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Abstract 

Background Sub‑cohort sampling designs such as a case‑cohort study play a key role in studying biomarker‑disease 
associations due to their cost effectiveness. Time‑to‑event outcome is often the focus in cohort studies, and the 
research goal is to assess the association between the event risk and risk factors. In this paper, we propose a novel 
goodness‑of‑fit two‑phase sampling design for time‑to‑event outcomes when some covariates (e.g., biomarkers) can 
only be measured on a subgroup of study subjects.

Methods Assuming that an external model, which can be the well‑established risk models such as the Gail model for 
breast cancer, Gleason score for prostate cancer, and Framingham risk models for heart diseases, or built from prelimi‑
nary data, is available to relate the outcome and complete covariates, we propose to oversample subjects with worse 
goodness‑of‑fit (GOF) based on an external survival model and time‑to‑event. With the cases and controls sampled 
using the GOF two‑phase design, the inverse sampling probability weighting method is used to estimate the log haz‑
ard ratio of both incomplete and complete covariates. We conducted extensive simulations to evaluate the efficiency 
gain of our proposed GOF two‑phase sampling designs over case‑cohort study designs.

Results Through extensive simulations based on a dataset from the New York University Women’s Health Study, we 
showed that the proposed GOF two‑phase sampling designs were unbiased and generally had higher efficiency 
compared to the standard case‑cohort study designs.

Conclusion In cohort studies with rare outcomes, an important design question is how to select informative subjects 
to reduce sampling costs while maintaining statistical efficiency. Our proposed goodness‑of‑fit two‑phase design 
provides efficient alternatives to standard case‑cohort designs for assessing the association between time‑to‑event 
outcome and risk factors. This method is conveniently implemented in standard software.
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Background
In biomedical studies, sub-cohort sampling designs have 
been widely used to estimate biomarker-disease asso-
ciations because of their cost effectiveness. Wang et  al. 
recently developed novel two-phase sampling designs for 
binary outcomes [1]. Assuming that an external model is 
available to relate the outcome and complete covariates 
that are available in the first phase, the designs oversam-
ple cases and controls with worse goodness-of-fit (GOF) 
based on the external model and further match them on 
complete covariates similarly to the balanced design [2]. 
The GOF designs exhibit improved efficiency comparing 
to case–control design or a balanced case–control design 
for binary outcomes [1].

In cohort studies that follow subjects over time, time-
to-event outcome (or survival outcome) is commonly of 
interest. In our motivating study from the New York Uni-
versity Women’s Health Study (NYUWHS), one outcome 
of interest is time to breast cancer diagnosis and we are 
interested in studying the association of hormone bio-
markers and breast cancer risk in younger women [3, 4]. 
Although full-cohort studies provide an ideal setting to 
study biomarker-disease associations, the combination 
of large sample sizes, low incidence rates, and high costs 
(e.g., blood measurements) make it difficult and costly to 
measure the biomarkers on the entire cohort [5, 6].

Two-phase sampling designs such as nested case–control 
(NCC) designs [7] and case-cohort (CC) designs [8] can 
help overcome this limitation. Previous studies [5, 9, 10] 
that examined efficiency with these designs have primarily 
focused on comparing various inference procedures rather 
than from sampling design perspectives: e.g., Prentice [8], 
Self and Prentice [11], and Lin and Ying [6] for the un-strat-
ified CC designs and Borgan I and II methods [12] for the 
stratified CC designs.

In this paper, we extend the novel GOF two-phase sam-
pling designs proposed by Wang et al. [1] for estimating 
hazard ratio parameters with time-to-event data. Assum-
ing that an external model exists to relate the survival 
outcome and phase I complete covariates, we propose a 
sampling strategy that is based on the survival probability 
computed from the external model as well as the follow-
up time, thereby extending the GOF design to survival 
outcomes. For estimation and inference, we propose to 
use the inverse probability weighting (IPW) method to 
account for the sampling design.

