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Abstract

Background Clinical trial design must consider the specific resource constraints and overall goals of the drug
development process (DDP); for example, in designing a phase | trial to evaluate the safety of a drug and recommend
a dose for a subsequent phase Il trial. Here, we focus on design considerations that involve the sequence of clinical
trials, from early phase I to late phase Ill, that constitute the DDP.

Methods We discuss how stylized simulation models of clinical trials in an oncology DDP can quantify important
relationships between early-phase trial designs and their consequences for the remaining phases of development.
Simulations for three illustrative settings are presented, using stylized models of the DDP that mimic trial designs and
decisions, such as the potential discontinuation of the DDP.

Results We describe: (1) the relationship between a phase Il single-arm trial sample size and the likelihood of a posi-
tive result in a subsequent phase Ill confirmatory trial; (2) the impact of a phase | dose-finding design on the likelihood
that the DDP will produce evidence of a safe and effective therapy; and (3) the impact of a phase Il enrichment trial
design on the operating characteristics of a subsequent phase lll confirmatory trial.

Conclusions Stylized models of the DDP can support key decisions, such as the sample size, in the design of early-
phase trials. Simulation models can be used to estimate performance metrics of the DDP under realistic scenarios; for
example, the duration and the total number of patients enrolled. These estimates complement the evaluation of the
operating characteristics of early-phase trial design, such as power or accuracy in selecting safe and effective dose

levels.
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Introduction

Most drug development processes (DDPs) in oncology
consist of a series of early- to late-phase clinical trials. In
most cases, each clinical study is designed based on a set
of operating characteristics; for example, the power to
detect treatment effects in a phase II study. The choice of
the study design focuses primarily on the goals of a single
clinical trial, often without estimates of the consequences
of early-phase trials on later stages of the DDP. As we dis-
cuss in this article, early-phase trial designs can have a
marked impact on the more time-consuming later stages
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of the DDP. Here, we use stylized simulation models to
anticipate and describe relationships between early and
late stages of drug development, with the goal of improv-
ing the design of early-phase clinical trials.

In precision medicine, the relationship between early
and late stages of the DDP is particularly relevant; results
from early phases, such as biomarker discovery and vali-
dation or identification of therapeutic targets and patient
subpopulations, inform the design of subsequent trials in
the DDP. Indeed, precision medicine involves the identi-
fication of subpopulations that benefit from experimen-
tal treatments [1, 2]. However, early-stage trial designs
might be inadequate to accurately identify these sub-
populations. As previously discussed in the literature
[3], when early-phase trial designs are unable to capture
treatment effect variations across subgroups, the power
to detect treatment effects in later-stage trials might be
reduced and the enrollment criteria may be suboptimal.

Innovations in the DDP are important to advance
patient care; examples in clinical trial design include bio-
marker stratification and adaptive enrichment designs,
as well as outcome-adaptive randomization, master pro-
tocols, platform trial designs, and the integration of real-
world data [3-9]. These approaches have the potential to
reduce the duration of the DDP, improve the accuracy
of treatment effect estimates, and ultimately translate
research into effective clinical care [2].

There are trade-offs between the operating characteris-
tics of the DDP as a whole and each individual trial; these
trade-offs may be difficult to quantify analytically. For
example, the sample size of an early-phase trial to accu-
rately identify subpopulations will influence the power
of a subsequent phase III registration trial, as well as the
costs and duration of the DDP. Simulations offer insights
into the magnitude of these trade-offs and can support
the design of trials throughout the DDP.

Important initiatives in oncology, from industry, aca-
demia, and regulatory agencies, recognize the importance
of early-stage studies in drug development processes, and
the potential for new strategies to improve study designs.
For example, the FDA Optimus project (2023) focuses
on the important transition from dose-selection studies
centered on the estimation of the maximum tolerated
dose, a standard goal for in the development of cytotoxic
treatments, to designs that account for other outcomes
beyond toxicities [10-12], such as tumor response. More
generally, novel classes of treatments (e.g., immunothera-
pies [13]) present new challenges for the design of clinical
trials.

