNAR, we considered the scenario 
where N = 50 and 20% missing rate with varying ICC 
and degrees of ICS. Similarly, when the number of cat-
egories C = 3 , we simulated data with missing mecha-
nism MAR with varying ICC and degrees of ICS. The 
missing rate was fixed at 20% and N was fixed at 50. 
We performed 1,000 replications for each scenario. 
We obtained the parameter estimates (η̂1, η̂2, η̂3, β̂1, β̂2) 
from each simulated data in each scenario. The fol-
lowing metrics were computed to compare the perfor-
mance of each imputation approach: (1) the mean of 
the parameter estimates (Mean Est); (2) the mean of 
the robust standard error estimates (Mean SEs); (3) the 
standard deviation of the parameter estimates (Empiri-
cal SEs); (4) the mean relative bias × 100% (Rel Bias); 
(5) the 95% coverage probability (Cov Prob); (6) the 
mean squared error (MSE).

Simulations for JM were performed with R software 
jomo and simulations for FCS were performed with soft-
ware Blimp. For each replication, we created 5 imputed 
dataset. We set the burn-in iterations to be 4,000 and 
the iterations between two successive imputations to be 
1,000 for both approaches.

Results
The nested loop plot in Fig.  1 shows the mean relative 
biases for (η̂1, η̂2, η̂3, β̂1, β̂2) under various combinations of 
the simulation parameters listed in Table 1 when the miss-
ing mechanism was MAR, C = 4 , and missing rate was 
20%. Each column represents two ( N = 50 and N = 250 ) 
of the 120 combinations of simulation setting (5 param-
eters of interest × 3 degrees of ICS × 4 ICC × 2 sample 
sizes) and each color represents one of the five imputation 
approaches. The gray line represents the results from the 
full data with no missing values. The mean relative biases 
estimated from the CWGEE with full data were close to 
0. Overall, CCA had the largest relative bias, followed by 
JM and JM+CS across all parameters. FCS+CS had the 
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smallest mean relative bias in most scenarios, followed by 
FCS. By fixing the parameters of interest, ICC, and sample 
size, FCS and FCS+CS, JM and JM+CS almost overlapped 
when the degree of ICS was null or moderate. When the 
degree of ICS was large, both FCS+CS and JM+CS had 
smaller mean relative biases than FCS and JM. This indi-
cated that including CS as a covariate in the imputation 
model for both FCS and JM improved the estimation accu-
racy when the degree of ICS was large, while including CS 
in the imputation phase when the degree of ICS was either 
null or moderate would not have a negative effect on the 
estimation accuracy. Fixing the parameters of interest, the 
degree of ICS, and sample size, the mean relative biases 
from FCS+CS, FCS, JM+CS, and JM decreased as ICC 
increased when the degree of ICS was null or moderate. 
However, when the degree of ICS was large, the relative 

biases did not change significantly for each MI approach 
regardless of the change in ICC. This suggested that the 
strong degree of ICS dominated the imputation accuracy 
rather than ICC. By looking at each column in Fig. 1, the 
mean relative bias slightly decreased when the sample size 
decreased from 250 to 50. The overall missing rate had a 
large impact on mean relative biases. The mean relative 
biases for scenarios where the missing rate was 50% were 
around two times larger than those under 20% missing rate 
(Supplementary Fig. S2). The difference was more consid-
erable for JM+CS, JM, and CCA, suggesting that FCS was 
more reliable than JM when the missing rate was high. The 
missing rate in each level was approximately equal under 
each scenario. When the overall missing rate was 20%, the 
missing rate in each level across all simulation scenarios 
over 1,000 replications had an average of 7% (sd=0.007) in 
category 1, 17% (sd=0.015) in category 2, 27% (sd=0.019) 
in category 3, and 45% (sd=0.015) in category 4. When 
the overall missing rate was 50%, the missing rate in each 
level across all simulation scenarios over 1,000 replica-
tions had an average of 30% (sd=0.018) in category 1, 50% 
(sd=0.021) in category 2, 64% (sd=0.017) in category 3, 
and 80% (sd=0.005) in category 4. The small sd’s showed 
that the missing rate in each category over different rep-
lications and different simulation settings was primarily 

Table 1 Parameter settings in the simulation study when data 
were MAR and C = 4

Parameter Notation Values

Sample size N 50 250

Degree of correlation (ICC) τ 0 0.1 0.3 0.6

Degree of ICS ν 0 0.1 0.4

Missing rate t 20% 50%

Fig. 1 Mean relative bias of each imputation method and each parameter under different simulation scenarios. The missing data mechanism was 
MAR and C = 4 . The missing rate was 20%. Each column represents one combination of parameters of interest, degrees of ICS, and ICC, with two 
different sample sizes. The black line is the reference line at 0; the grey line represents the results using the full data; the green line represents the 
results using complete case analysis; the blue line represents the results using FCS+CS; the red line represents the results using FCS; the purple line 
represents the results using JM+CS; the orange line represents the results using JM
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affected by the overall missing rate rather than other simu-
lation settings.