The paper is organized as follows. In Methods sec-
tion, we describe the sample designs and estimation 
procedures of the GOF two-phase sampling designs. 
Simulation of NYUWHS data section includes simula-
tion studies evaluating the efficiency of our proposed 
designs based on the real dataset from NYUWHS. We 
conclude with Discussion section.

Methods
Outline and notations
Consider a cohort of N  subjects followed over time. Let 
T = min(T ∗,C) be the observed survival time (or fail-
ure time), where T ∗ is true time-to-event (for those who 
develop the event) and C is censoring time (for those who 
have not developed the event by the end of follow-up). 
Let δ = I(T ∗ ≤ C) denote the event indicator, where 
the indicator function I(·) takes the value 1 if T ∗ ≤ C , 
and 0 otherwise. Let X denote the collection of phase I 
covariates that are available for the entire cohort, and Z 
denote phase II covariates (e.g. biomarkers) that can only 
be measured on a subset of m(m ≪ N ) . We assume that 
censoring time and true survival time are independent 
conditioning on covariates. The Cox proportional haz-
ards (PH) regression model can be used to describe the 
relationship between the covariates and time-to-event 
outcome,

where �0(t) is the unknown baseline hazard function, 
β and α are the log HR parameters for covariates X and 
Z , respectively. The partial likelihood principle has been 
proposed to estimate the regression coefficients, β and α , 
while circumvents the estimation of infinite dimensional 
baseline hazard function [13, 14].

Goodness‑of‑fit two‑phase sampling design 
for time‑to‑event outcome
We first assume that an external working model exists 
and only depends on X , that is,

where �e0(t) , the baseline hazard function, and η , the haz-
ard ratio parameters, are both known or can be obtained 
from external models. Here and in the sequel, the sub-
script “ e ” represents the external model. We note that 
such preliminary models often exist: e.g., breast cancer 
risk prediction models such as the Gail model [15, 16]. 
Note that either the complete set or a subset of X can be 
included in the external model. We compute a GOF-
based quantity for subject i(i = 1, . . . ,N ) using the exter-
nal model accounting for the length of follow-up, i.e. 
D
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.

Let  R denote whether a subject is selected into phase II, 
with R = 1 indicating selection and R = 0 for non-selec-
tion. We propose to use the quantity D(Ti, δi,Xi) to select 
m subjects into phase II as below, where m =

N
i=1Ri . 

Because the quantity D informs the goodness-of-fit (GOF) 

(1)�(t) = �0(t)e
βTX+αTZ ,

(2)�e(t|X) = �e0(t)e
ηTX ,
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of the external model (2), the GOF two-phase design 
over-samples subjects who show poor fit to the risk pre-
diction working model as they potentially are more inform-
ative and likely show benefits from including the new 
phase-II biomarkers into their risk prediction. It is also 
desirable to achieve a prespecified case–control ratio within 
m number of the phase II subjects as commonly done in 
epidemiological studies. We use the sampling probability 
P(Ri = 1|Ti, δi,Xi), which is D(Ti, δi,Xi) multiplied by a 
constant c1(c1 > 0) for cases and c0(c0 > 0) for controls, 
i.e. P(Ri = 1|δi = k ,Ti,Xi) = min{1, ckD(Ti, δi,Xi)}, k = 
0 or 1. When it is desirable to include all cases in phase II, 
the sampling probability for cases can be set as 1, and c0 is 
selected to achieve the targeted number of controls by 
P(Ri = 1|δi = 0,Ti,Xi) = min{1, c0D(Ti, δi,Xi)}.

Meanwhile, sub-cohort sampling designs often use a 
stratification on some full-cohort covariates (i.e., Phase 
I covariates) for various reasons: i) controlling for con-
founders, ii) reducing measurements error, and iii) 
improving efficiency of the estimates. Briefly, stratified 
designs first partition the cohort into different strata by 
confounder values (e.g., age group and race), then select 
random samples of sub-cohort subjects from each stra-
tum. Our GOF sampling designs for survival outcome 
can also be implemented by stratifying on phase I covari-
ates as demonstrated in Discussion section of Wang et al.
[1]. When we select subjects into phase II, the balanced 
GOF designs allow different sampling probabilities for 
different strata. We term this design the balanced GOF 
two-phase sampling.

