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Abstract 

Background Cancer registries collect patient-specific information about cancer diseases. The collected information 
is verified and made available to clinical researchers, physicians, and patients. When processing information, cancer 
registries verify that the patient-specific records they collect are plausible. This means that the collected information 
about a particular patient makes medical sense.

Methods Unsupervised machine learning approaches can detect implausible electronic health records without 
human guidance. Therefore, this article investigates two unsupervised anomaly detection approaches, a pattern-
based approach (FindFPOF) and a compression-based approach (autoencoder), to identify implausible electronic 
health records in cancer registries. Unlike most existing work that analyzes synthetic anomalies, we compare the 
performance of both approaches and a baseline (random selection of records) on a real-world dataset. The dataset 
contains 21,104 electronic health records of patients with breast, colorectal, and prostate tumors. Each record consists 
of 16 categorical variables describing the disease, the patient, and the diagnostic procedure. The samples identified 
by FindFPOF, the autoencoder, and a random selection—a total of 785 different records—are evaluated in a real-
world scenario by medical domain experts.

Results Both anomaly detection methods are good at detecting implausible electronic health records. First, domain 
experts identified 8% of 300 randomly selected records as implausible. With FindFPOF and the autoencoder, 28% of 
the proposed 300 records in each sample were implausible. This corresponds to a precision of 28% for FindFPOF and 
the autoencoder. Second, for 300 randomly selected records that were labeled by domain experts, the sensitivity of 
the autoencoder was 22% and the sensitivity of FindFPOF was 26% . Both anomaly detection methods had a specific-
ity of 94% . Third, FindFPOF and the autoencoder suggested samples with a different distribution of values than the 
overall dataset. For example, both anomaly detection methods suggested a higher proportion of colorectal records, 
the tumor localization with the highest percentage of implausible records in a randomly selected sample.

Conclusions Unsupervised anomaly detection can significantly reduce the manual effort of domain experts to find 
implausible electronic health records in cancer registries. In our experiments, the manual effort was reduced by a fac-
tor of approximately 3.5 compared to evaluating a random sample.
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Background
Cancer registries collect information about can-
cer patients from various institutions, such as hospi-
tals, medical practices, and pathology laboratories  [1]. 
The information collected is made available to clinical 
researchers, physicians, and patients to monitor the dis-
ease in a given population and to improve the treatment 
of cancer  [1]. To verify the collected information, can-
cer registries have data quality procedures in place  [2]. 
An essential aspect of data quality is the plausibility of 
the records that belong to a particular patient: “[D]ata 
were plausible if they were in agreement with general 
medical knowledge or information and were therefore 
feasible”  [3]. Plausibility, however, does not necessarily 
mean that the data accurately describe reality. Causes for 
implausibility include inadequate and inaccurate infor-
mation at the time a record is created, as well as human 
and system errors in the reporting institutions or pro-
cessing cancer registries. Therefore, cancer registries are 
interested in identifying implausible reported or pro-
cessed records [4].

The plausibility of data records can be assessed by rule-
based validity checks [3]. Due to the large amount of data 
in cancer registries, a complete manual data check is usu-
ally not feasible. A solution to this problem is the defi-
nition of deterministic rules designed by domain experts 
that identify implausible records [5]. Defining and main-
taining deterministic rules for complex error patterns in 
high-dimensional data is still very labor-intensive. There-
fore, statistical and machine learning methods are used 
to identify quality issues in healthcare [6–8].

Machine learning algorithms can find complex pat-
terns in high-dimensional data. A labeled and represent-
ative set of implausible records is, however, usually not 
available, because implausible records are not necessar-
ily similar to each other, new error patterns can emerge 
over time, and implausible records are often rare. There-
fore, methods to identify implausible records without 
human guidance, such as unsupervised anomaly detec-
tion, are of interest. Anomaly detection methods search 
for observations that are rare and different from the 
other observations in a dataset [9]. For example, FindF-
POF finds anomalies based on frequently occurring pat-
terns  [10, 11]. Newer methods, such as autoencoders, 
use neural networks to detect anomalies by compressing 
data [12, 13].

Samples selected by anomaly detection methods can 
be biased relative to the base distribution. On the one 
hand, we want to ensure that samples returned by an 
anomaly detection method have a higher percentage of 
implausible records than a randomly selected sample. 
On the other hand, anomaly detection can change the 

distribution of the variables relative to the base distri-
bution [14]. For example, an anomaly detection method 
may only suggest records with a certain cancer type 
or age group. Such a bias can reduce the effectiveness 
of anomaly detection methods for complete quality 
control.

This article investigates unsupervised anomaly detec-
tion to identify implausible electronic health records in 
a cancer registry. As a representative example, we study 
the performance of FindFPOF and an autoencoder 
approach on a real-world categorical dataset of 21,104 
records. The records contain information about the 
patients, their cancer disease, and diagnostic proce-
dures. Our study considers three different tumor locali-
zations: breast, colorectal, and prostate tumors. As a 
baseline, we compare the samples selected by FindF-
POF and the autoencoder with a randomly selected 
sample. To verify the plausibility of the records sug-
gested by either the anomaly detection methods or the 
random selection, medical domain experts manually 
reviewed the records. We measure the performance of 
the anomaly detection methods by their precision (per-
centage of implausible records in the returned samples), 
sensitivity  (percentage of correctly identified implausi-
ble records in the random sample), and specificity (per-
centage of correctly identified plausible records in 
the random sample). We also examine the differences 
between the distributions of the samples suggested by 
FindFPOF, the autoencoder, and the random selection 
of records.

