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Abstract 

Background  Network meta-analysis (NMA) allows estimating and ranking the effects of several interventions for a 
clinical condition. Component network meta-analysis (CNMA) is an extension of NMA which considers the individual 
components of multicomponent interventions. CNMA allows to “reconnect” a disconnected network with common 
components in subnetworks. An additive CNMA assumes that component effects are additive. This assumption can 
be relaxed by including interaction terms in the CNMA.

Methods  We evaluate a forward model selection strategy for component network meta-analysis to relax the additiv-
ity assumption that can be used in connected or disconnected networks. In addition, we describe a procedure to cre-
ate disconnected networks in order to evaluate the properties of the model selection in connected and disconnected 
networks. We apply the methods to simulated data and a Cochrane review on interventions for postoperative nausea 
and vomiting in adults after general anaesthesia. Model performance is compared using average mean squared errors 
and coverage probabilities.

Results  CNMA models provide good performance for connected networks and can be an alternative to standard 
NMA if additivity holds. For disconnected networks, we recommend to use additive CNMA only if strong clinical argu-
ments for additivity exist.

Conclusions  CNMA methods are feasible for connected networks but questionable for disconnected networks.

Keywords  Component network meta-analysis, Disconnected networks, Model selection, Multicomponent 
interventions, Simulation

Background
Standard network meta-analysis (NMA) synthesizes 
direct and indirect evidence of randomized controlled 
trials (RCTs) to estimate the effects of several competing 
interventions [1–3]. One requirement of standard NMA 
is that the network of interventions is connected. A net-
work is connected if all interventions are either com-
pared directly or via some intermediate interventions 
with any other intervention in the network. The network 
shown in Fig. 1 from a Cochrane review on interventions 
for postoperative nausea and vomiting in adults after 
general anaesthesia [4, 5] is connected. This network 
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would no longer be connected if, for example, the two 
studies comparing aprepitant (apre) and ondansetron 
(onda) were not available. In this case, the comparison 
apre versus apre+scop would not be connected to the 
other interventions. In practice, many situations can lead 
to disconnected networks with two or more subnetworks 
when synthesizing evidence from RCTs [6].

Standard NMA is not possible in disconnected net-
works, instead, it can be simply replaced with separate 
NMA analyses for each of the subnetworks. Several alter-
native NMA methods have been proposed to deal with 
disconnected networks [7]. A theoretical framework of 
the Bayesian contrast-based model has recently been 
provided for disconnected networks [8]. Arm-based 
approaches have also been developed to analyse con-
nected and disconnected networks [9–11]. Goring et al. 
[12] proposed the random baseline treatment effects 
NMA model in the Bayesian framework to accommo-
date disconnected networks, while Béliveau et  al. [6] 
conducted a case study to evaluate the performance of 
the random baseline treatment effects in disconnected 
networks. Mixture models of RCTs and observational 
studies can “reconnect” disconnected networks using 
matching-adjusted indirect comparisons [13–18] or 

hierarchical models [19]. Linking disconnected networks 
can also be addressed through dose-response relation-
ships [20] or component NMA [21, 22] if subnetworks 
share common intervention doses or components—it is 
worth noting that this is not the main purpose of dose-
response or component NMA.

Many healthcare interventions consist of multiple, pos-
sibly interacting, components. Several meta-analytical 
models address the effects of such complex interven-
tions [23]. Component network meta-analysis (CNMA), 
a generalization of standard NMA, estimates the effects 
of components of complex interventions and has been 
introduced under both Bayesian and frequentist frame-
work [21, 22]. Wigle and Béliveau [24] showed that the 
CNMA model by Welton et  al. [21] is more restric-
tive as all component effects are modeled relative to a 
so called anchor intervention which is not required in 
the model by Rücker et  al. [22]. Accordingly, Wigle and 
Béliveau [24] introduced a Bayesian CNMA model simi-
lar to the frequentist model [22] and conducted a simula-
tion study comparing their newly proposed and existing 
CNMA models in connected networks. Efthimiou et  al. 
[25] describe several extensions of the Bayesian CNMA 
model including methods for individual participant data.

Fig. 1  Network plot for the Cochrane data set (outcome: any adverse event). Line width corresponds to number of studies in direct comparisons. 
Abbreviations: amis: amisulpride; apre: aprepitant; beta: betamethasone; caso: casopitant; dexa:dexamethasone; dime: dimenhydrinate; dola: 
dolasetron; drop: droperidol; gran: granisetron; meto: metoclopramide; onda: ondansetron; palo: palonosetron; plac: placebo; ramo: ramosetron; 
scop: scopolamine; trop:tropisetron; vest: vestipitant. Numbers represent the number of studies
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An additive CNMA model assumes that the effect of 
any combination of components is the additive sum of 
their components, known as the additivity assumption. 
This assumption can be relaxed by adding interaction 
terms allowing components of complex interventions to 
interact, either synergistically or antagonistically. Add-
ing interactions might improve the goodness of fit, but 
also decrease the network connectivity. Accordingly, we 
conduct CNMA model selection with the aim to find a 
model with a reasonable balance between the goodness 
of fit and connectivity (selected CNMA). The forward 
model selection for CNMA models, which has recently 
been developed [26], starts with an additive CNMA 
model and adds interaction terms until some goodness 
of fit criterion has been reached. We call the additive 
CNMA model sparse as it contains the smallest number 
of parameters. Additional parameters have to be esti-
mated in interaction CNMA models which we thus call 
richer models.

At the moment, there is no established guidance con-
cerning which CNMA approach (a sparse or rich version) 
fits best under different circumstances for connected or 
disconnected networks. Therefore, we conducted a com-
prehensive simulation study based on the CNMA models 
by Rücker et al. [22] to investigate the performance of the 
forward selection approach [26] in connected and dis-
connected networks. In the simulations, we assumed that 
additivity either holds or is mildly or strongly violated 
for one combination. Starting with a connected network, 
we artificially constructed disconnected networks and 
implemented the forward selection strategy to select the 
best CNMA model for each disconnected network.