Statistical inference for GOF two‑phase sampling designs
Directly fitting the Cox PH model (1) to only the phase II 
subset selected via the GOF two-phase design can lead to 
the biased estimation of parameters β and α because the 
phase II subjects are not a random representative sam-
ple of the full-cohort and are selected based on an exter-
nal model using the information of outcome and phase 
I covariates. Thus, we propose to apply the IPW par-
tial likelihood method for analysis, where the sampling 
probabilities are used as weights. Based on Eq.  (1), the 
weighted partial likelihood function is specified as

where Yj(t) = I
(
Tj ≥ t

)
 is the at-risk indicator function, 

and wi = 1/P(Ri = 1|δi,Ti,Xi).
For the implementation, β̂  , α̂ and their standard errors 

can be directly estimated from standard statistical soft-
ware by fitting the weighted Cox PH regression model to 
the phase II data (e.g., coxph function with the inverse of 

PL(β ,α) =
∏m

i=1

[
wi·e

βTXi+αTZi

∑m
j=1 Yj(Ti) · wj · e

βTXj+αTZj

]δi
,

the sampling probability P(Ri = 1|δi,Ti,Xi) in the weight 
argument in the R package, “survival”) [17]. Because 
the weights are calculated from the external model, the 
standard errors of the estimates are calculated using the 
robust variance formula, achieved by specifying option 
robust = TRUE in the coxph function. Under this assump-
tion, the variability of weight estimation is not accounted 
in the process of evaluating standard errors of hazard 
ratios of the main model. When the weights are esti-
mated using preliminary data, other approaches such 
as the delta method or bootstrapping method would be 
considered to properly account the variability of weight 
estimations.

Simulation of NYUWHS data
Data generating process
Our simulation designs were based on the NYUWHS which 
consisted of 6550 women younger than 50 years of age at 
enrollment, where the objective was to identify risk factors 
for breast cancer in young women [3, 4]. As phase I covari-
ates, we used real values of the risk factors including age at 
enrollment (AGE; continuous), age at menarche (AGEMEN; 
continuous), history of benign breast biopsy (BIOPSY; 
yes or no), experience of full-term pregnancy (FTP; yes 
or no), family history of breast cancer (REL; yes or no), 
and race (RACE; white or non-white). Given these covari-
ates, we generated the time to breast cancer onset from the 
Eq.  (1), where X denoted the set of the phase I covariates 
and a biomarker Z , as a phase II covariate, was simulated as 
Z = −2.15+ 0.05Age + ǫ, ǫ ∼ N (0, 1) to yield approxi-
mately 0.2 of correlation between the Z and AGE variables. 
The true parameter vector β for the phase I covariates X 
was set to be (0.028,−0.034, 0.431,−0.105, 0.541, 0.347)T 
based on the NYUWHS full-cohort analysis. We set α , the 
coefficient for Z , to be 0.2 or 0.5 corresponding to a weak 
or strong biomarker association with disease risk, respec-
tively. The baseline hazard function, �0(t) , assumed the 
Weibull(k = 0.929, � = 0.002) . Random censoring times 
were independently generated from min(exp(�∗), 25) , 
where �∗ was set to yield a 5% or 10% event rate 
approximately.

Comparisons of sub‑cohort sampling designs
Under each simulation, the full-cohort analysis results 
were considered as the gold standard. For the GOF 
two-phase sampling designs, we selected phase II 
subjects using the sampling probability based on the 
GOF quantify from the external model that inde-
pendently developed from a working Cox PH model 
�
e(t) = �

e
0(t)e

ηTX , using 10,000 samples bootstrapped 
from the full cohort data. To be comparable with the 
case-cohort designs, we selected all cases and used a 
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constant c0 to ensure 1-to-1 or 1-to-2 case–control 
ratios. We generated case-cohort data where a certain 
number of sub-cohort was randomly selected so that 
the sample sizes between our GOF two-phase sam-
pling designs and the CC designs were almost same. 
Two different stratifying procedures were performed: 
(i) unstratified and (ii) stratified by the median of AGE 
variable.