To the best of our knowledge, the unsupervised detec-
tion of implausible electronic health records in cancer 
registries has not yet been addressed in the literature. 
Our work contributes to existing work by applying anom-
aly detection methods to categorical data. So far, low-
dimensional numerical datasets have mainly been studied 
in the healthcare domain  [6–8]. In addition, anomaly 
detection methods have often been evaluated on data-
sets for classification or with synthetic anomalies [12]. In 
contrast, this work evaluates anomaly detection methods 
on a real-world dataset in a real-world scenario, where 
domain experts manually reviewed 785 different records. 
Finally, we study the distribution changes created by 
anomaly detection methods, which are rarely discussed 
in the literature [14].

The next two sections discuss related work on identi-
fying quality issues in healthcare using anomaly detec-
tion and anomaly detection methods for categorical 
variables. The “Methods” section introduces the dataset 
studied, the anomaly detection methods, and the evalu-
ation approach. Our experimental results are presented 
and discussed in the “Results” section. We conclude with 
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remarks on the real-world relevance of our findings and 
future research directions.

Anomaly detection for data quality issues in the healthcare 
domain
Anomaly detection finds various quality issues in 
healthcare. In  [6], anomaly detection identifies mal-
functions of data quality rules in clinical decision sup-
port systems. For example, data quality rules stop 
working or alarms are triggered for plausible records 
due to rule and data changes. In [7], anomaly detection 
finds safety-related issues in health IT systems. Such 
issues could be invalid order cancellations or rejections. 
Estiri et  al.  identify implausible values in electronic 
health records with anomaly detection [8].

Existing work compares different anomaly detec-
tion methods. In  [6], six statistical anomaly detection 
methods—Poisson Changepoint, Autoregressive Inte-
grated Moving Average, Hierarchical Divisive Change-
point, Bayesian Changepoint, Seasonal Hybrid Extreme 
Studentized Deviate, and E-divisive with Median 
models—find malfunctions in four clinical decision 
support systems. All methods studied are able to iden-
tify known malfunctions. Pellet et  al.  compare accu-
rate-online support vector regression with static and 
dynamic robust confidence intervals to statistical pro-
cess control methods [7]. The methods discussed detect 
anomalies in batch and streaming scenarios. The accu-
rate-online support vector regression with dynamic 
robust confidence intervals outperforms the traditional 
methods  [7]. In  [8], a combination of hierarchical and 
k-means clustering is compared to statistical detection 
approaches using standard deviations and Mahalanobis 
distance. Compared to statistical anomaly detection, 
the combination of hierarchical and k-means clustering 
has significantly fewer false positives [8].

The articles discussed evaluate the methods differ-
ently. Ray et  al.  compare the methods studied based 
on previously labeled data  [6]. In  [8], the methods are 
evaluated using lower and upper thresholds for implau-
sible values. The thresholds are generated by literature 
review or by domain experts and validated using the 
given data distribution  [8]. In  [7], there is no ground 
truth for evaluation. The anomalies of different meth-
ods are checked visually [7].

All of the articles mentioned study numerical data. 
In  [6] and  [7], the methods are applied to one-dimen-
sional numerical and longitudinal data. In [8], approxi-
mately 720 million records with 50 different numerical 
laboratory results and common health signs are stud-
ied. The latter does not take into account the time 
dependence of the records.

Anomaly detection methods for categorical variables
In contrast to existing work in healthcare that detects 
anomalies in numerical data  [6–8], cancer registries 
mainly process categorical data. For categorical data, 
most of the standard numerical approaches to detect 
anomalies  [15, 16] cannot be used because there is no 
natural order to the values. The following strategies are 
available for detecting anomalies in categorical data.

One strategy is to use distance- and density-based 
anomaly detection methods. Distances for categori-
cal data are often data-dependent [17] and can take into 
account, for example, the number and frequency of the 
values. Based on these categorical distances, distance- or 
density-based anomaly detection methods for numerical 
data, such as the Local Outlier Factor [18], can be adapted. 
However, it is difficult to define meaningful distances that 
capture all relevant relationships between variables and 
values for diverse and unknown types of anomalies.

Another strategy is to develop methods specifically 
for categorical data  [19], for example, COMPREX and 
FindFPOF  [10, 20]. COMPREX uses several dictionar-
ies to encode data. Each dictionary encodes a partition 
of the variables in such a way that the total compression 
cost is minimized. The encoding cost of an observation is 
its anomaly score  [20]. For our experiments, we choose 
FindFPOF because it is a well-studied classical method 
for anomaly detection in categorical data [11, 19]. FindF-
POF and its parameters are discussed in detail in the 
“Anomaly detection methods” section.

A third strategy for detecting anomalies in categorical 
data is to use neural networks, such as deep one-class 
classification or autoencoders  [12, 13]. Neural networks 
can process categorical variables by using one-hot encod-
ing and appropriate activation and loss functions. Deep 
one-class classification models optimize the parameters 
of a neural network to minimize the average distance 
of the training points to a predefined point in the target 
space, which is initialized randomly  [21]. The anomaly 
score of an observation is its squared distance to the 
predefined point in the target space [21]. For our experi-
ments, we choose an autoencoder approach, because 
it is a widely used deep anomaly detection method that 
has shown good performance compared to traditional 
approaches [13, 22]. The autoencoder and its parameters 
are explained in detail in the “Anomaly detection meth-
ods” section.

Methods
Dataset
Various medical institutions, such as hospitals, medi-
cal practices, and pathology laboratories, collected the 
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records studied during diagnosis. The records were 
reported electronically to the Cancer Registry Rhineland-
Palatinate in Germany between January 2019 and Octo-
ber 2021 [23]. The cancer registry processed the reported 
information. First, deterministic rules attempted to auto-
matically complete missing values and correct implau-
sible values. Second, the reported records were linked 
to existing records for the same patient. Third, domain 
experts manually reviewed and edited records as needed.