Simulation results of intercept η1 and slope β1 for the 
scenario when the degree of ICS=0.1, ICC=0.3, miss-
ing rate was 20%, N=50, C = 4 , and missing mechanism 
was MAR are shown in Table  2. The mean estimate of 
FCS+CS or FCS for the intercept η1 was -0.37, which 
was closer to the true value compared to JM+CS or JM. 
The mean relative biases were 7.06% and 7.98% for FCS 
and FCS+CS, respectively. The mean relative biases for 
slope β1 were larger for all methods, including the esti-
mate from full data. The mean SE and empirical SE for 
all approaches were close to 0.20. The coverage prob-
abilities of FCS+CS, FCS, JM+CS, JM were all close to 
95%. The MSE for CCA was 0.09, which was the largest 
for the intercept η1 , followed by JM+CS and JM. The 
difference between MSE for slope β1 was smaller, while 
FCS+CS and FCS had similar MSE’s as the full data. The 
small difference in evaluation metrics between FCS+CS 
and FCS, JM+CS and JM indicated that including CS 
in the imputation did not significantly improve the esti-
mation accuracy when the degree of ICS was moder-
ate. Under the more extreme situation where the degree 
of ICS was large (the degree of ICS = 0.4) and ICC was 
strong (ICC=0.6) (Supplementary Table S2), we observed 
that including CS as a covariate in the imputation model 
shifted the mean η̂1 closer to the true value by 0.03 com-
pared to omitting CS in the imputation model for both 
FCS and JM. Although the mean SE, empirical SE, and 
MSE in Supplementary Table S2 all increased compared 
to Table  2, they were still comparable to the full data 
except for CCA. MI approaches still drastically decreased 
the bias and increased the power under large degree of 
ICS and strong ICC.

Under the same simulation setting when data were 
MAR, we evaluated the performance of MI approaches 
when the number of categories was C = 3 with dif-
ferent degrees of ICS and ICC. As shown in Supple-
mentary Fig. S3, the mean relative biases were slightly 
smaller than the case when C = 4 , indicating that 
the imputation accuracy decreased as the number of 
outcome categories increased. We also considered 
the model misspecification in the imputation phase 
when C = 4 . We excluded the auxiliary variables that 
were used to simulate missing indicators for MAR in 
the imputation phase. As shown in Supplementary 
Fig. S4, the mean relative biases for all MI approaches 
increased compared to the case of having correct 
imputation model. In some cases when both the 
degree of ICS and ICC were null, the relative biases of 
MI approaches were close to CCA. This suggested that 
all approaches would be affected by the misspecifica-
tion of the imputation model. However, FCS still out-
performed JM when there was model misspecification 
in the imputation phase.

We further investigated the impact of ICC and the 
degree of ICS on different MI approaches when data 
were MNAR and MCAR. Figure 2 shows the mean rela-
tive bias when the missing data mechanism was MNAR. 
The performance of FCS and JM also had an analogous 
pattern when ICC and the degree of ICS changed com-
pared to when data were MAR. As shown in Table 3, the 
relative biases from FCS+CS and FCS were 26.5% and 
27.5% respectively, with coverage probabilities close to 
93%. The performance of FCS was still better than JM 
and CCA. When the degree of ICS and ICC changed, the 
change in relative bias was similar to our observation in 
Fig. 1. When the missing data mechanism was MCAR, all 

Table 2 Results of intercept η1 and slope β1 when the degree of ICS=0.1, ICC=0.3, missing rate was 20%, sample size N was 50, missing 
mechanism was MAR, C = 4

Parameter Method Mean Est Mean SE Empirical SE Rel Bias (%) Cov Prob (%) MSE

η1 = −0.4

Full -0.40 0.20 0.20 -0.97 95.50 0.04

CCA -0.19 0.21 0.22 53.07 79.70 0.09

FCS+CS -0.37 0.21 0.20 7.06 95.80 0.04

FCS -0.37 0.21 0.20 7.98 95.90 0.04

JM+CS -0.34 0.23 0.22 15.09 94.18 0.05

JM -0.33 0.23 0.22 16.31 95.08 0.05

β1 = −0.2

Full -0.21 0.19 0.20 -4.48 92.40 0.04

CCA -0.10 0.21 0.23 51.09 89.90 0.06

FCS+CS -0.17 0.21 0.21 15.09 95.10 0.04

FCS -0.17 0.21 0.21 16.22 94.70 0.04

JM+CS -0.13 0.23 0.24 32.69 93.99 0.06

JM -0.13 0.24 0.24 33.50 93.57 0.06



Page 9 of 12Dong and Mitani  BMC Medical Research Methodology          (2023) 23:112  

imputation methods yielded unbiased estimates for inter-
cepts and slightly biased estimates for the slopes (Sup-
plementary Fig. S5, Supplementary Table S3). Under the 
most extreme case, the biases of all MI approaches were 
approximately equally small (Supplementary Fig. S5).