We applied the standard partial likelihood method 
for analyzing full-cohort data and the IPW method for 
our GOF sampled data. As the commonly used meth-
ods for the CC designs, Prentice and Borgan I methods 
were applied for un-stratified CC data and stratified CC 
data, respectively. Because both Prentice and Borgan 
I methods use individual weights as the inverse of the 
sub-cohort selection probability, the estimation tech-
nique is essentially the same to our IPW method under 
the GOF two-phase designs. Therefore, we can inter-
pret the difference in simulation results readily as the 
consequence of using different designs. Furthermore, 
we conducted the semiparametric maximum-likelihood 
approach (SMLE) which has been known as an efficient 
method among sub-cohort sampling methods using the 
R package, “TwoPhaseReg” [18]. The SMLE method 
models the conditional probability of phase II covari-
ates given phase I covariates in the likelihood function 
using B-spline sieve approximation. Even though SMLE 
can accommodate continuous phase I covariates for 
analyzing two-phase data, the dimensionality of phase I 
covariates has to be necessarily small [18].

Measures of model performance
The bias and standard deviation of the log hazard ratio 
estimates were reported as performance measures of 
the methods. The asymptotic standard error of the esti-
mated log HR and the coverage probability (CP) of the 
95% confidence interval (CI) were also obtained to eval-
uate the precision of the estimates. For comparison of 
the efficiency between the methods, we computed the 
relative efficiency as the averaged ratio of the asymptotic 
variances between two methods. With the setting of the 
large number of phase I covariates and large sample size 
(e.g., over 5,000 as in NYUWHS), the implementation 
of the SMLE method was extremely time consuming. 
Thus, we used random sample N = 2000 from the full 
cohort of NYUWHS at each simulation, and 500 simula-
tions were run. To investigate type I error and power of 
our proposed GOF two-phase designs, we additionally 
conducted 5,000 simulations when event rate was 5 and 
10% with true α = 0.2 and 0.5 . All computations were 
conducted in R (version 4.0.3).

Simulation results
The results on estimation of the biomarker’s coeffi-
cient α are presented in Table  1. Under the sampling 
designs including the full-cohort design, all estima-
tions of α had negligible biases. The CPs of the 95% 
CIs for α were closed to the nominal level in all meth-
ods, indicating that the standard error estimates were 
accurate. Full-cohort analysis showed the highest 
efficiency (i.e., lowest standard deviation of the esti-
mates) as expected. In general, the proposed GOF two-
phase sampling designs showed better efficiency than 
the standard CC designs, and the SMLE estimation 
method was more efficient than IPW and weighted 
method for CC designs.

We visualized the standard error of the estimated 
α in the case of 5% event rate (Fig. 1). The results for 
the 10% event rate are similar (Supplementary Fig. 1). 
Our proposed GOF two-phase sampling designs gen-
erally had higher efficiency than the standard CC 
designs. The SMLE method and the IPW under the 
GOF two-phase sampling design were comparably 
efficient. The numerical relative efficiency of the 
asymptotic variance of α̂ are summarized in Table 2. 
In general, the proposed GOF two-phase design was 
more efficient compared to the standard CC design. 
When we compared the efficiency between each 
method (i.e., denominator of relative efficiency) and 
the SMLE method (i.e., numerator of relative effi-
ciency) under the GOF two-phase design, the range 
of the relative efficiency of the IPW method was 
from 0.75 to 0.95 (i.e., 5–25% of efficiency loss), 
while standard method under the CC designs had 
40–50% of additional efficiency loss. We note that 
the computation of SMLE can be expensive when 
the number of biomarker and covariates increases. 
Therefore, our simulations clearly demonstrated the 
value of novel sampling design, which can improve 
the efficiency of two-phase sample collection using 
easily implemented estimation method and is scal-
able to studies with large sample size and large num-
ber of biomarkers and covariates. All other phase I 
covariates were unbiased and showed reasonable 
efficiency under our proposed two-phase designs 
(Supplementary Tables 1 to 6).