The clinical and population-based Cancer Registry 
Rhineland-Palatinate collects information on cancer 
patients living in the German state of Rhineland-Palati-
nate. In  2021, the federal state of Rhineland-Palatinate 
had a population of approximately  4.1 million peo-
ple  [24]. In Rhineland-Palatinate, the reporting of can-
cer cases to cancer registries is mandatory for healthcare 
providers. Since  1997, population-based information, 
such as pathological characteristics of cancer cases, has 
been collected on a legal basis  [23]. The collection of 
clinical information of cancer patients, such as informa-
tion on local surgery, radiotherapy, and systemic treat-
ments, started in  2016, based on the German Cancer 
Early Detection and Registry Act of 2013 and its regional 
implementation of 2015 [23]. Although cancer registries 
in Germany are mainly organized on a regional level, 
they have a common structure for data collection [23].

Our dataset consists of 21,104 diagnostic records from 
patients with breast (ICD-10 codes: C50, D05), colorectal 
(ICD-10 codes: C18, C19, C20, D01.0, D01.1, D01.2), and 

prostate (ICD-10 codes: C61, D07.5) tumors. Each record 
consists of 16 categorical variables. Table 1 shows the dif-
ferent variables, their medical meaning, example values, 
and the number of distinct values of each variable. The 
variables ‘diagnosis age’ and ‘age at death’ were binned 
into five groups such that each bin had the same number 
of records. After preprocessing, all variables were cat-
egorical with 3 to 127 distinct values. We removed dupli-
cates regarding those  16 preprocessed variables from 
the dataset and filled missing values with a specific value 
rather than excluding incomplete records or variables 
from the analysis.

Anomaly detection methods
FindFPOF and the autoencoder calculate anomaly scores 
for all records in a dataset without human guidance. 
Based on these anomaly scores, the records are ranked 
from normal to anomalous. High ranks correspond to 
anomalous records and low ranks correspond to normal 
records. For each method, we selected the most anoma-
lous records (with a high rank according to the anomaly 
score) for evaluation by the domain experts.

Both methods were trained and evaluated on the entire 
dataset. Unlike supervised learning, this does not lead to 
overfitting or a lack of generalization, because the meth-
ods are unsupervised and do not learn from labels [15]. If 
we train FindFPOF and the autoencoder on one dataset 
and evaluate another dataset with the trained methods, 
we would expect similar results as in our experiments.

Table 1 Number of distinct values per variable overall, for only breast, only colorectal, and only prostate tumor records. Each tumor 
record contains 16 categorical variables describing the disease, the patient, and the diagnostic procedure. The variables are sorted by 
the decreasing number of distinct values overall

Variable Explanation Example Number of distinct values

Overall Breast Colorectal Prostate

ICD-O morphology Cell type and behavior of tumor 8140/3 127 91 57 33

TNM T Spread of tumor 4 74 59 33 28

TNM N Spread of lymph node metastases 3 51 42 25 8

ICD-10 code Classification of disease C50.9 30 13 15 2

ICD-O topography Location of tumor C50.9 23 9 12 2

TNM M Presence of remote metastases 1 18 9 15 13

Metastasis Location of remote metastases PUL 12 11 11 10

Grading Amount of abnormality of tumor 2 11 11 10 11

Diagnosis assurance Diagnostic method 6 7 7 6 7

Lateral localization Side location of tumor L 6 5 6 6

c/p-prefix N Diagnostic method for TNM N C 5 5 3 3

Diagnosis age (binned) Age at diagnosis [59,65) 5 5 5 5

Age at death (binned) Age at death (if patient has died) [66,70) 5 5 5 5

Sex Sex of patient W 3 3 3 3

c/p-prefix T Diagnostic method for TNM T C 3 3 3 3

c/p-prefix M Diagnostic method for TNM M C 3 3 3 3
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FindFPOF To detect anomalies, the FindFPOF algo-
rithm calculates the Frequent Pattern Outlier Fac-
tor  (FPOF)  [10]. The idea is that normal records have 
many frequently occurring patterns. Conversely, anoma-
lies have fewer frequently occurring patterns. A pattern is 
a subset of values such that there is at most one value for 
each variable. The length of a pattern is equal to the num-
ber of its values. A pattern matches a record if the record 
has all of the values in the pattern. He et al. defined fre-
quent patterns by thresholds for their maximal length 
and minimal frequency in the dataset [10]. The FPOF of 
a record is the sum of the frequencies of all matching fre-
quent patterns divided by the number of all frequent pat-
terns. Normal records have a high FPOF and anomalies 
have a low FPOF [10].

For example, the pattern {Male, Prostate} in 
Table 2 has a length of two, a frequency of 1

3
 , and matches 

the first record, but it does not match the second and 
third records. If we consider as frequent patterns all pat-
terns with a maximum length of one and an arbitrary 
frequency, then there are four different frequent pat-
terns: {Male}, {Female}, {Prostate}, {Breast}. 
The corresponding frequencies are 2

3
 , 1
3
 , 2
3
 , and 1

3
 . Conse-

quently, the FPOF of the first record in Table  2 is  1
3
 , of 

the second and third  1
4
 each. Since a higher FPOF cor-

responds to more normal cases and men with prostate 
tumors are more common than the other two records, 
FindFPOF detects the anomalies as desired.

We set the parameters of FindFPOF as suggested by 
He et al. and considered frequent patterns as all patterns 
with a maximal length of five values and a minimum fre-
quency of 10% in the entire dataset [10]. For our dataset, 
we observed 13,009 frequent patterns.

Autoencoder Autoencoders are neural networks that 
detect anomalies by their reconstruction error dur-
ing compression. Autoencoders compress data with an 
encoder and decompress it with a decoder. To compress 

data and avoid perfect memorization by the autoencoder, 
the hidden layers of the autoencoder have fewer neurons 
than its input and output layers. During training, the 
parameters of the autoencoder are adjusted to minimize 
the average reconstruction error. The anomaly score of 
a record is its reconstruction error. Records with a high 
reconstruction error are assumed to be anomalies, since 
anomalies are rare and different [22].