Several aspects of the relationships between early-
phase trial designs and later stages of the DDP have been
discussed. For instance, data summaries from phase II
trials, such as treatment effect estimates and confidence
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intervals, can inform the design of subsequent confirma-
tory studies [14, 15]. For the I-SPY 2 trial, Wang and Yee
(2019) considered, using data observed throughout the
phase II trial, the utility of predicting results of a subse-
quent confirmatory phase III trial to trigger interim and
final decisions in early-stage trials, for example, the dis-
continuation of drug development [14]. De Ridder et al.
(2005) investigate the impact of different distributions of
pre-treatment prognostic characteristics in phase II and
III trials on the likelihood of regulatory approval. Gotte
et al. (2015) compared different strategies to choose
early-phase trial sample sizes and evaluate how they
impact on the power of subsequent phase III trials [16].

Finally, Conaway and Petroni (2019) present a simu-
lation study evaluating the impact of early-phase trial
design on the probability of regulatory approval [17].
Their work used interpretable metrics, such as the likeli-
hood of identifying the maximum tolerated dose and the
likelihood of successful regulatory approval.

We complement the existing body of work by consid-
ering stylized simulation models of consecutive clinical
trials within oncology DDPs. Specifically, we show how
such simulation models can be used to select design
parameters (e.g., sample size of a dose-escalation study)
for early-phase trials while accounting for potential
downstream effects on subsequent trials and the DDP as
a whole. We present three models:

(1) A phase II single-arm trial and a subsequent phase
IIT randomized controlled trial (RCT),

(2) A phase I dose-selection trial and a subsequent
phase II single-arm trial,

(3) A phase II biomarker enrichment RCT [18] and a
subsequent confirmatory phase III RCT.

The scenarios that we use to illustrate these simulation
models are motivated by our previous work on the design
of early stage trials in newly diagnosed glioblastoma [19—
22], lung cancer [23], and breast cancer [24]. In all three
examples, we discuss how the use of flexible simulation
models of the DDP can be stylized to the clinical setting,
support the design of early-phase trials. This approach
complements the current practice of selecting sample
sizes and other aspects of early-phase studies based on
important trial-specific operating characteristics, such as
power and study duration. R code for DDP simulations is
provided as supplementary RMarkdown files.

Methods

We considered three different DDP segments of two con-
secutive clinical trials. For each of the three examples, we
proposed stylized models, where the results of the first
trial (i.e., the final statistical analysis) determine whether
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to start the second trial in the segment or discontinue
the DDP and influence the design of the second trial. A
key decision in early-phase trial designs is the selection
of the sample size, based on relevant trial-specific operat-
ing characteristics and performance metrics of the DDP
segment, which are computed under plausible scenarios
using simulations. In this paper, these performance met-
rics were tailored to each example. Table 1 defines the
terms used frequently in the manuscript. We used the
objective response rate (ORR; ORR; and ORRy to indi-
cate the rates of experimental and standard of care treat-
ments, respectively) as the primary endpoint in all three
examples. Simulations were repeated 10,000 times and
performed in R 3.6.0 (R Core Team) [25].

Example 1: a phase Il single-arm trial followed

by a confirmatory phase Il RCT

This DDP segment comprises a single-arm phase II trial
followed by a phase III RCT (Fig. 1). The analysis of this
segment, and the simulation scenarios that we used, were
motivated by the specific problem of selecting phase II
trial designs for newly diagnosed glioblastoma [19, 20,
22] accounting for the impact of the design on the subse-
quent phases of the DDP.