As shown in Table  3, we observed that the empiri-
cal type I error rate approached the nominal level of 
0.05. The power showed that our proposed two-phase 
design performed increasingly well to reject the null 
hypothesis when the true α deviated from zero and 
with increasing event rates. Full cohort designs showed 
higher power than our proposed two-phase designs as 
expected.
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Discussion
Motivated by common epidemiologic time-to-event 
analyses, for instance, to identify risk factors of a dis-
ease in prospective cohorts, we extended the GOF two-
phase sampling designs proposed by Wang et al. [1] for 
binary outcomes to time-to-event outcomes. We used 
their approach which is to oversample subjects who 
show poor goodness-of-fit based on an external model. 
We based our simulations on data from an existing 
study of risk factors for breast cancer in a prospective 
cohort, the NYUWHS. Through extensive simulations, 
we empirically compared our proposed method with 
full cohort analysis, standard weighting methods under 
the CC designs, and the SMLE method under both 
GOF two-phase sampling and CC designs. Our simu-
lation demonstrated that inverse probability weight-
ing methods generally showed higher efficiency in our 
proposed GOF two-phase sampling designs rather 
than the standard CC designs. Furthermore, the IPW 
method performed well in terms of both unbiased-
ness and efficiency under the GOF two-phase sampling 
design. Notably, balanced GOF designs achieved addi-
tional efficiency, in particular for estimating the covari-
ates which were used for stratifying (Supplementary 
Tables 1 and 4). Note that this finding is consistent with 
the case of binary outcomes in previous study [1]. Fur-
thermore, we also investigated the efficiency gain by the 

different levels of correlations between AGE variable 
and the simulated biomarker. Our proposed GOF two-
phase designs consistently showed higher efficiency 
(i.e., lower than 1 of the relative efficiency) compared to 
standard CC designs (Supplementary Table 7).

In addition to the simulated external model used 
in Simulation of NYUWHS data section, we conducted 
simulations using the Gail model [15] with its imple-
mentation in the R package “BCRA”, which provides 
risk projections of invasive breast cancer according to 
National Cancer Institute’s Breast Cancer Risk Assess-
ment Tool algorithm [19], to generate the GOF sam-
pling probability. Specifically, we followed the same 
simulation setup of 5% event rate, true α = 0.2 , and 
1-to-1 case and control ratio. Using all of 6550 subjects 
from the NYUWHS cohort, we compared the proposed 
GOF two-phase designs with standard case-cohort 
designs. The simulation results demonstrated that the 
proposed GOF two-phase sampling design maintained 
higher efficiency (30–40% efficiency gain) than the 
standard CC designs (Supplementary Table 8).

Even though the SMLE promised the highest effi-
ciency for analyzing two-phase data, it has practical 
limitations: i) the number of phase I covariates has to 
be small, especially when the covariates are continu-
ous, and ii) the computational time heavily depends 
on the sample size. When the number of phase I 

Table 1 Performance measures of the simulated biomarker coefficient 
(
α̂
)
 : Bias (emp SD; CP)

Abbreviations: Ratio Case and control ratio, empSD standard deviation of the estimates, CP coverage probability of the 95% CI, Cox Standard Cox PH model, Full cohort 
full cohort design, IPW IPW based Cox PH model, Two-phase GOF two-phase sampling design, SMLE semiparametric maximum-likelihood method, Standard Prentice 
method as unstratified approach and Borgan I method as stratified approach, CC standard case-cohort design. Note that we describe each method under each design 
as method:design using the abbreviations

Stratification Event rate α Ratio Cox:Full cohort IPW:Two‑phase SMLE:Two‑phase Standard:CC SMLE:CC

Unstratified 5% 0.2 1:1 0.001 (0.098; 0.954) 0.004 (0.150; 0.936) ‑0.002 (0.120; 0.944) 0.030 (0.195; 0.918) 0.005 (0.146; 0.940)