In Table  2, the combination of the sex male and the 
tumor localization prostate is likely. If perfect memoriza-
tion is not possible, an encoder could learn to remember 
the tumor localization and forget the sex of a person dur-
ing compression; the decoder could learn to reconstruct 
the sex from the tumor localization. For a man with a 
prostate tumor, such a decoder would correctly recon-
struct the sex as male and the reconstruction error would 
be low. In contrast, males with breast tumors are unlikely. 
Thus, a decoder that has learned to reconstruct the 
sex of a person by the tumor localization would incor-
rectly reconstruct the sex of a man with a breast tumor 
as female. The reconstruction error of such a record 
would be high. Since a higher reconstruction error corre-
sponds to more anomalous records and males with breast 
tumors are rare, the autoencoder detects the anomalies 
as desired. This example is only illustrative, since the 
encoder and decoder of an autoencoder are not directly 
interpretable.

In our experiments, the autoencoder had three hidden 
layers with 16, 8, and 16 nodes. The activation functions 
of the hidden layers were rectified linear units. After each 
hidden layer, we applied a drop-out layer with a drop-
out ratio of  0.2  [25]. We trained the autoencoder using 
the Adam optimizer with a learning rate of  0.001 and 
with mini-batches of size 32 for 20 epochs [26]. We used 
binary cross-entropy as the reconstruction loss.

Evaluation

Implausible records In our experiments, we define a 
record as implausible—following Weiskopf et  al.  [3]—
when it contains combinations of values that are not 
consistent with common medical knowledge or informa-
tion. Table 2 shows examples of plausible and implausible 
records. We want to emphasize that even for implausi-
ble records, the value of each variable may be valid. Fur-
thermore, the domain experts who reviewed the records 
could not verify that the data correctly described the 
patient, the tumor, or the diagnostic procedure [3].

There are several reasons for implausible records. 
First, records may be implausible because the physicians 

Table 2 Three example tumor records with two medical 
variables, their probability, and their medical plausibility. For 
the real-world tumor records, domain experts evaluated their 
medical plausibility. The domain experts could not verify that the 
information accurately described the person

Medical variables Probability Plausibility

Sex Tumor localization

Male Prostate Probable Plausible

Female Prostate Impossible Implausible

Male Breast Improbable Plausible
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creating the record have limited or inaccurate informa-
tion about the tumor or the patient. Second, there may 
be problems with data collection or processing. These 
problems may be caused by systems or people in the 
reporting institutions and the receiving cancer registry. 
Third, the rules for coding tumors, such as ICD-O codes, 
may change over time. Finally, there may be differences 
between the diagnoses of different physicians, as well as 
between the reporting physicians and the domain experts 
processing the records [27].

Selection and evaluation approach of tumor records Fig-
ure  1 shows the selection and evaluation approach of 
tumor records in our experiments. All  21,104 records 
were ranked separately by the FindFPOF and autoen-
coder anomaly scores. Domain experts then assessed 
the plausibility of the records from three different sam-
ples. First, the domain experts analyzed the  300 most 
anomalous  (highest-ranked) records returned by either 
FindFPOF or the autoencoder. Second, we randomly 
selected 300 from the entire 21,104 records. This random 
selection is the baseline for evaluating the performance 
of the anomaly detection methods and is used to estimate 
the probability of a record to be anomalous.

To obtain an accurate estimate of the probability that a 
record is implausible, the size of the random sample 
should be large enough. Confidence intervals for this 
probability can be calculated based on the total number 
of records in the random sample and the number of 
implausible records in the random sample using a two-
tailed exact binomial test. When designing the experi-
ments and selecting the size of the random sample, we 
did not know how many records in the random sample 
would be implausible. Therefore, we calculated the maxi-
mum width of the confidence intervals for a random 
sample of  300 records and an arbitrary number of 
implausible records. When evaluating  300 random 
records, the  95%  confidence interval that a random 
record is implausible is contained in an interval that has 
at most a with of  0.12. This means, that for a random 
sample of 300 records, where k records are implausible, 
the probability that a random record is implausible is in 
the interval k

300
− 0.06,

k
300

+ 0.06  with a probability 
of 0.95. For a known number of implausible records k, the 
width of the  95%  confidence interval may be smaller. 
Since the confidence interval is sufficiently small, we 
choose 300 records to evaluate each method.

Fig. 1 Selection and evaluation approach of tumor records. We separately rank all 21,104 records with unknown plausibility by the FindFPOF and 
autoencoder anomaly scores. From the 21,104 ranked records, we select the 300 highest-ranked (most anomalous) records according to either 
FindFPOF or the autoencoder. Additionally, we randomly select 300 records as a baseline. Out of a total of 900 selected records, 785 were different. 
Domain experts evaluated the plausibility of these 785 different records. The 900 (785 different) evaluated records with known plausibility were 
analyzed for this study
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The  900 records selected contained  785 different 
records. Manual evaluation of the  785 records is feasi-
ble, but time-consuming for domain experts. Since the 
domain experts are specialized in tumor localization, 
one out of seven domain experts evaluated each record 
according to the tumor localization of that record. For 
each record, the domain experts decided whether it was 
plausible or implausible. Records that were selected by 
more than one method were evaluated only once. The 
experts did not know which method suggested a record.

Evaluation metrics Based on the manual assessment of 
the domain experts, we calculated the precision of each 
method as the percentage of implausible records per 
selected sample. Because we do not know all implausible 
records in the entire dataset, metrics that require labe-
ling the entire dataset, such as sensitivity and specificity, 
could not be calculated for all records.