The results from a single-arm phase II trial impact the
decision to perform a phase III RCT or not and inform
the design of the phase III trial. The phase II trial tests if
the ORR of an experimental treatment is superior to the
standard of care (SOC, null hypothesis Hy : ORR; < 0.4).
In the DDP model, if the phase II trial rejects the null
hypothesis based on an exact binomial test at a 0.05 sig-
nificance level, then a phase III RCT is initiated. We con-
sidered different phase II sample sizes #3. The sample size
ny varies between 20 and 140 patients (Table 2), yielding a
power between 70 and 99% with ORRs of 0.4 and 0.6 for
the SOC and the experimental treatment. The phase III
sample size is selected to attain a 90% power of rejecting
the null hypothesis (Hp : ORR; < ORRy) using a Fisher’s
exact test with a 0.05 type I error rate. The power calcula-
tion and the choice of the phase III sample size are based
on the estimate ORR; from the phase II trial data and an
historical estimate of ORR( equal to 0.4 for the SOC.
Independent binary outcomes for trial participants are
generated from binomial distributions with ORR; = 0.6
for the phase II, and ORRs equal to ORR; = 0.6 and
ORRy = 0.4 for the phase III trial, conditional on treat-
ment assignment.

We examined two performance metrics. First, we
determined the probability that the phase II trial recom-
mends a confirmatory phase III study that in turn dem-
onstrates a treatment effect. We call this probability the
power of the DDP segment. Second, we calculated the
total number of patients enrolled in the DDP segment,
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i.e., in the phase II and phase III trials, and reported the
mean across simulations.

Example 2: a phase | dose-finding trial followed by a phase
Il trial

This DDP segment includes a phase I trial using the Con-
tinual Reassessment Method (CRM) design [26] followed
by a phase II single-arm trial. This example and the sim-
ulation parameters were motivated by a phase I trial in
non-small cell lung cancer that we designed at the Dana-
Farber Cancer Institute [23].

In the phase I CRM trial, both sequential dose assign-
ments and the final dose selection are based on toxicity
outcomes. The design targets the maximum tolerated
dose (MTD), defined as the highest dose with probability
of toxicity below a prespecified threshold (p). In our styl-
ized model, the dose selected by the phase I trial is sub-
sequently evaluated in a single-arm phase II trial. If a safe
dose level is not identified by the phase I trial, then the
DDP segment is discontinued (Fig. 2A). In the single-arm
phase II trial, the experimental treatment is considered
effective if it provides an improvement compared to a
historical estimate for the SOC (ORRy = 0.4, alternative
hypothesis H; : ORR; = 0.6) Toxicities are also evaluated
at the end of the phase II trial, and the DDP is discontin-
ued if the observed rate of adverse events in the phase II
trial exceeds a pre-specified threshold.

The CRM trial evaluated six dose levels. We specified a
toxicity threshold of p=0.25, which is common in oncol-
ogy [26]. The CRM trial was simulated under the dose—
response/toxicity scenario displayed in Fig. 2B using the
‘dfcrm’ R package [27] with sample sizes ranging from
n1=10 to 80 patients. Toxicity outcomes in the phase I
study at dose levels j=1,..., 6 were generated according
to the probabilities displayed in Fig. 2B. If the phase I
study selected a dose j*, then the binary outcomes of the
patients in the phase II trial were generated according to
the parameters of dose j* in Fig. 2B. The single-arm phase
II trial with ny = 42 patients targeted 80% power (using
an exact binomial test) with a significance level of 0.05 to
test the hypotheses Hy : ORR; < 0.4 vs. H; : ORR; = 0.6
(see Table 2). The sample size ny was fixed and independ-
ent of the selected dose level.

We assessed two performance metrics. First, we deter-
mined the power of the DDP segment, which here is the
probability of a positive phase II trial combined with the
selection of a safe and effective dose at the end of the
phase I trial (i.e. probability of toxicity P(DLT) < p and
ORR > 0.4). Second, we determined the percentage of
patients treated with an unsafe (P(DLT) > p) or inef-
fective (ORR < 0.4) dose in the DDP segment. These are
representative performance metrics; indeed, one could
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Fig. 1 Example 1. A DDP segment: a phase Il single-arm trial followed by a phase Ill RCT. The results of the phase Il trial trigger the termination of
the segment or continuation to phase Ill. B The probability that the phase Il trial detects treatment effects and recommends a phase lIl trial that
subsequently confirms the positive effect of the experimental treatment. C Average number of patients enrolled in the DDP segment (i.e,, in the
phase Il and lll trials) across simulations for an effective (black line) and ineffective (red line) therapy