1:2 ‑0.003 (0.103; 0.940) ‑0.005 (0.121; 0.920) ‑0.003 (0.111; 0.926) 0.010 (0.150; 0.944) ‑0.002 (0.128; 0.952)

0.5 1:1 0.008 (0.106; 0.934) 0.026 (0.163; 0.916) 0.007 (0.131; 0.946) 0.070 (0.209; 0.942) 0.013 (0.152; 0.940)

1:2 0.003 (0.104; 0.928) 0.004 (0.124; 0.950) 0.005 (0.115; 0.948) 0.043 (0.171; 0.928) 0.002 (0.135; 0.948)

10% 0.2 1:1 ‑0.003 (0.070; 0.946) ‑0.009 (0.090; 0.940) ‑0.005 (0.081; 0.944) 0.001 (0.123; 0.952) ‑0.008 (0.099; 0.948)

1:2 ‑0.001 (0.075; 0.940) ‑0.007 (0.082; 0.934) ‑0.001 (0.078; 0.936) 0.009 (0.096; 0.942) 0.003 (0.088; 0.946)

0.5 1:1 0.003 (0.070; 0.940) ‑0.007 (0.094; 0.954) 0.001 (0.082; 0.954) 0.042 (0.137; 0.936) 0.008 (0.100; 0.956)

1:2 0.001 (0.074; 0.936) ‑0.016 (0.081; 0.926) 0.001 (0.078; 0.940) 0.010 (0.105; 0.934) 0.000 (0.087; 0.950)

Stratified by 
median AGE

5% 0.2 1:1 0.001 (0.098; 0.954) 0.009 (0.146; 0.940) 0.003 (0.121; 0.944) 0.053 (0.218; 0.888) 0.008 (0.139; 0.946)

1:2 ‑0.003 (0.103; 0.940) ‑0.003 (0.123; 0.930) ‑0.001 (0.112; 0.938) 0.024 (0.159; 0.926) 0.003 (0.129; 0.946)

0.5 1:1 0.008 (0.106; 0.934) 0.040 (0.161; 0.936) 0.017 (0.132; 0.942) 0.143 (0.293; 0.832) 0.009 (0.157; 0.924)

1:2 0.003 (0.104; 0.928) 0.006 (0.131; 0.936) 0.009 (0.115; 0.934) 0.069 (0.187; 0.902) 0.010 (0.131; 0.942)

10% 0.2 1:1 ‑0.003 (0.070; 0.946) ‑0.014 (0.088; 0.954) ‑0.004 (0.080; 0.964) 0.014 (0.131; 0.934) 0.001 (0.104; 0.952)

1:2 ‑0.001 (0.075; 0.940) ‑0.008 (0.084; 0.930) ‑0.001 (0.078; 0.944) 0.011 (0.101; 0.938) 0.005 (0.089; 0.942)

0.5 1:1 0.003 (0.070; 0.940) ‑0.004 (0.097; 0.926) 0.005 (0.085; 0.944) 0.043 (0.133; 0.948) 0.003 (0.095; 0.964)

1:2 0.001 (0.074; 0.936) ‑0.014 (0.080; 0.948) 0.001 (0.078; 0.948) 0.026 (0.114; 0.916) 0.005 (0.091; 0.934)
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Fig. 1 Asymptotic standard error of the estimated log HR for simulated biomarker 
(
α̂
)
 under 5% of the event rate. Abbreviations: Standard Cox 