For connected networks, we compared mean square 
errors and coverage probabilities of the selected CNMA 
model with those of the standard NMA and additive 
CNMA model. We investigated the circumstances under 
which a sparse (e.g., additive) or a richer (e.g, selection-
based) CNMA model is preferable to the standard NMA. 
For disconnected networks, we compared the results 
of the additive and selected CNMA model. We applied 
CNMA model selection also to data of a Cochrane review 
on postoperative nausea and vomiting [4, 5].

The paper is organized as follows: The Cochrane data 
set used as an example is briefly described in the next 
section. In the Methods section, we describe the (C)
NMA models evaluating the effects of complex inter-
ventions and the CNMA model selection method. In 
the following section, we summarize the design of our 
simulation study. Afterwards, we outline the results of 
our simulation study and we apply our methods to the 
Cochrane data set. In the Discussion section, we provide 
the main findings of the study and, finally, we end up with 
the conclusions.

Data set on adverse events in adults after general 
anaesthesia
We illustrate the CNMA model selection process using 
a published Cochrane review of 585 RCTs that compares 
complex interventions for postoperative nausea and vomit-
ing in adults after general anaesthesia [4, 5]. Here we con-
sider the outcome of any adverse event with the risk ratio 
as effect measure. The outcome was available in 61 RCTs of 
which four RCTs without any adverse event were excluded 
due to an inestimable risk ratio. The remaining 57 RCTs 
comprise 44 studies comparing two interventions (two-
arm) as well as 11 three-arm and 2 four-arm studies.

In total, 27 interventions are compared, including 15 
single interventions / components (e.g., ondansetron 
(onda), scopolamine (scop)), 11 complex interventions 
(e.g., ondansetron plus scopolamine (onda+scop)), and 
placebo (Fig. 1). A total of 16 interventions are compared 
directly with placebo (e.g., dolasetron (dola) versus pla-
cebo). The interventions contain 17 components (includ-
ing placebo), one component (vest) was only evaluated in 
a combination: onda + vest. As Fig. 1 shows, the network 
of interventions is connected.

Methods
Standard NMA
Standard NMA assumes that each (single or combined) 
intervention has its own effect which is represented as a 
node in the network. We follow the frequentist approach 
introduced by Rücker et  al. [27]. Suppose we have data 
consisting of m pairwise comparisons with n interven-
tions, and let θ represent the n intervention-based (true) 
responses. Let d = (d1, d2, ..., dm) be the observed (rela-
tive) intervention effects with the associated standard 
error SE(dj) for each comparison j = 1, . . . ,m . Assum-
ing a common between-study variance (heterogeneity τ 2 ) 
across the pairwise comparisons, the random-effects net-
work meta-analysis model is

where X is the m× n design matrix describing the net-
work structure, � is the within-study variance-covariance 
matrix, and � is the between-study variance-covariance 
matrix. Let W be a diagonal m×m weight matrix with 
a vector of weights on its diagonal. The weight for each 
two-arm study is the inverse of the sum of the within- 
and between-study variance. For multi-arm studies, 
the weights are assumed to be adjusted as described in 
[28]. We can write the standard NMA model briefly 
δ = Xθ where δ denotes the vector of true relative inter-
vention effects which is estimated using weighted least 
squares regression ( ̂δ ). Cochran’s Q statistic is given by 
Q = (d − δ̂)⊤W(d − δ̂) which follows a chi-square dis-
tribution with degrees of freedom df = na − k − (n− 1) , 

d = Xθ + µ+ ǫ, ǫ ∼ N (0,�),µ ∼ N (0,�)
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where na is the total number of intervention arms and k 
is the number of studies. More details for the model can 
be found in [27] and [28]. In the challenging case of dis-
connected networks, standard NMA is not possible, but 
it can be replaced with separate NMA analyses for each 
of the subnetworks.

Additive CNMA
The sparse additive CNMA model assumes that the effect 
of each combined intervention is the additive sum of the 
effects of its components, that is, equal components can-
cel out in pairwise comparisons [21, 22]. Let the num-
ber of components be c. Having the data consisting of m 
pairwise comparisons with n interventions, the design 
matrix of the additive CNMA model is the m× c matrix 
given by Xa = BC , where B is the m× n design matrix 
describing which interventions are compared in each 
pairwise comparison, and C is the n× c combination 
matrix describing the information on how the n interven-
tions are composed of the c components [22]. The addi-
tive CNMA model is given by

where δa ∈ R
m is the vector of true relative intervention 

effects, β ∈ R
c a parameter vector of length c, represent-

ing the component effects, and θa = Cβ ∈ R
n a vector of 

length n, representing the intervention effects.

Interaction CNMA
The interaction CNMA model is an extension of the 
additive CNMA model [21, 22]. The model assumes an 
interaction between two or more observed components 
(antagonistically or synergistically) and therefore the 
combination of components provides larger or smaller 
effects than the sum of their effects, respectively. The 
interactions of interest can be added as additional col-
umns to the combination matrix C [22]. For l inter-
actions, the combination matrix Cint is of dimension 

(1)δa = Xaβ = BCβ = Bθa

n× (c + l) . An interaction CNMA model is implemented 
in complete analogy to the additive CNMA model. 
Therefore, having the design matrix Xint = BCint , the 
interaction CNMA model is given by

where δint ∈ R
m is the vector of true relative interven-

tion effects, β int a parameter vector of length c + l , rep-
resenting the component and interaction effects, and 
θ int = Cintβ int ∈ R

n a vector of length n, representing 
the intervention effects.
δ̂a from the additive and δ̂int from the interaction model 

are estimated using weighted least squares regression. 
Details on the estimation and the multivariate version of 
Cochran’s Q for CNMA models can be found in Rücker 
et al. [22].