Real data application
We used data from one cycle of the VADLS to compare 
the five missing data approaches. Based on the analy-
sis model in Equation (1), we incorporated the level-1 
variables described above, in addition to PPD, ABL, and 
Mobil. PPD, ABL, and Mobil are commonly used to 
quantify the severity of periodontitis, and are correlated 
with each other. Hence, they were included as auxiliary 
variables to improve the imputation accuracy for CAL. 
In the imputation phase, we implemented FCS+CS, FCS, 
JM+CS, JM, and CCA.

Table  4 summarizes the results from the VADLS data. 
We focus on the estimates of MetS. The ICC was 0.10 (95% 
CI: (-0.06, 0.17)) calculated using the two-way ANOVA 
fixed effect model [40], indicating small ICC in the VADLS 
data. The Spearman correlation being -0.41 indicates that 
there exists ICS, hence cluster size should be included in 
the imputation phase. Based on the simulation results, we 
focus on the results from FCS+CS. FCS+CS provided the 

narrowest confidence interval. The odds ratio of MetS is 
0.82 (95% CI: (0.55, 1.22)), indicating that the odds of hav-
ing a lower/healthier CAL score was approximately 20% 
lower for patients without MetS compared to patients 
with MetS. Recent studies have also reported the associa-
tion between MetS and periodontal disease [41]. However, 
such an association would not have been found if CCA had 
been used in our data (OR = 1.01, 95% CI: (0.66, 1.55)). 
Other MI approaches (FCS, JM+CS, and JM) all tend to 
overestimate the effect size of MetS on CAL score.

Conclusions
In this study, we compared FCS, JM and CCA for imput-
ing missing multilevel ordinal outcomes under different 
scenarios. Comprehensive simulation studies showed that 
FCS performed better than JM and CCA. FCS provided 
more reliable and stable performances with varying degrees 
of ICS, ICC, and missing rates. Including CS as a covariate 
in the imputation model improved the estimation accuracy 
when the degree of ICS was large. When there was no ICS, 
including CS in the imputation phase did not affect the 
results negatively. MI methods were valid only when the 
missing data mechanism was MCAR or MAR. Neverthe-
less, both JM and FCS performed better than CCA even 
when the missing data mechanism was MNAR.

Fig. 2 Mean relative bias of each imputation method and each parameter under different simulation scenarios. The missing data mechanism was 
MNAR and C = 4 . The missing rate was 20% and the sample size was 50. Each column represents one combination of parameters of interest and 
degree of ICS, with four different values of ICC. The black line is the reference line at 0; the grey line represents the results using the full data; the 
green line represents the results using complete case analysis; the blue line represents the results using FCS+CS; the red line represents the results 
using FCS; the purple line represents the results using JM+CS; the orange line represents the results using JM
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Despite the comprehensive comparison between FCS 
and JM under different degrees of ICS, ICC, sample size, 
missing rate, and missing mechanism in our simulation 
study, choosing an optimal imputation model for mul-
tilevel ordinal outcomes is still complicated. Based on 
our simulation results, some strategies could be taken 
to minimize bias. First, CS should be included in the 
imputation model in the presence of ICS. Second, the 
sample size of the data set should increase as the miss-
ing rate and the number of categories of ordinal out-
come increase to ensure the accuracy of the imputation 
model. Third, selecting the right imputation model is 
crucial to achieve high imputation accuracy. When there 
is model misspecification in the imputation phase, all MI 
approaches will produce biased results. Model misspeci-
fication is a special case of MNAR, where the predic-
tors associated with missingness are not included in the 
imputation model. In practice, we recommend perform-
ing a sensitivity analysis if additional auxiliary variables 
are available. Expertise/clinical knowledge would also be 
important in choosing the optimal imputation model.