Table 2 Description of the simulation models used to mimic DDP segments

Parameter Example 1

Phase Il trial followed by a phase lll trial

Example 2

Phase | dose-finding
trial followed by a
phase Il trial

Example 3

Phase Il enrichment trial
followed by a phase Il RCT in
the selected subpopulation

Sample size of the first trial
SOC ORR

Hypothetical treatment effect used to
choose the sample size for the second trial

20-140 patients
040

0.05
0.90

Type | error rate of the second trial
Targeted power of the second trial
Sample size of the second trial

Estimated from the phase Il trial

Computed using the results of the phase Il
trial. Maximum size: 400 patients

10-80 patients 20-140 patients

040 0.40
0.20 Estimated from the phase Il trial
0.05 0.05
0.80 0.90

Calculated to achieve
the desired power. Trial
size fixed: 42 patients

Computed using the results of
the phase Il trial. Maximum size:
400 patients

consider other metrics, such as the duration of the DDP
segment.

Additionally, there is growing interest in early-stage
trial designs that seeks to incorporate efficacy outcomes
into dose-selection decisions, with the aim of recom-
mending optimal dose levels (ODs) instead of MTDs.
To provide an example (see Supplementary material for

details) we explored a variation of the DDP segment that
evaluates the same performance metrics (Figure S1).
We considered a scenario with non-monotone dose—
response relationship and replaced the CRM design with
the Bayesian adaptive design of Zang et al. (2014) [12].
The design seeks to identify and recommend an OD level
of an experimental agent instead of the MTD. The OD is
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Fig.2 Example 2. A DDP segment: a phase | dose-finding study followed by a single-arm phase Il trial. The DDP is discontinued after the phase

I trial (i.e, treatment not recommended for phase Il) if the lowest dose has a high toxicity estimate (>0.25). The DDP segment is discontinued
after the phase Il trial if the trial does not detect efficacy (ORR<0.4). B The dose-response (solid line) and dose-toxicity (dashed line) relationship
of the drug. Horizontal lines denote the ORR of the standard of care (dashed line), the experimental treatment (dotted-dashed line), and toxicity
threshold (dotted line). Both the 3rd and 4th dose levels are safe (p <0.25) and effective (ORR>0.4). C The power of the DDP segment (i.e,, the
probability that the phase | trial selects dose 3 or 4 and the subsequent phase Il trial detects a treatment effect). D The probability that a dose is
selected at completion of the phase | trial (clear bars). The panel also illustrates the probability that the phase Il trial detects a treatment effect and
recommends the drug for a phase Il trial (solid subset of clear bars). E The probability that a patient enrolled in the DDP segment will be given an
unsafe or ineffective dose
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defined as the dose-level j with the highest response rate
(ORRj) among all dose-levels with acceptable toxicity
[12].

Example 3: a phase Il enrichment RCT followed by a phase
N RCT

We considered a DDP segment consisting of a two-arm
randomized phase II adaptive enrichment trial [18] fol-
lowed by a phase III RCT (Fig. 3A). Several recent phase
III RCTs (e.g., Sparano et al., 2018 [27]) evaluated experi-
mental treatments in subpopulations that were previ-
ously identified in early-phase clinical studies [28-30].

In this DDP segment, the phase II trial design consid-
ers a continuous biomarker with the goal of determining
a cutoff value that identifies the subpopulation of patients
that benefit from the experimental treatment. If the
phase II trial identifies a treatment effect in a subpopu-
lation [18], then a phase III RCT is conducted. Eligibil-
ity for the phase III trial is limited to the subpopulation
selected by the phase II study.