CNMA model selection
Table 1 illustrates the interrelation between goodness of 
fit and connectivity in (C)NMA models for connected 
and disconnected networks with complex interventions. 
For connected networks, the standard NMA model is 
the richest model as each complex intervention cor-
responding to a model parameter. The other extreme is 
an additive CNMA model with unique components as 
parameters. The number of model parameters of inter-
action CNMA models lies between these extremes 
depending on the number of interaction terms. Note, we 
describe an algorithm to identify inestimable interactions 
in the supplement as only estimable interactions should 
be considered in interaction CNMA models.

The standard NMA model has the smallest Q statistic 
and degrees of freedom (df) as it fits the data better than 
the other models. On the other hand, the additive model 
is the most parsimonious (sparse) model, i.e., it has the 
largest Q and df values. Adding estimable interactions 
to a CNMA model typically decreases Q, thus improv-
ing the goodness of fit, but also decreases the degrees of 

(2)δint = Xintβ int = BCintβ int = Bθ int

Table 1  (C)NMA models for (dis-)connected networks. nc = number of subnetworks (connectivity components), na = number 
of intervention arms, k = number of studies, n = number of interventions, r = rank of the design matrx of additive CNMA model, ր: 
increasing number of interactions in CNMA model, ց: decreasing number of interactions in CNMA model

Connected network Disconnected network

CNMA models NMA Separate NMAs for each subnetwork

Additive model Interaction models

No. of interactions none 1, 2, 3, ... all observed all observed

Model fit often poor fit ր often good fit maximal fit

Q ց minimal Q =
nc
i=1 Qi

Connectivity good connectivity ց poor connectivity minimal connectivity

df maximal df = na − k − r ց df = na − k − (n− 1) minimal df = na − k − (n− nc)
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freedom and, most notably, may decrease the network 
connectivity ( df ց)(Table  1). An interaction CNMA 
model with all estimable interactions is equivalent to a 
standard NMA model, i.e., has the same Q and df values 
[22].

Rücker et al. [26] introduced a model selection proce-
dure for CNMA models with the aim to find the CNMA 
model with a reasonable balance between the goodness 
of fit and connectivity. There are two possible directions: 
forward selection and backward selection which either 
add or remove estimable interaction terms.

Forward CNMA model selection starts with the addi-
tive (sparse) CNMA model and is moving forward to 
richer models. During the selection process, estima-
ble interactions are gradually added to the model until 
a stopping criterion is fulfilled [26]. We use the Akaike 
Information criterion (AIC) as stopping criterion [29], 
i.e., the selection process stops if all p-values of the 
remaining estimable interactions are above 0.157.

Backward CNMA model selection should start with 
an interaction CNMA model having the same value for 
Cochran’s Q as the standard (rich) NMA model. During 
the selection process, one interaction term is removed 
from the model in each step until a stopping criterion 
is fulfilled [26]. One difficulty in connected networks is 
to determine a sufficient number of estimable interac-
tions to get the same value for Cochran’s Q as the stand-
ard NMA model. In disconnected networks, a standard 
NMA is impossible and in this case, additivity can be 
assumed for just one component that is common to all 
subnetworks [26]. Therefore, we may start with ‘sepa-
rating’ one component which is common to all subnet-
works [26]. Such a model usually provides a good fit, it 
may even provide the minimum Q, given by the sum over 
all Qs from the subnetworks. However, it provides only 
a very loose connection between the subnetworks and is 
associated with small df (Table 1). For this reason, under 
all models giving the same model fit, we prefer those with 
greater connectivity than those with smaller connectivity. 
In other words, we prefer sparse models to rich models.

Construction of disconnected networks
As described in the previous section, CNMA model 
selection can be applied to connected and disconnected 
networks. To evaluate model selection in disconnected 
networks, we artificially constructed disconnected net-
works in the Cochrane data and the simulation study fol-
lowing an approach similar to Béliveau et al. [6].

Having a connected network with n interventions, we 
constructed disconnected networks with two or more 
separate subnetworks under the constraint of retaining 
all n interventions. We started by constructing a minimal 
set of interventions which will be part of one subnetwork: 

1.	 Select one of the n interventions as a reference inter-
vention which is the nucleus of the minimal set.

2.	 All interventions that are only compared directly 
with the reference are added to the minimal set.

3.	 All interventions of a branch without any loops con-
nected to the reference are added to the minimal set.

4.	 All interventions of a multi-arm study are added to 
the minimal set if any arm in this multi-arm study is 
only directly compared with the reference.

5.	 Any remaining intervention in the network that is 
only compared to an intervention in the minimal set 
is also added.

All interventions of multi-arm studies identified in step 
4 must be added to the minimal set as these interven-
tions could not be included in a different subnetwork and 
ignoring the multi-arm study would result in a network 
with fewer than n interventions. Step 5 is applied recur-
sively until all relevant interventions are added to the 
minimal set.

Interventions included in the minimal set are the core 
of a so called main subnetwork containing the reference. 
Additional interventions could be added to the main sub-
network as long as at least one other subnetwork exists. 
In well-connected networks, the minimal set can consist 
of the reference intervention only. In this case at least one 
additional intervention has to be added to the minimal 
set to form the main subnetwork.

All interventions not included in the main subnetwork 
must be part of an auxiliary subnetwork. A disconnected 
network is constructed by removing all studies compar-
ing interventions from different subnetworks. Different 
disconnected networks can be constructed by adding dif-
ferent interventions to the minimal set which results in 
different main and auxiliary subnetworks.