We calculate the sensitivity and specificity of the 
anomaly detection methods on the random sample 
that was labeled by the domain experts. The FindFPOF 
and autoencoder rankings of the 300 randomly selected 
records were transformed into binary labels by select-
ing k records as anomalies. The k highest-ranked records 
are labeled as anomalies, and the remaining 300− k low-
est-ranked records are labeled as normal. Based on these 

binary labels and the domain experts’ evaluation, we 
calculated the sensitivity and specificity of the anomaly 
detection methods on the random sample.

Results
Precision on the individual samples per tumor localization
We examine the number of implausible records in the 
three different samples and the precision of the corre-
sponding methods. Table 3 shows the number of implau-
sible records  #impl in each sample overall (all) and for 
each tumor localization (breast, colorectal, or prostate). 
We also show the precision #impl

n  , calculated as the num-
ber of implausible records  #impl over the number of 
records n for that sample and tumor localization.

For all tumor localizations, 28% of the FindFPOF and 
autoencoder samples were implausible. This number 
is approximately a factor of  3.5 higher than the  8% of 
implausible records found in the random sample. We 
observe the same behavior for each of the three tumor 
localizations. The three tumor localizations studied are 
medically quite different and had percentages of implau-
sible records between 2% and 18% in the random sample. 
For each tumor localization, the FindFPOF and autoen-
coder sample contained more implausible records than 
the random sample. For example, 18% of the randomly 
selected colorectal records, 34% of the colorectal records 

Table 3 Number of selected and implausible records overall and per tumor localization in each sample. FindFPOF and the 
autoencoder had a higher precision overall and for each tumor localization than the baseline. In the random sample, 8% of all 
records and 2% of the breast records were implausible. For the autoencoder sample, 28% of all records and 10% of the breast records 
were implausible. FindFPOF and the autoencoder selected more records from those localizations that had a higher percentage of 
implausible records in the random sample. For the random sample, 18% of the colorectal records were implausible, while only 2% of 
the breast records were implausible. Thus, the autoencoder and FindFPOF returned more colorectal records (approximately two-thirds 
of the records are colorectal) that had a higher percentage of implausible records (approximately one-third). In contrast, the samples 
returned by the autoencoder and FindFPOF contain a lower percentage of breast records ( 28% and 14% , respectively) than both the 
random sample and the full dataset (54% and 58% , respectively). For each sample, the tumor localizations with the highest number of 
selected and implausible records are highlighted

Records Tumor localization

All Breast Colorectal Prostate

Full dataset All n 
(

n
nall

)

21,104 (100%) 11,573 (54%) 6995 (34%) 2536 (12%)

Random sample Selected n 
(

n
nall

)

300 (100%) 172 (58%) 87 (28%) 41 (14%)

Implausible #impl 
(

precision:
#impl
n

)

23 (8%) 4 (2%) 16 (18%) 3 (8%)

Autoencoder sample Selected n 
(

n
nall

)

300 (100%) 85 (28%) 193 (64%) 22 (8%)

Implausible #impl 
(

precision:
#impl
n

)

83 (28%) 9 (10%) 67 (34%) 7 (32%)

FindFPOF sample Selected n 
(

n
nall

)

300 (100%) 40 (14%) 200 (66%) 60 (20%)

Implausible #impl 
(

precision:
#impl
n

)

83 (28%) 3 (8%) 65 (32%) 15 (24%)

All samples Selected Total (different) 900 (785) 297 (266) 480 (406) 123 (113)

Implausible Total (different) 189 (157) 16 (14) 148 (124) 25 (19)
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identified by the autoencoder, and 32% of the FindFPOF 
colorectal records were implausible.

Thus, both anomaly detection methods can detect 
implausible records with medically and qualitatively sig-
nificantly different tumor localizations. Nevertheless, the 
majority of the suggested anomalies were plausible.

Precision on the individual samples over number 
of selected highest‑ranked anomalies
Are high-ranked records more likely to be implausi-
ble than low-ranked records? In general, we selected 
the  300 records of all  21,104 records with the highest 
rank according to the anomaly score returned by the 
autoencoder or FindFPOF. We now reduce the number 
of selected records n and consider fewer highest-ranked 
anomalies. We investigate whether a reduction of the 
number of selected records  n changes the precision of 
the investigated methods. Therefore, for each method, 
Fig. 2 plots the precision #impl

n  calculated as the number 
of implausibilities #impl over the number of records con-
sidered n. We show results for less than 300 records. In 
addition, Fig. 2 shows the 95% confidence interval of the 
precision of the random selection to be 8% , based on a 
two-tailed exact binomial test, when 23 of 300 randomly 
selected records are implausible.

The results show that FindFPOF outperforms the 
autoencoder approach when we select fewer than  100 
records. For example, the  80 highest-ranked  (most 
anomalous) records according to FindFPOF contain  28 
( 35% of the sample of  80 records) implausible records. 
In contrast, the 80 records with the highest autoencoder 
rank (most anomalous) contain only 21 (26% of the sam-
ple of 80 records) implausible records. When more than 

the approximately 100 highest-ranked (most anomalous) 
records are selected, the precision drops slightly to a sim-
ilar level. As expected, the precision of FindFPOF and the 
autoencoder is always higher than in the random sample.

Sensitivity and specificity on the random sample
We calculate the sensitivity and specificity of the anom-
aly detection methods studied on the completely labeled 
random sample of  300 records. The binary labeling of 
the randomly selected 300 records based on the anomaly 
ranking is described in the “Evaluation metrics” section. 
The top row of Fig. 3 shows the sensitivity (A) and speci-
ficity  (B) of FindFPOF and the autoencoder on the ran-
dom sample depending on the number of records in the 
random sample selected as anomalies. The bottom row 
shows the corresponding ROC curve  (C) and the preci-
sion-sensitivity curve (D).