Although both FCS and JM are based on Monte Carlo tech-
niques, they are fundamentally different. On the one hand, 
FCS implemented by Blimp imputes ordinal data using a 

threshold-based latent probit approach. Since it imputes one 
variable at a time, it is more flexible and easier to adjust to dif-
ferent data types. On the other hand, the R package jomo uses 
a nominal probit model, even for imputing ordinal data. Sim-
ulation studies conducted by Quartagno et al. showed that if 
the variable is truly ordinal, it gives good results with only a 
marginal loss in efficiency [36]. However, we observed that 
the bias from jomo was not negligible compared to FCS when 
ICS existed. There is another software REALCOM-IMPUTE 
that implements JM that could deal with incomplete multi-
level ordinal outcomes, but unfortunately, it is only available 
for Windows users [22] and was not considered in this paper. 
In addition to the imputation accuracy, Blimp is also compu-
tationally faster than jomo. Creating 5 imputed dataset with 
4,000 burn-in iterations and 1,000 iterations between two 
successive imputations costs the R package jomo 25 minutes, 
while only 21 seconds for software Blimp for imputing the 
real dental data with 241 samples using an M1 Mac with 8G 
RAM. However, both approaches are computationally afford-
able when imputing one dataset.

Our study has several limitations. First, we only consid-
ered the level-1 outcomes to be missing in our data. Miss-
ing level-1 and level-2 data could make the imputation more 
complicated. Comparing the performances of JM and FCS 

Table 3 Results of intercept η1 and slope β1 when the degree of ICS=0.1, ICC=0.3, missing rate was 20%, sample size N was 50, missing 
mechanism was MNAR, C = 4

Parameter Method Mean Est Mean SE Empirical SE Rel Bias (%) Cov Prob (%) MSE

η1 = −0.4

Full -0.40 0.20 0.20 -0.97 95.50 0.04

CCA -0.10 0.22 0.24 74.61 71.21 0.15

FCS+CS -0.29 0.23 0.22 26.52 93.38 0.06

FCS -0.29 0.23 0.22 27.51 92.89 0.06

JM+CS -0.26 0.25 0.25 35.41 91.44 0.08

JM -0.26 0.25 0.25 36.02 91.40 0.09

β1 = −0.2

Full -0.21 0.19 0.20 -4.48 92.40 0.04

CCA -0.05 0.24 0.26 76.77 87.86 0.09

FCS+CS -0.13 0.24 0.22 36.58 96.09 0.05

FCS -0.12 0.24 0.22 40.06 95.40 0.05

JM+CS -0.09 0.28 0.25 56.94 94.47 0.08

JM -0.08 0.28 0.26 59.03 94.03 0.08

Table 4 The odds ratio (95% CI) estimations for variables in the VADLS data based on different MI approaches

Method Age Smoking Edu (some college) Edu (college graduate) MetS

CCA 0.96 (0.93, 0.99) 0.77 (0.46, 1.28) 0.96 (0.57, 1.61) 1.50 (0.86, 2.59) 1.01 (0.66, 1.55)

FCS+CS 0.96 (0.93, 0.99) 0.72 (0.41, 1.27) 1.02 (0.64, 1.62) 1.59 (0.97, 2.64) 0.82 (0.55, 1.22)

FCS 0.96 (0.93, 0.98) 0.65 (0.39, 1.09) 0.94 (0.59, 1.51) 1.49 (0.90, 2.47) 0.87 (0.57, 1.33)

JM+CS 0.96 (0.93, 0.99) 0.74 (0.43, 1.28) 1.07 (0.66, 1.73) 1.67 (1.00, 2.78) 0.89 (0.59, 1.34)

JM 0.96 (0.94, 0.99) 0.77 (0.46, 1.29) 0.96 (0.60, 1.55) 1.53 (0.92, 2.54) 0.83 (0.55, 1.24)
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when both covariates and outcomes are missing under ICS 
could be one of the future works. Second, although this study 
found that the bias introduced by JM using the R package 
jomo was not negligible, it is not fair to conclude that JM 
is worse than FCS when imputing multilevel ordinal out-
comes. Extending the package to deal with ordinal data could 
be considered. Third, we only considered the effect of sub-
ject-level (level-2) variables on the outcome. In many cases, 
tooth-level (level-1) predictors and the interaction effects 
between tooth-level and subject-level predictors are of inter-
est. However, CWGEE may not perform well when including 
tooth-level predictors with the presence of ICS [42]. Hence, 
it imposes challenges to make reasonable comparisons of 
MI approaches when ICS exists. Future work can include 
tooth-level predictors and the interaction effects by applying 
an appropriate analysis model. Last but not least, our study 
focused on two-level clustered data and did not assess the 
time effect typically observed in longitudinal studies. Wijesu-
riya et  al. compared the methods for three-level data with 
time-varying CS for continuous outcomes and exposures 
[29]. It would be of interest to extend the comparison to the 
case when ordinal outcomes are informative on cluster size.

To conclude, our study compared JM and FCS for 
imputing multilevel ordinal outcomes when data is sub-
ject to ICS. We found that FCS is currently the optimal 
choice, and we recommend including CS in the imputa-
tion model if there is potential for ICS. Our study pro-
vides further guidelines on choosing the imputation 
method when imputing multilevel ordinal outcomes.
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