The minimal set must be defined / constructed by the 
user, however, we wrote an R script to identify all discon-
nected networks for a given minimal set (see R function 
disconnect_additional on https://​zenodo.​org/​
badge/​lates​tdoi/​54604​1022).

Construction of minimal set in Cochrane data set
The minimal set for the Cochrane data with placebo as 
reference (step 1) consists of 14 interventions in addi-
tion to placebo (table in Additional file 1). The following 
interventions are only connected to placebo and are thus 
added to the minimal set in step 2: amis, beta, dola (see 
Fig. 1). The interventions scop and meto + scop consti-
tute a branch without loops connected to placebo (step 
3). The interventions of the two four-arm studies (dexa, 
drop, dexa + drop, placebo; gran, dexa + gran, drop + 
gran, placebo) are added to the minimal set as dexa + 
drop and dexa + gran are only evaluated in the four-arm 

https://zenodo.org/badge/latestdoi/546041022
https://zenodo.org/badge/latestdoi/546041022
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studies (step 4). Also, the interventions of the three-arm 
study comparing dexa, dexa + trop and placebo must be 
part of the minimal set due to the intervention dexa + 
trop (step 4). The intervention dexa + onda is added to 
the minimal set as this intervention is only compared to 
dexa + gran which is already part of the minimal set (step 
5). Finally, intervention trop is added to the minimal set 
as all comparisons with trop contain either placebo or an 
intervention already in the minimal set (step 5).

Simulation design
We simulated data for a network of two-arm studies 
with eight interventions ( n = 8 ): four single treatments 
(A,  B,  C,  D), three combinations (A+ B,A+ C ,C + D) 
and placebo P. The network is well-connected, how-
ever, omits the direct comparisons A versus B, A ver-
sus A+ B and A versus C + D (Fig.  2). We assumed 
two studies directly comparing each of interventions 
A,B,A+ B,A+ C with placebo (which was chosen as 
the reference) and only a single study for other compari-
sons. We generated arm-level dichotomous outcome 
data with odds ratio as effect measure and we assumed a 
common heterogeneity variance τ 2 for all pairwise com-
parisons. Non-equal true relative effects ( δ = log(OR) ) 
were set with eδA,P = 1.40 , eδB,P = 1.20 , eδC ,P = 2.30 and 

eδD,P = 1.50 . A summary of all simulation parameters is 
given in Table 2.

Starting with the connected network in Fig. 2, we arti-
ficially constructed disconnected networks differing in 
network geometry, number of included studies, and pair-
wise comparisons. The forward model selection strategy 
was implemented and the selection-based CNMA model 
was chosen for each disconnected network.

Following Thorlund and Mills [30], we were interested 
in three scenarios for intervention effects: 

(A)	All relative intervention effects are additive For any 
two interventions, say A and B, the relative effect 
of the intervention A+ B comprising two compo-
nents A and B versus intervention P is the additive 
sum of the relative intervention effect of A versus P 
and the relative intervention effect of B versus P: 

(B)	 The additivity assumption for one intervention is 
mildly violated with a relevant synergistic interac-
tion Assuming an interaction ratio IRAB between 
interventions A and B, the relative intervention 
effect of A+ B versus P is 

δA+B,P = δA,P + δB,P

Fig. 2  Network plot of simulated network. Line width corresponds to numbers of studies in direct comparisons
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 with �AB = log(IRAB) . Following Thorlund and 
Mills [30], we set IRAB = 1.5.

(C)	The additivity assumption for one intervention is 
strongly violated with a relevant synergistic interac-
tion. The same model equation is used as for mild 
violation of additivity, however, the interaction ratio 
is larger in this scenario, IRAB = 2.0.

Scenario A assumes additivity for all combined inter-
ventions in the network, i.e., A+ B,A+ C , and C + D . 
Two variants of scenarios B and C were considered. 
First, we assumed mild or strong violation of additive 
effects for the combined intervention A+ B which are 
labelled scenarios B1 and C1. Second, we assumed mild 
or strong violation of additive effects for the combined 
intervention C + D which are labelled scenario B2 and 
C2. Each scenario was repeated M = 1000 times.

δA+B,P = δA,P + δB,P + �AB
Create disconnected networks
In our simulation study, we started by simulating con-
nected networks and afterwards, we artificially con-
structed all possible disconnected networks as described 
above. The well-connected network in our simulation 
study does not have any intervention only connected to 
the reference P. Accordingly, the smallest main subnet-
work in the simulation study is any single active interven-
tion vs P. Additional interventions can be added to this 
small main subnetwork. In each simulation run, we ran-
domly selected one disconnected network from the set of 
possible disconnected networks.

Generation of simulated data
The generation of binary data was similar to Kiefer et  al. 
[31]. For each study i = 1, . . . , k , we generated study-
specific log-odds ratios diX ,Y  from a normal distribu-
tion with mean dX ,Y  and between-study variance τ 2 with 
X ,Y ∈ {A,B,C ,D,A + B,A + C ,C + D,P} , X  = Y  , representing 

Table 2  Overview of simulated scenarios

Network geometry Well-connected network

    Studies/Pairwise comparisons k = 28

Interventions n = 8

single: A, B, C, D, 

combined: A+ B, A+ C , C + D,

reference: placebo P

Additivity assumption on relative intervention effects
    Scenario A: Additive effects δA+B,P = δA,P + δB,P