In the phase II trial population, the biomarker was
uniformly distributed between 0 and 1. We considered
nine candidate cutoff points starting at 0.1 up to 0.9 with
increments of 0.1 (Fig. 3B). The trial had three accrual
periods and two interim analyses (IAs); 50% of the
patients were enrolled in stage 1, 25% in stage 2, and 25%
in stage 3. The outcomes for patients in the experimental
arm, given their biomarker value were generated accord-
ing to the probabilities ORR; (x) displayed in Fig. 3B. The
binary outcomes for the SOC arm were generated with
ORRy(x) = 0.4, without variation across biomarker val-
ues. The phase II enrichment trial tests the null hypoth-
esis Hyp : ORR;(x) < ORR(x) for all values of x between
0 and 1 using McNemar’s test (Simon and Simon 2013).
We considered different phase II trial sample sizes, which
varied from ny = 20 to 140 patients (Fig. 3).

The phase III sample size n3 targeted a 90% power at a
0.05 significance level based on a Fisher’s exact test, with
a maximum of 400 patients. The sample size varied across
simulations, based on the estimated ORRs for the experi-
mental and SOC treatments in the selected subpopula-
tion, as reported by the phase II enrichment trial, for the
power calculation. Outcomes were simulated by the same
mechanism as in phase II, where the biomarker value is
uniformly distributed between the cut-off selected by the
phase II trial and one.

We examined two performance metrics of the DDP
segment. First, we determined the power of the DDP
segment, i.e. the probability that, for an effective drug,
the phase II trial selects a cutoff point and rejects Hy
(i.e., the null hypothesis that all patients don’t benefit
from the experimental treatment) and that the phase
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III trial confirms the result. Second, we evaluated the
duration of the DDP segment under realistic assump-
tions about enrollment rates.

Results

Example 1 'The power of the DDP segment, as
expected, was considerably reduced when we compared
(i) a phase II design (the first component of the DDP seg-
ment) planned to achieve 80% power for our hypotheti-
cal treatment effect (H; : ORR; = 0.6) without consider-
ing the subsequent phase III confirmatory trial, and (ii) a
trial design with a sample size that targets 80% power of
the DDP segment (Fig. 1B). In the first case, the resulting
sample size of the phase II trial was 30 patients. For the
hypothetical treatment effect, with this phase II sample
size, the power of the DDP segment was below 65%. Con-
versely, planning the phase II trial with the support of a
simulation model that includes both studies in the DDP
segment (target: 80% power of the DDP segment), the
resulting phase II study had a sample size of 60 patients.
This translated into a~90% power of the phase II trial.
This increase in power of the DDP segment was associ-
ated with an increase in average total sample size of the
segment from 225 to 325 patients (Fig. 1B). Moreover,
the additional power gained by enrolling more patients in
phase II begins to increase at a substantially lower rate for
sample sizes above ny = 80. For example, the DDP power
increases from approximately 85% to 88% by increasing
ny from 80 to 110 (Fig. 1B).

Example 2 Of the six doses considered in the phase I
CRM trial, only dose levels 3 and 4 met the criteria for
safety and efficacy. The other levels presented low ORR
(doses 1 and 2) or were toxic (doses 5 and 6; Fig. 2B).
Comparing performance metrics, a single-arm phase I
trial with 20 patients was associated with 65% power of
the DDP segment (i.e., probability of selecting dose 3 or
4 in the phase I study and detecting efficacy in the sub-
sequent phase II trial; Fig. 2C). This sample size was also
associated with a high probability that the phase II trial
would evaluate and expose patients to ineffective or toxic
doses (Fig. 2D-E). In contrast, enrolling 60 patients in the
phase I trial provides 80% probability of selecting either
dose 3 or 4 (Fig. 2D) and increases the power of the DDP
segment to 75% (Fig. 2C).

When the relationship between dose level and response
is non-monotone, phase I designs that identify ODs
instead of MTDs can improve the power of the DDP
segment and reduce the average number of toxicity
events (Figures S1 and S2).
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selected subpopulation. The results of the phase Il trial trigger termination of the DDP segment or continuation to a phase lll trial. B Simulation
scenario with a continuous biomarker. As biomarker levels increase, the probability of treatment response increases. The population with biomarker
levels > 0.6 benefits from the experimental treatment compared to the standard of care (SOC; dashed horizontal line), whereas patients with
biomarker levels < 0.6 have better probability of response under the SOC. C The probabilities that each cutoff is selected at the end of the phase