In the random sample,  23 out of  300 records are 
implausible. When the 23 highest-ranked  (most anoma-
lous) records of the random sample are selected accord-
ing to each anomaly detection method, the autoencoder 
correctly detects  5 and FindFPOF  6 of the  23 implausi-
ble records as implausible  (true positives). Similarly, the 
autoencoder correctly identifies  259 and FindFPOF  260 
of the 277 plausible records as plausible (true negatives) 
when 23 of the 300 records are selected as anomalies by 
each method. Consequently, the sensitivity of the autoen-
coder is 22% and of FindFPOF 26% on the random sample 
for 23 selected anomalies. The specificity of both anom-
aly detection methods is 94% . When more than 23 of the 
highest-ranked  (most anomalous) records are selected, 
the sensitivity of FindFPOF is higher than or equal to the 
sensitivity of the autoencoder. In contrast, the specificity 

Fig. 2 Precision #impl
n

 over the number n of selected highest-ranked (most anomalous) records in the entire dataset. We selected the n most 
anomalous records of the entire dataset according to the anomaly score of each method. For less than 100 selected records, FindFPOF finds more 
implausible records than the autoencoder. For more than 100 selected records, the performance of FindFPOF and the autoencoder is approximately 
equal
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of both methods decreases similarly. Overall, FindFPOF 
detects the implausible records of the random sample 
better than the autoencoder.

Overlap between samples for selected and implausible 
records
Some records were selected by more than one method. 
Therefore, we analyze the overlap in the samples returned 
by FindFPOF and the autoencoder separately for selected 
records and implausible records.

The last two rows of Table 3 show the total number and 
the number of different selected records and implausible 
records for all three samples. The left part  (A) of Fig.  4 
plots the number of records contained in one or more 
samples. The right part (B) of Fig. 4 shows the number of 
implausible records that were selected by FindFPOF, the 
autoencoder, or at random.

First, we discuss the number of records returned 
jointly by FindFPOF and the autoencoder. In total, 114 of 
the 785 different records were contained in multiple sam-
ples. The autoencoder and FindFPOF samples had  112 
records in common (37% of the 300 records per sample).

Second, we discuss the number of implausible records 
returned jointly by FindFPOF and the autoencoder. 
The domain experts evaluated  157 of the  785 different 

selected records as implausible. Of these  157 different 
implausible records, 32 were included in both the FindF-
POF and the autoencoder samples. Thus,  29% of the 
records returned jointly by FindFPOF and the autoen-
coder were implausible  (32 implausible of  112 jointly 
selected records). Overall, the overlap between the 
FindFPOF and autoencoder samples is high.

Percentage of selected anomalies per tumor localization
Does the number of records selected by FindFPOF and 
the autoencoder differ by tumor localization? For each 
tumor localization (all, breast, colorectal, and prostate), 
Table 3 shows the number of records n for the full data-
set, as well as the random, autoencoder, and FindFPOF 
samples. The table also shows the percentage of selected 
records n

nall
 per sample and tumor localization calculated 

as the number of records with a particular tumor locali-
zation in a sample n over the total sample size nall . The 
number  #impl and the percentage #impl

n  of implausible 
records are described in the “Precision on the individual 
samples per tumor localization” section.

For the full dataset, the majority of records ( 54% 
of  21,104 records) describe breast tumors. In con-
trast, only  12% of the total dataset are prostate 
tumor records. For anomaly detection methods, the 

Fig. 3 Performance of both anomaly detection methods on the labeled random sample. The top row shows the sensitivity (A) and specificity (B) 
over the number of selected highest-ranked (most anomalous) records in the random sample. We selected the most anomalous records in the 
random sample according to the anomaly score of each method. The bottom row shows the ROC curve (C) and the precision-sensitivity curve (D). 
For more than approximately 25 selected records, FindFPOF has a higher sensitivity than the autoencoder. The specificity of both methods 
decreases similarly
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distribution of the returned samples is different. For 
example, the 300 records returned by the autoencoder 
contain only  28% breast records, which is less than 
the 54% in the entire dataset. Conversely, the autoen-
coder sample has more colorectal records, 64% of 300 
records compared to only 34% of 21,104 records over-
all. Thus, breast records are underrepresented and 
colorectal records are overrepresented in the sam-
ple returned by both FindFPOF and the autoencoder. 
Similarly, prostate records are overrepresented in the 
FindFPOF sample and slightly underrepresented in the 
autoencoder sample.

Although  54% of the records in the entire data-
set describe breast tumors, only  2% of the randomly 
selected breast records are implausible. In contrast, 
the random sample contains 28% of colorectal records, 
of which 18% of 87 records are implausible. The pros-
tate records are in between. We expect that a well-
functioning anomaly detection method would focus 
on tumor localizations with a higher percentage of 
implausibilities. In fact, both anomaly detection meth-
ods select more colorectal records with a higher per-
centage of implausible records than breast records. For 
FindFPOF and the autoencoder, approximately two-
thirds ( 66% and 64% , respectively) of the  300 records 
selected in each sample are colorectal tumor records. 
In contrast, the percentage of breast records in the 
FindFPOF and autoencoder sample  (14% and  28% of 
each sample with 300 records) was lower than in a ran-
dom sample. As a result, the autoencoder and FindF-
POF favor colorectal tumors because a randomly 
selected colorectal record has a higher chance of being 
implausible.

Diversity of implausible records per selected sample
We study the diversity of the implausible records in the 
FindFPOF, autoencoder, and random samples. For each 
sample of implausible records, we analyze the number 
of distinct values per variable. For example, the number 
of distinct values for the variable sex in the entire data-
set is three: female, male, and diverse. Table 4 shows the 
number of distinct values per variable of the implausible 
records in the autoencoder  (AE), FindFPOF  (FF), and 
random  (RS) samples for all tumor localizations stud-
ied  (overall) and breast, colorectal, and prostate tumors 
separately. In each of these samples with implausible 
records, the number of distinct values per variable can be 
at most as high as the number of distinct values in the 
entire dataset (see Table 1).