δA+C ,P = δA,P + δC ,P

δC+D,P = δC ,P + δD,P

    Scenario B: Mild violation of additivity assumption

       B1: combined intervention A+ B δA+B,P = δA,P + δB,P + �AB , e
�AB = 1.5

       B2: combined intervention C + D δC+D,P = δC ,P + δD,P + �CD , e
�CD = 1.5

    Scenario C: Strong violation of additivity assumption

       C1: combined intervention A+ B δA+B,P = δA,P + δB,P + �AB , e�AB = 2.0

       C2: combined intervention C + D δC+D,P = δC ,P + δD,P + �CD , e�CD = 2.0

Heterogeneity
    No heterogeneity τ 2 = 0.00

    Low heterogeneity τ 2 = 0.01

    Moderate heterogeneity τ 2 = 0.10

Inconsistency No inconsistency

Other simulation parameters
    True relative intervention effects eδA,P = 1.40 , eδB,P = 1.20 , eδC ,P = 2.30 , 

and eδD,P = 1.50

    Baseline probability pP = 0.1

    Patients per study arm ni ∼ U(50, 200)

    Iterations M = 1000
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the set of possible interventions. The baseline probability 
for placebo was set to 0.1. Study-specific probabilities for 
intervention t ∈ {A,B,C ,D,A+ B,A+ C ,C + D} were 
calculated by

with log-odds ratios dit,P.
For each study, we generated equal arm sample 

sizes ni from a discrete uniform distribution assum-
ing values from 50 to 200. For study arms 1 and 
2, we generated the number of events eit1 and eit2 , 
t1, t2 ∈ {A,B,C ,D,A+ B,A+ C ,C + D,P}, t1 �= t2 , ran-
domly from a binomial distribution with parameters 
ni and pit1 or pit2 . If the simulated number of events eit1 
or eit2 was zero, we added the value 0.5 to both event 
numbers.

Simulation performance
We first calculated the mean squared error (MSE) and 
the coverage probability (CP) of the relative intervention 
effect, for each pair of the seven active interventions and 
placebo. Then, we calculated the average MSE and CP to 
summarize the properties of (C)NMA model fit. For each 
setting (connected or disconnected network, scenarios A 
to C2) and value of τ 2 , we calculated the average MSE as

where δ̂m denotes the vector with estimated relative 
intervention effects in iteration m and δ denotes the cor-
responding true effects. The division by 7 refers to the 
seven baseline parameters in this network.

The average coverage probability was similarly defined

where δ̂m,L and δ̂m,U are vectors with lower and upper 
95% confidence limits calculated in iteration m and 1 is a 
vector of indicator functions.

Software implementation
The simulation study was performed using the statisti-
cal software R [32]. (C)NMA models were fitted with R 
package netmeta using function netcomb for connected 
networks and discomb for disconnected networks [33].

Results
For each scenario and value of τ 2 , 1000 connected and 
disconnected networks were simulated and the CNMA 
model selection was performed.

pit =
0.1 exp(dit,P)

1− 0.1(1− exp(dit,P))

MSE =
1

M

M∑

m=1

1

7

∥
∥
∥δ̂m − δ

∥
∥
∥
2

CP =
1

M

M∑

m=1

1

7

∥
∥
∥1δ̂m,L ≤ δ≤ δ̂m,U

∥
∥
∥

CNMA model selection for simulated connected networks
Table  3 summarizes simulation results for connected 
networks. The percentage of networks rejecting the 
additivity assumption increases from 3.5% to 18.8% with 
increasing τ 2 when assuming additive effects (scenario 
A). Accordingly, the test for additivity is too conserva-
tive for τ 2 = 0 and too liberal for τ 2 = 0.1 . Moreover, 
the power to detect the violation of additivity is low for 
scenario B (25.7% to 42.0%) and moderate for scenario C 
(65.6% to 73.8%). CNMA model selection worked best for 
no heterogeneity. In general, the number of simulations 
selecting the correct model is decreasing with increasing 
heterogeneity. If the additivity assumption holds (sce-
nario A), the correct additive CNMA model was only 
selected in the majority of simulations in the CNMA 
model selection for no or low heterogeneity (69.3% and 
65.2%). For moderate heterogeneity, less than 50% of 
simulations selected the additive CNMA model. For mild 
violation of the additivity assumption (scenario B1 and 
B2), the correct interaction CNMA model was selected 
in less than 50% of simulations (34.6% to 45.0%). For 
strong violation of additivity (scenarios C1 and C2), the 
correct interaction CNMA model was always selected in 
the majority of simulations (54.6% to 74.6%).

Fig.  3, top panel, provides the average MSEs for the 
simulated connected networks. Average MSEs get larger 
with increasing heterogeneity for all models. Overall, the 
selected CNMA and standard NMA have very similar 
average MSEs. Under scenario A, average MSEs of the 
additive CNMA model is slightly smaller than the aver-
age MSEs for selected CNMA and standard NMA. All 
models perform on average equally for mild violation of 
the additivity assumption (scenarios B1 and B2), while 
selected CNMA and standard NMA models perform bet-
ter for a large violation of the additivity assumption (sce-
narios C1 and C2). The figure in Additional file 2 shows 
that MSEs of the relative intervention effects are com-
parable for selected CNMA and standard NMA model, 
while the additive CNMA model has inferior results for 
several intervention estimates for a strong violation of 
the additivity assumption (e.g., B vs P, C vs P and A+ B 
(scenario C1) and A vs P and D vs P (scenario C2)).

Figure 4, top panel, provides the average coverage prob-
abilities for the simulated connected networks. The aver-
age CP is decreasing with increasing heterogeneity for all 
models when additivity holds (scenario A). Average CPs 
are very similar for standard NMA and additive CNMA. 
Average CPs lie within the 95% Monte-Carlo limits, with 
exception of the selected CNMA model for moderate 
heterogeneity. For mild and strong violation of the addi-
tivity assumption, only the average CP of the standard 
NMA model always falls within the 95% Monte-Carlo 
limits for any value of τ 2 . Average CPs for the additive 
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model are well below the lower Monte-Carlo limit for 
scenarios C1 and C2. The figure in Additional file 3 shows 
that CPs of the relative intervention effects are in general 
somewhat smaller for the selected CNMA model com-
pared to the standard NMA model, however, not dramat-
ically different. For the additive CNMA model, CPs are 
much smaller than the Monte-Carlo limits for the inter-
vention estimates with large MSE values.