I trial. Selection of the optimal cutoff point (0.6) is shown in green. The probability of a negative result of the phase Il trial, without evidence of
treatment effects, is shown in red. D Power of the DDP segment

Example 3 In the third DDP segment, as the sam- negative phase II trial result that terminate the DDP
ple size of the phase II enrichment trial increased, the  decreased (Fig. 3C). This in turn led to a higher prob-
optimal biomarker cutoff point (0.6) was selected with  ability that the DDP segment has a positive result in the
increasing accuracy (Fig. 3C) and the probability of a  phase III trial (Fig. 3D). For example, if the phase II trial
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enrolled 40 patients, then the trial results recommend
discontinuing the DDP with a probability of more than
10%. Additionally, with this sample size, cutoff points of
0.6 or greater were selected with approximately equal
probabilities. In other words, with high probability the
phase III trials enroll only a subset of patients that ben-
efits from the experimental treatment. With this sample
size, we estimated a 30% power of the DDP segment (i.e.,
detecting efficacy in the phase III trial; Fig. 3D). By con-
trast, enrolling 130 patients into the phase II enrichment
trial increased the power of the DDP segment to 70%.
There is a trade-off between the power of the DDP seg-
ment and the time necessary to complete the segment.
Large phase II sample sizes increase the DPP power, but
they also tend to extend substantially the duration of the
DDP segment (Fig. 3D).

Discussion

In this work, we (1) demonstrated the impact of early-
phase designs and their parameters, such as sample size,
on the operating characteristics and potential results of
subsequent late-phase trials; (2) illustrated that simu-
lation models are flexible, useful, and customizable to
evaluate the relationships between early-phase trials and
operating characteristics of the DDP; and (3) provided
examples to facilitate the use of DDP simulation models
in planning future early-phase trials in oncology.

The simulation-based approach that we proposed is
applicable to trial designs and DDPs with various pri-
mary outcomes, including outcomes beyond responses
(as considered in our examples). We use ORR in all
phases for simplicity and simultaneously emphasize
that the simulation-based framework that we proposed
allows investigators to consider these designs and DDPs
and compare early-trial designs with different primary
outcomes. Comparing ORRs is one way to evaluate an
experimental treatment; early-stage trial designs to eval-
uate a specific experimental treatment might use ORR,
PES, OS, or other novel measures as primary outcomes
[31, 32]. The relative merits and weaknesses of these pri-
mary outcomes have been discussed in the oncology lit-
erature and vary substantially across patient populations,
classes of treatments, and phases of drug development
(33, 34].

In general, the choice of the primary endpoint should
be tailored to the oncology trial and consider differences
in study-specific aims across trials, strategies of differ-
ent DDPs, and patient populations. For a DDP with ORR
as the primary endpoint (or other binary endpoints)
in phase II and OS in later-phase trials, then scenar-
ios would need to be specified accounting for data and
meta-analyses that allow the analyst to express realistic
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scenarios and explore operating characteristics of the
DDP. Here, OS and PFS data can be generated concur-
rently for the phase II trial that utilizes ORR as primary
outcomes, and these generated outcomes can be useful
for designing the subsequent phase III study. This type
of DDP segment involves some considerations. First, in
the literature, discordant treatment effects have been
reported between ORR and OS. Second, if the relation-
ship between ORR and OS outcomes is well-informed,
OS data generated concurrently in the phase II trial can
be useful for designing the subsequent confirmatory
study.

In Example 1, we examined the relationship between
the sample size of a phase II trial and the likelihood that
a subsequent phase III trial would demonstrate improved
outcomes for the experimental treatment compared
to the SOC. This example illustrated how simulations
and analyses restricted to a single clinical trial versus
extended perspectives that account for subsequent stud-
ies in the DDP can lead to markedly different decisions
on key aspects of the early-phase design such as the sam-
ple size.