Overall, for breast and colorectal tumors, neither 
FindFPOF nor the random sample had more distinct val-
ues in any variable than the implausible records of the 
autoencoder sample. For the implausible records of all 
three tumor localizations studied, in 9 of 16 variables the 
implausible records of the autoencoder sample had more 
distinct values than the records of the FindFPOF and the 
random samples. For breast records, in  11 of  16 vari-
ables, and for colorectal records, in 6 of 16 variables, the 
implausible records of the autoencoder sample had more 
distinct values than the implausible records of the other 
two samples. Only for prostate records did the implau-
sible records identified by FindFPOF have more distinct 
values in  4 of  16 variables than in the autoencoder and 
random samples.

In summary, the implausible records identified by 
the autoencoder are more diverse overall, as well as for 
breast and colorectal tumors, than those identified by 

Fig. 4 Number of records in one or more samples. The left part (A) shows the number of records selected by each method; the right part (B) shows 
the number of implausible records. The FindFPOF and the autoencoder samples had 112 records in common (37% of the 300 records per sample). 
Of these 112 jointly detected records, 32 records or 29% are implausible
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FindFPOF. For prostate, the implausible records of the 
FindFPOF sample are more diverse. As expected, the 
randomly selected implausible records are much more 
homogeneous than the implausible records of the other 
two samples, since the random sample contains much 
fewer implausible records.

Anomaly ranking of all identified implausible records
We examine how each anomaly detection method evalu-
ated the implausible records of the random sample and 
the other anomaly detection method. Therefore, we com-
pare the FindFPOF and autoencoder anomaly rank of 
each found implausible record. For each of the  157 dif-
ferent implausible records found, Fig. 5 shows the FindF-
POF anomaly rank over the corresponding autoencoder 
anomaly rank. The scales are square root transformed. As 
shown in the right part (B) of Fig. 4, we have four groups 
of implausible records: implausible records detected only 
by the autoencoder (●, 51 records), implausible records 
detected only by FindFPOF (▲, 51 records), implausible 
records that are in both the FindFPOF and autoencoder 
samples (■, 32 records), and implausible records that are 
only in the random sample (✚,  23 records). For each of 
the implausible records that are only in the autoencoder 

or random sample, we highlight the lowest FindFPOF 
rank with horizontal dashed lines. Similarly, we highlight 
the lowest autoencoder rank of all implausible records 
that are only in the FindFPOF or random sample with 
vertical dashed lines. The annotation of each dashed line 
is the corresponding lowest rank and its percentage of 
the total 21,104 records.

If we sort all records according to their FindF-
POF anomaly score, we would have to evaluate 9084 
records, 43% of all 21,104 records, to find all 51 implau-
sible records that are returned only by the autoencoder. 
Conversely, to find all  51 implausible records that are 
only in the FindFPOF sample with the autoencoder, we 
would have to evaluate  4477 records, 21% of all  21,104 
records. Thus, the autoencoder identifies the implausible 
records that are only returned by FindFPOF earlier than 
the other way around.

To allow the autoencoder to find all  23 implausible 
records that are only in the random sample, it is nec-
essary to evaluate  20,389 records  (97% of all 21,104 
records). For FindFPOF, one needs to evaluate  18,880 
records (89% of all 21,104 records). So, as expected, some 
implausible records in the whole dataset are not detected 
well by the autoencoder and FindFPOF.

Table 4 Number of distinct values per variable for each sample with implausible records. The number of distinct values per variable 
is shown for the autoencoder (AE), FindFPOF (FF), and the random selection (RS), as well as for all tumor localizations studied (overall), 
and only for breast, colorectal, and prostate tumors. The implausible records identified by the autoencoder are more diverse than 
those identified by FindFPOF, overall, for breast tumors, and colorectal tumors. For prostate, the implausible records of the FindFPOF 
sample are more diverse. The randomly selected implausible records are much more homogeneous than the implausible records of 
the other two samples. We highlight the highest number of distinct values. The variables are sorted by the decreasing number of 
distinct values in the complete random sample

Variable Number of distinct values

Overall Breast Colorectal Prostate

AE FF RS AE FF RS AE FF RS AE FF RS

ICD-10 code 21 15 11 6 1 2 13 12 8 2 2 1

TNM T 12 9 10 6 0 2 10 6 6 6 6 3

ICD-O topography 17 13 9 5 1 2 11 11 6 1 1 1

Grading 9 7 7 6 2 2 8 7 6 4 4 2

ICD-O morphology 23 19 6 8 2 2 17 17 4 4 5 1

TNM N 9 5 5 4 0 2 8 4 5 4 4 2

Diagnosis age (binned) 5 5 5 3 3 3 5 5 4 2 4 2

Age at death (binned) 5 5 5 2 2 1 5 5 4 2 4 1

Lateral localization 5 4 4 3 1 3 5 4 4 3 3 1

TNM M 10 7 4 2 1 2 7 5 3 5 5 2

Metastasis 7 7 4 4 3 2 5 5 2 2 4 2

Diagnosis assurance 7 6 3 4 2 2 5 5 2 4 4 1

c/p-prefix T 3 3 3 2 0 2 3 3 3 2 2 2

c/p-prefix N 3 3 3 2 0 2 3 3 3 2 2 2

c/p-prefix M 3 2 3 2 1 1 3 2 3 2 2 2

Sex 2 2 2 1 1 1 2 2 2 1 1 1
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Discussion
Unsupervised anomaly detection methods could be 
an essential part of data quality control in cancer reg-
istries. Whenever records are selected for quality con-
trol without explicitly defining error patterns, anomaly 
detection could select these records. These anomalous 
records would then be reviewed by domain experts. As 
our experiments show, this could reduce the manual veri-
fication effort of domain experts by a factor of approxi-
mately 3.5 compared to randomly selecting records (the 
percentage of implausible records is increased from 8% 
in the random sample to 28% in the anomalous samples 
of 300 records each). Our results also show that the preci-
sion of each method could be further increased by check-
ing fewer highest-ranked  (most anomalous) records, for 
example, 100 instead of 300 records. Finally, the anomaly 
detection methods found more diverse implausibilities 
compared to the random selection. This is important 
because more diverse implausibilities can point to many 
different root causes of quality issues. Based on the 
implausibilities found this way, cancer registries can 
improve existing processes, implement new rule-based 