CNMA model selection for simulated disconnected 
networks
Table  4 summarizes simulation results for disconnected 
networks. In comparison to connected networks, no test 
of the additivity assumption is available, as a standard 
NMA model cannot be estimated in a disconnected net-
work. Despite using the rather liberal Akaike criterion, 
the additive CNMA model is selected in the majority of 
simulations under mild violation of additivity (58.3% to 
70.4%) and in a large proportion of simulations under 
strong violation of the additivity assumption (46.2% to 
51.5%). The correct interaction CNMA model is only 
selected in 12.0% to 15.2% under scenarios B1 and B2 and 
21.6% to 26.3% under scenarios C1 and C2. Therefore, 
CNMA model selection did not work well in our simu-
lated disconnected networks.

Figure  3, bottom panel, shows that average MSEs for 
disconnected networks are much larger than for con-
nected networks for all scenarios. Furthermore, average 
CPs for disconnected networks only fall into the 95% 
Monte-Carlo limits for scenario A in case of no or low 
heterogeneity (Fig. 4, bottom panel). Average MSEs and 
CPs for the selected CNMA are always worse than for the 
additive CNMA, even under scenarios C1 and C2 with 
strong violation of the additivity assumption (Figs. 3 and 
4, bottom panels). This general pattern is also observed 
for MSEs and CPs of the relative intervention effects (fig-
ures in Additional files 4 and 5).

CNMA model selection in Cochrane review 
on postoperative nausea and vomiting
We applied the forward CNMA model selection pro-
cedure to this connected network. Results for stand-
ard NMA, additive CNMA and selected CNMA model 
can be found in Additional file  6. We used the strategy 
described in the Methods section to construct discon-
nected networks. The minimal set for the Cochrane data 
with placebo as reference consists of 15 interventions 
including placebo (Additional file  1). We removed 20 
studies with 34 pairwise comparisons from the data set in 
order to separate the minimal set (with 15 interventions, 

Table 3  Selected CNMA models in 1000 simulations of connected networks

The correctly chosen model is printed in bold

 aCombination of two 2-way interactions includes the correct interaction

ndiff  : number of networks rejecting the additivity assumption with significant p-value for Qdiff  ( p < 0.05 ), where Qdiff  is the Q statistic for the difference between 
additive CNMA and standard NMA model

Scenario ndiff Additive CNMA CNMA with one 2-way interaction CNMA with two 2-way interactions

A∗B A∗C C∗D A∗B+C∗D A∗B+A∗C A∗C+C∗D

No heterogeneity ( τ 2 = 0.00)

    A 35 693 119 94 84 3 2 5

    B1 257 324 436 148 61 16a 12a 3

    B2 298 325 45 154 436 17a 8 15a

    C1 687 61 746 99 17 34a 28a 15

    C2 732 51 13 104 742 38a 7 45a

Low heterogeneity ( τ 2 = 0.01)

    A 52 652 136 98 108 3 1 2

    B1 281 337 426 136 59 16a 18a 8

    B2 284 317 49 133 450 25a 10 16a

    C1 676 75 704 109 24 29a 47a 12

    C2 738 70 13 98 716 45a 7 51a

Moderate heterogeneity ( τ 2 = 0.10)

    A 188 458 188 142 179 14 13 6

    B1 392 277 346 178 132 34a 17a 16

    B2 420 262 122 195 356 28a 13 24a

    C1 656 117 550 135 53 65a 64a 16

    C2 702 93 48 161 546 65a 18 69a
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21 studies, 35 pairwise comparisons) from the auxiliary 
network (12 interventions, 16 studies, 20 pairwise com-
parisons). We identified 18 additional disconnected net-
works by adding interventions to the minimal set. The 
disconnected networks differ substantially in the number 
of included studies and pairwise comparisons. In Table 5 
and the figure in Additional file 7, disconnected networks 
were sorted by decreasing number of pairwise compari-
sons, studies, and pairwise comparisons in the main sub-
network, with the largest network containing 55 studies 
and 87 pairwise comparisons and the smallest network 
only 35 studies with 53 pairwise comparisons distributed 
over three subnetworks.

Table  5 provides the results of the model selection 
process for the connected and each disconnected net-
work. After fitting additive CNMA models, we started 
the model selection by adding a single 2-way interac-
tion. In all disconnected networks, the interaction onda∗
scop minimized Q and was selected according to the AIC 
criterion. The interaction apre∗scop was selected as the 
second interaction in the connected network and discon-
nected networks 1 – 3 while the interaction dexa∗trop 
was selected in all other disconnected networks. Simi-
larly, the third interaction was the same in the connected 

and disconnected networks 1 – 3 (meto∗trop) and the 
remaining disconnected networks (dexa∗gran). In eight 
disconnected networks a fourth interaction (dexa∗drop) 
was also selected.

We exemplify the results of the standard NMA and 
the selected CNMAs of the connected network or dis-
connected networks by looking at the relative interven-
tion effects of amis, apre and palo compared to placebo 
(Fig.  5. The full forest plot is provided in the figure in 
Additional file 8.

(C)NMA results for the comparison amis versus plac 
are identical for all models (Fig. 5). The intervention amis 
is only directly compared to plac (Fig. 1) and therefore it 
is always part of the main subnetwork in disconnected 
networks with placebo as reference.