In Example 2, we considered a phase I dose-finding trial
designed to identify the highest tolerated dose (MTD) to
be evaluated in a subsequent phase II study. The simula-
tion model quantified the extent to which increasing the
phase I sample size would affect the likelihood of a posi-
tive result at completion of the DDP segment. Stylized
models of DDP segments can be used to compare early-
phase trial designs (e.g., 3+3 design [35], CRM design
[26], Bayesian Optimal Interval (BOIN) design [36], Eff-
Tox design [37], etc.) under plausible scenarios. These
comparisons can include phase I designs that utilize both
toxicity and response outcomes (see the Supplementary
Material for one example).

In Example 3, we considered a phase II adaptive
enrichment design [18]. Our model of the DDP segment
quantified the extent to which the phase II sample size
contributes to the power of the DDP segment. Our styl-
ized simulations evaluate the accuracy of the DDP seg-
ment in identifying the subpopulation that benefits from
the experimental therapy. Simulations can also be used
to explore implications of the phase II trial design on the
DDP costs and duration.

In all our examples, the outlined performance met-
rics of the DDP segments are not intended to constitute
an exhaustive assessment. Rather, they exemplify the
trade-offs between sample size, trial conclusions, accu-
racy, and time necessary to evaluate treatments in DDP
segments. One limitation of this work is that our DDP
segments contain only two consecutive trials. How-
ever, in certain cases it may be useful to consider the
complete DDP, from the trial that the investigators are
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designing onward. Additionally, in our examples, the
sample size of the second clinical trial is selected using
only a point estimate of the treatment effects from the
first clinical study. In several cases it is appropriate to
account also for the variance and confidence interval of
this estimate.

Several contributions point at the importance of ade-
quate sample sizes in early-phase trials [16, 38]. For
instance, unrealistic expectations of large treatment
effects have been associated with poor sample size deci-
sions and trial designs [38]. We showed, through simple
simulation models, how the sample sizes of early-phase
trials can impact on the resource requirement and the
probability of positive findings of the DDP segments. For
example, in our first DDP segment, a phase II sample size
of 30 patients achieved trial power equal to 80%, and the
probability of a positive finding at completion of the DDP
segment was only 65%, while increasing the phase II sam-
ple size to 60 patients yields 80% probability of a success-
ful DDP segment. Moreover, significance levels different
from the ubiquitous 5% level can be explored. Realistic
and well-justified treatment effects hypotheses and sce-
narios are necessary for standard power calculations as
well as for simulation-based analyses of DDPs to support
decisions about key parameters early-stage trial designs.

Simulation reports used for the purpose of support-
ing trial designs need to balance (i) the use of compre-
hensive and plausible sets of scenarios (e.g., potential
dose-toxicity and dose-efficacy curves) and (ii) multiple
operating characteristics with (iii) concise summaries of
the analysis to compare candidate trial designs. The Food
and Drug Administration (FDA) Model-Informed Drug
Development (MIDD) guidance (2021) acknowledges
that “when successfully applied, MIDD approaches can
improve clinical trial efficiency, increase the probability
of regulatory success, and optimize drug dosing/therapeu-
tic individualization” [39]. Simulation models have been
useful in supporting decision-making in drug develop-
ment. Data and results from meta-analyses and previous
studies as well as information on regulatory standards
and recruitment rates are fundamental in the develop-
ment of useful simulation models of DDPs.

DDP models can support decision-making on early-
phase trial designs by improving comparisons of can-
didate trial designs and taking into consideration the
impact of early-stage trials on subsequent trials in the
DDP. We showed here that simple and stylized simula-
tions of DDP segments can effectively complement the
use of standard operating characteristics (e.g., power and
duration of a clinical trial). Ultimately, better decision-
making on trial designs improves the efficiency of the
DDP a whole as and accelerates the translation of clinical
trial findings into clinical care.
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Conclusions

We discussed how stylized simulation models of clini-
cal trials in an oncology DDP can quantify important
relationships between early-phase trial designs and
their consequences for the remaining phases of the
DDP. These models can be used to estimate and com-
pare performance metrics of the DDP under realistic
scenarios; for example, the duration and the total num-
ber of patients enrolled. These estimates complement
the evaluation of operating characteristics of early-
phase trial design, such as power and sample size.
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