PH model (Cox); full cohort design (Full cohort); IPW based Cox PH model (IPW); GOF two‑phase sampling design (Two‑phase); semiparametric 
maximum‑likelihood method (SMLE); Prentice method as unstratified approach and Borgan I method as stratified approach (Standard); standard 
case‑cohort design (CC). Note that we describe each method under each design as method:design using the abbreviations
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covariates increases with the sample size, numerical 
cost of implementing SMLE becomes too expensive for 
practical use. On the other hand, the IPW method can 
be conveniently implemented in standard software. 
Furthermore, rather than randomly sampling the sub-
cohort by the standard CC designs, the proposed GOF 
two-phase sampling design provides a new perspective 
to define “informative” subjects for efficient sampling, 
especially with respect to the potential of added val-
ues by the phase II covariates to risk characterization 
or prediction. By oversampling subjects with worse 
goodness-of-fit based on an external model, the design 

can include those more “informative” subjects and thus 
lead. to efficiency gain. This is the key idea of our pro-
posed GOF two-phase design as in Wang et al. (2020) 
that the lack of fit would be suggestive of the necessity 
to include phase II covariate in the model to achieve 
better goodness-of-fit. Lastly, our proposed GOF two-
phase sampling designs with the IPW method for anal-
ysis would be readily scalable in cohort studies even 
when the sample size is large and event rate is low.
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event rate: average SE (SD of SE). Supplementary table 3. Simulation 
results for 5% event rate: coverage probability for 95% CI. Supplementary 
table 4. Simulation results for 10% event rate: Bias (SD). Supplementary 
table 5. Simulation results for 10% event rate: average SE (SD of SE). Sup‑
plementary table 6. Simulation results for 10% event rate: coverage 
probability for 95% CI. Supplementary table 7. Relative efficiency of 
the asymptotic variance under GOF two‑phase designs to standard 
CC designs by different level of correlations. Supplementary table 8. 
Performance measures: Bias (SD), asymptotic standard error (SD of SE) and 
coverage probability for 95% CI for additional simulations using the exter‑
nal BCRA model. Supplementary figure 1. Asymptotic standard error (SE) 
of the estimated log HR for simulated biomarker (α ̂ ) from each method 
under each simulation setting of 10% event rate.

Table 2 Performance measures of the simulated biomarker coefficient 
(
α̂
)
 : Relative efficiency of the asymptotic variance of α̂ under 

SMLE relative to each method

Abbreviations: Ratio Case and control ratio, IPW IPW based Cox PH model, Two-phase GOF two-phase sampling design, SMLE semiparametric maximum-likelihood 
method, Standard Prentice method as unstratified approach and Borgan I method as stratified approach, CC standard case-cohort design. Note that we describe each 
method under each design as method:design using the abbreviations. In the calculation of relative efficiency, the asymptotic variance of SMLE was numerator, while 
denominator was the asymptotic variance of each method

Stratification Event rate α Ratio IPW:Two‑phase SMLE:Two‑phase Standard:CC SMLE:CC

Unstratified 5% 0.2 1:1 0.744 1.000 0.533 0.720

1:2 0.864 1.000 0.607 0.756

0.5 1:1 0.758 1.000 0.600 0.767

1:2 0.856 1.000 0.634 0.770

10% 0.2 1:1 0.840 1.000 0.555 0.687

1:2 0.920 1.000 0.685 0.765

0.5 1:1 0.850 1.000 0.597 0.725

1:2 0.930 1.000 0.669 0.748

Stratified by median AGE 5% 0.2 1:1 0.745 1.006 0.531 0.720

1:2 0.869 1.003 0.602 0.754

0.5 1:1 0.747 0.994 0.596 0.767

1:2 0.855 1.001 0.626 0.766

10% 0.2 1:1 0.849 1.005 0.554 0.688

1:2 0.919 0.998 0.683 0.766

0.5 1:1 0.848 0.994 0.594 0.722

1:2 0.926 1.001 0.665 0.746

Table 3 Type I error and power of the simulated biomarker

We considered 1:1 case and control ratio for GOF two-phase designs. The IPW 
method was used for GOF two-phase designs

Type I error Power

Event rate Cohort design α = 0.0 0.2 0.5

5% Full cohort 0.049 0.535 0.999

Unstratified GOF two‑phase 0.055 0.320 0.973

Stratified GOF two‑phase 0.052 0.317 0.972

10% Full cohort 0.050 0.807 1.000

Unstratified GOF two‑phase 0.052 0.581 0.999

Stratified GOF two‑phase 0.054 0.587 1.000
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