The relative intervention effect of apre versus plac is 
very similar to the standard NMA, the selected CNMA 
of the connected network and disconnected network 
2 (Fig. 5). Otherwise, the estimate of apre versus plac is 
either inestimable (disconnected networks 1, 3, 6, 9, 12, 
13, 15, 16, 18, 19) or misleading (remaining disconnected 
networks). The effect of apre versus plac is inestimable if 
the only study comparing apre + scop versus apre consti-
tutes a separate subnetwork (figure in Additional file 7). 

Fig. 3  Average mean squared errors for simulated connected networks (top panel) and disconnected networks (bottom panel). Different scales are 
used on the y-axis due to the large differences in MSEs for connected and disconnected networks
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Fig. 4  Average coverage probabilities for simulated connected networks (top panel) and disconnected networks (bottom panel). Dashed lines 
denote the 95% Monte-Carlo limits (L,U) = [0.936; 0.964] for CP

Table 4  Selected CNMA models in 1000 simulations of disconnected networks

The correctly chosen model is printed in bold

 a The chosen combination of two 2-way interactions includes the correct interaction

Scenario Additive CNMA CNMA with one 2-way interaction CNMA with two 2-way interactions

A∗B A∗C C∗D A∗B+C∗D A∗B+A∗C A∗C+C∗D

No heterogeneity ( τ 2 = 0.00)

    A 834 52 55 57 1 0 1

    B1 698 121 120 57 1a 1a 2

    B2 693 79 93 131 1a 3 0a

    C1 511 227 158 98 2a 2a 2

    C2 469 107 179 237 2a 2 4a

Low heterogeneity ( τ 2 = 0.01)

    A 809 51 72 68 0 0 0

    B1 704 120 94 79 1a 1a 1

    B2 677 83 99 138 1a 1 1a

    C1 515 216 151 111 6a 0a 1

    C2 480 101 150 263 1a 0 5a

Moderate heterogeneity ( τ 2 = 0.10)

    A 664 116 110 103 3 2 2

    B1 598 148 131 115 5a 1a 2

    B2 583 137 119 152 2a 4 3a

    C1 462 220 171 137 6a 3a 1

    C2 485 130 154 216 8a 4 3a
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The component effect apre cancels out due to the addi-
tivity assumption, and therefore, the relative intervention 
effect for apre or apre + scop versus plac is inestimable. 
For the remaining disconnected networks, the relative 
intervention effects of apre or apre + scop versus plac are 
not reliably estimated as intervention apre or apre + scop 
is not part of the main subnetwork containing plac.

Results for the comparisons palo versus plac are 
very similar for the standard NMA, selected CNMA of 
the connected network and some disconnected net-
works (Fig.  5). Markedly wider confidence intervals are 
observed for relative effects of palo versus plac in dis-
connected networks 7, 10, 12, 14, 15, 17 – 19). In these 
disconnected networks, the intervention palo is not part 
of the main subnetwork containing plac (figure in Addi-
tional file 7).

In general, results of comparisons with placebo are 
comparable for separate NMA analyses in subnetworks 
of disconnected networks and the standard NMA in the 
connected network (figure in Additional file 9). However, 
comparisons with placebo are only estimable in separate 
NMAs for treatments in the same subnetwork as placebo. 
For example, the comparison of apre versus plac is inesti-
mable in all separate NMAs but disconnected network 2 
(figure in Additional file 9) as apre is part of an auxiliary 
network (figure in Additional file 7). On the other hand, 
the comparison beta versus plac can be estimated in all 

separate NMA analyses as beta is always part of the main 
subnetwork.

We conclude that comparisons within the same net-
work are always easier to estimate than comparisons 
across subnetworks and therefore separate NMA analy-
ses perform better than reconnecting models (here: 
CNMA models) for disconnected networks.

Discussion
In this article, we evaluate a model selection strategy 
for component network meta-analysis that can be used 
in connected or disconnected networks. In addition, we 
describe a procedure to create disconnected networks in 
order to evaluate the properties of the model selection for 
both connected and disconnected networks. We apply 
the methods to simulated data and a Cochrane review to 
investigate their performance.

In connected networks, it is always possible to contrast 
the results of standard NMA with additive or interaction 
CNMA models. Accordingly, the application of CNMA 
models should always be accompanied by a statistical test 
to assess additivity. We used the difference in Q statistics 
between additive or interaction CNMA and standard 
NMA model.

The results for the performance of CNMA models 
are in agreement with the previous simulation study 
conducted for connected networks by Thorlund and 

Table 5  Results of CNMA model selection for disconnected networks in Cochrane data set with number of studies k, pairwise 
comparisons m, and number of subnetworks s 

Network k m s First interaction Second interaction Third interaction Fourth interaction