validity checks, and train users. In other words, anom-
aly detection methods can detect more unknown and 
diverse implausibilities than traditional quality control 
approaches.

The anomaly detection methods discussed could also 
find implausible records for different tumor localiza-
tions. In our experiments, the breast, colorectal, and 
prostate tumors studied were medically and qualitatively 
quite different (between  2% and 18% of  300 randomly 
selected records are implausible). For all tumor localiza-
tions investigated, the methods studied detected implau-
sible records well. Moreover, the records of most tumor 
localizations share the 16 variables studied above. Thus, 
we could apply anomaly detection methods to records 
of other tumor localizations and would expect similar 
results.

Implausibilities also occur in records of other medical 
events. So far, we have only examined tumor records cre-
ated at the time of diagnosis. Clinical cancer registries, 
however, also collect information about other medical 
events, such as surgery, radiotherapy, systemic therapy, 
and side effects. For each of these medical events, anom-
aly detection methods could find implausibilities. Among 
the records describing medical events in clinical cancer 
registries, the diagnosis records studied are one of the 
most complex in terms of the number of variables and 
values. Therefore, we would expect a similar performance 
when applying the suggested anomaly detection meth-
ods to other types of records. Until now, we have consid-
ered different records of the same person independently. 
Implausibilities between different medical events of the 
same person could be detected by anomaly detection 
methods for discrete event sequences [28].

Anomaly detection methods can detect anomalies in 
high-dimensional data. The data of other tumor localiza-
tions or medical events may have more dimensions than 
the data we studied in our experiments. In high-dimen-
sional data, some anomaly detection methods, especially 
distance-based approaches, do not work well  [29]. As 
pointed out by Pang  et  al., anomaly detection methods 
using neural networks can detect anomalies in high-
dimensional data well  [13]. Therefore, when studying 
high-dimensional data, we recommend anomaly detec-
tion approaches such as autoencoders and deep one-class 
classification [13, 21].

For the domain experts, the evaluation of records sug-
gested by anomaly detection methods could be simplified 
by highlighting anomalous variables. In our experiments, 
domain experts reviewed the entire anomalous record to 
find implausibilities, resulting in a very time-consuming 
review process. To reduce the manual effort, explain-
able anomaly detection methods could visualize the 

Fig. 5 FindFPOF anomaly ranking over autoencoder anomaly 
ranking for the 157 different implausible records in the FindFPOF, 
autoencoder, and random samples. Each implausible record is 
ranked based on the FindFPOF anomaly score and the autoencoder 
anomaly score. High ranks correspond to anomalous records and 
low ranks correspond to normal records. The autoencoder finds 
the implausibilities identified by FindFPOF earlier than the other 
way around. All implausible records of the FindFPOF sample are in 
the 4477 (21% of all 21,104 records) highest-ranked records of the 
autoencoder. The implausible records of the autoencoder sample 
are in the 9084 (43% of all 21,104 records) highest-ranked records of 
FindFPOF. Note that the scales are square root transformed
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anomalous variables and values of selected records [30]. 
Furthermore, explanations for the selected records could 
increase transparency and acceptance of anomaly detec-
tion methods by domain experts.

Limitations
We performed our experiments on only one real-world 
dataset. Nevertheless, we expect similar results for data-
sets from other cancer registries, because the size of our 
dataset was large and the data processed in cancer regis-
tries are highly standardized across countries [23].

We did not perform multiple runs of our experiments 
because of the high manual effort required to review 
the records by domain experts. Thus, we did not evalu-
ate the properties of different randomly selected samples, 
the random initialization of the weights and biases of the 
neural network, and the random selection of the mini-
batches to train the neural network.

Different domain experts may evaluate the same record 
differently. To increase the consistency of the domain 
experts’ evaluations, the experts reviewed the records 
according to standardized guidelines. In addition, all experts 
reviewed records from all samples. Each expert, however, 
reviewed a different number of records from each sam-
ple. Thus, the potential bias introduced by the individual 
domain experts affected all methods, but to varying degrees.

Conclusions
We applied two unsupervised anomaly detection meth-
ods, FindFPOF and an autoencoder, to a real-world cat-
egorical dataset to find implausible electronic health 
records in cancer registries. Records suggested by the 
anomaly detection methods were reviewed by domain 
experts in a real-world scenario.

Both anomaly detection approaches performed well 
in detecting implausible electronic health records. For 
samples of  300 records,  28% of the anomalous records 
are implausible. This corresponds to a precision of 28% 
for FindFPOF and the autoencoder and is higher than 
the 8% of implausible records in the random sample. Fur-
thermore, the methods investigated select more colorec-
tal tumor records, since this tumor localization has the 
highest percentage of implausible records in the random 
sample. Finally, FindFPOF has a higher precision than the 
autoencoder when fewer than 100 records are suggested 
for review by each method.

In conclusion, unsupervised anomaly detection can 
significantly reduce the manual effort of domain experts 
to improve data quality. In our experiments, the manual 
effort was reduced by a factor of approximately 3.5 com-
pared to evaluating a random sample.
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