Connected 57 89 1 onda∗scop apre∗scop meto∗trop

Disconnected 1 55 87 2 onda∗scop apre∗scop meto∗trop

Disconnected 2 53 83 2 onda∗scop apre∗scop meto∗trop

Disconnected 3 51 81 3 onda∗scop apre∗scop meto∗trop

Disconnected 4 41 61 2 onda∗scop dexa∗trop dexa∗gran

Disconnected 5 40 60 2 onda∗scop dexa∗trop dexa∗gran dexa∗drop

Disconnected 6 39 59 3 onda∗scop dexa∗trop dexa∗gran

Disconnected 7 39 59 2 onda∗scop dexa∗trop dexa∗gran

Disconnected 8 40 58 2 onda∗scop dexa∗trop dexa∗gran

Disconnected 9 38 58 3 onda∗scop dexa∗trop dexa∗gran dexa∗drop

Disconnected 10 38 58 2 onda∗scop dexa∗trop dexa∗gran dexa∗drop

Disconnected 11 39 57 2 onda∗scop dexa∗trop dexa∗gran dexa∗drop

Disconnected 12 37 57 3 onda∗scop dexa∗trop dexa∗gran

Disconnected 13 38 56 3 onda∗scop dexa∗trop dexa∗gran

Disconnected 14 38 56 2 onda∗scop dexa∗trop dexa∗gran

Disconnected 15 36 56 3 onda∗scop dexa∗trop dexa∗gran dexa∗drop

Disconnected 16 37 55 3 onda∗scop dexa∗trop dexa∗gran dexa∗drop

Disconnected 17 37 55 2 onda∗scop dexa∗trop dexa∗gran dexa∗drop

Disconnected 18 36 54 3 onda∗scop dexa∗trop dexa∗gran

Disconnected 19 35 53 3 onda∗scop dexa∗trop dexa∗gran dexa∗drop
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Fig. 5  Forest plot of the relative effects of interventions amis, apre, palo with placebo from standard NMA and the selected CNMAs for the 
connected and each disconnected network
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Mills [30]. According to our simulation study, the test 
for additivity with Q statistic of the difference between 
the CNMA and NMA model only has sufficient power 
for a strong violation of additivity. We found that the Q 
statistic tends to stick to additivity, even if it is strongly 
violated. As expected, the performance of the model 
selection procedure for the connected networks dete-
riorates with increasing heterogeneity. We conclude that 
the additive CNMA can be an alternative to NMA if the 
additivity assumption holds and, in general, the selected 
CNMA and standard NMA provide similar estimates.

The Q statistic of the difference between the CNMA 
and NMA model is not available for disconnected net-
works, as standard NMA cannot be fitted. Simulation 
results are worse for the selected CNMA compared to 
the additive CNMA for disconnected networks. Our 
simulation results show that re-connecting discon-
nected networks with CNMA models is possible only 
when additivity can be safely assumed. For disconnected 
networks, we recommend using additive CNMA only 
if strong clinical arguments for additivity exist. Other-
wise, subnetworks should be analyzed separately despite 
the disadvantage of inestimable treatment comparisons 
across subnetworks.

The test of additivity was found to have low power in 
some connected networks which is a general problem 
of statistical tests based on Cochran’s Q statistics [34, 
Chapter  10]. For disconnected networks, the additivity 
assumption cannot be tested. New statistical techniques 
for the evaluation of additivity assumption are required 
for both connected and disconnected networks.

Our simulation study shows that CNMA model selec-
tion works for connected networks, but not for discon-
nected networks. Accordingly, we see CNMA model 
selection as a useful tool for a connected network to eval-
uate potential interactions between the components of 
multicomponent interventions. CNMA model selection 
could in principle be conducted in two directions, for-
ward and backward. As the aim of this simulation study 
was to evaluate the performance of both connected and 
disconnected networks, we decided to use only forward 
selection, to achieve a satisfactory model fit whilst keep-
ing much of the connectivity that is given by the additive 
model [26]. Forward selection tended to select sparse 
(often additive) CNMA models for disconnected net-
works even if additivity was mildly or strongly violated. 
We only considered 2-way interactions in our simulation, 
however, the selection procedure could also be used with 
3-way or higher interactions.

One limitation of our simulation study is that conclu-
sions depend on the scenarios considered. We simu-
lated a network of interventions with eight interventions 
and 28 two-arm studies, assuming consistency. We also 

implemented the forward CNMA model selection pro-
cess in simulations with the Akaike Information crite-
rion. It is unclear whether different network structures, 
model assumptions, or a different design or strategy 
for the model selection process would lead to different 
conclusions. There is no guarantee that CNMA models 
behave similarly under different simulation designs.

Another limitation of our simulation study is to only 
consider the AIC criterion as stopping criterion in the 
Cochrane data set and simulation study. Use of the AIC 
criterion results in models with a large number of inter-
action terms as is visible in the Cochrane data set with up 
to four 2-way interactions. Several alternative methods 
are available to conduct model selection. Other meth-
ods based on Cochran’s Q statistics like the Bayesian 
Information Criterion [35] could be easily used instead 
of the AIC. More advanced methods penalizing the size 
of the estimated interaction parameters like the LASSO 
[36] could in principle also be used to select interaction 
CNMA models, however, this would not be possible 
using our R scripts.

The application of the additivity test to the Cochrane 
data set suggests that the additivity assumption does 
not hold. The network has eleven combinations of two 
interventions, however, only ten 2-way interactions 
are estimable. Among the ten 2-way interactions, the 
interaction onda∗scop was selected first. The selected 
CNMA model includes three 2-way interactions (onda∗
scop + apre∗scop + meto∗trop) and its results roughly 
agree with those of the standard NMA. For the discon-
nected networks in the Cochrane data set, we observed 
that the estimates can be sometimes similar, sometimes 
very different, or even inestimable, depending on the 
network structure. A clinical interpretation of the identi-
fied interactions was not the main focus of this work. We 
think that this would be futile for the general outcome of 
any adverse events. More specific outcomes should be 
considered to give a clinical meaning to interactions in 
CNMA models.

Conclusions
Although the use of NMA has considerably increased 
over the last decade, CNMA has not been widely used, 
but there is an increased clinical interest in the evalua-
tion of multicomponent interventions and we expect an 
increase in its use. CNMA models are now provided in 
a frequentist framework, implemented in the R package 
netmeta [33]. This simulation study provides a guid-
ance for CNMA model selection, pointing at some chal-
lenges that should be addressed. CNMA models perform 
well for connected networks, and can be an alternative 
to standard NMA if additivity holds. On the contrary, 
CNMA models do not perform well for disconnected 
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networks, and we recommend conducting separate anal-
yses of subnetworks. In conclusion, we advise the usage 
of CNMA methods for connected networks when mul-
ticomponent interventions are evaluated in practice, but 
caution is needed with CNMA methods in case of dis-
connected networks.
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