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Abstract 

Background Clinical trial design must consider the specific resource constraints and overall goals of the drug 
development process (DDP); for example, in designing a phase I trial to evaluate the safety of a drug and recommend 
a dose for a subsequent phase II trial. Here, we focus on design considerations that involve the sequence of clinical 
trials, from early phase I to late phase III, that constitute the DDP.

Methods We discuss how stylized simulation models of clinical trials in an oncology DDP can quantify important 
relationships between early-phase trial designs and their consequences for the remaining phases of development. 
Simulations for three illustrative settings are presented, using stylized models of the DDP that mimic trial designs and 
decisions, such as the potential discontinuation of the DDP.

Results We describe: (1) the relationship between a phase II single-arm trial sample size and the likelihood of a posi-
tive result in a subsequent phase III confirmatory trial; (2) the impact of a phase I dose-finding design on the likelihood 
that the DDP will produce evidence of a safe and effective therapy; and (3) the impact of a phase II enrichment trial 
design on the operating characteristics of a subsequent phase III confirmatory trial.

Conclusions Stylized models of the DDP can support key decisions, such as the sample size, in the design of early-
phase trials. Simulation models can be used to estimate performance metrics of the DDP under realistic scenarios; for 
example, the duration and the total number of patients enrolled. These estimates complement the evaluation of the 
operating characteristics of early-phase trial design, such as power or accuracy in selecting safe and effective dose 
levels.

Keywords Drug development process, Clinical trial design, Simulation, Oncology

Introduction
Most drug development processes (DDPs) in oncology 
consist of a series of early- to late-phase clinical trials. In 
most cases, each clinical study is designed based on a set 
of operating characteristics; for example, the power to 
detect treatment effects in a phase II study. The choice of 
the study design focuses primarily on the goals of a single 
clinical trial, often without estimates of the consequences 
of early-phase trials on later stages of the DDP. As we dis-
cuss in this article, early-phase trial designs can have a 
marked impact on the more time-consuming later stages 
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of the DDP. Here, we use stylized simulation models to 
anticipate and describe relationships between early and 
late stages of drug development, with the goal of improv-
ing the design of early-phase clinical trials.

In precision medicine, the relationship between early 
and late stages of the DDP is particularly relevant; results 
from early phases, such as biomarker discovery and vali-
dation or identification of therapeutic targets and patient 
subpopulations, inform the design of subsequent trials in 
the DDP. Indeed, precision medicine involves the identi-
fication of subpopulations that benefit from experimen-
tal treatments [1, 2]. However, early-stage trial designs 
might be inadequate to accurately identify these sub-
populations. As previously discussed in the literature 
[3], when early-phase trial designs are unable to capture 
treatment effect variations across subgroups, the power 
to detect treatment effects in later-stage trials might be 
reduced and the enrollment criteria may be suboptimal.

Innovations in the DDP are important to advance 
patient care; examples in clinical trial design include bio-
marker stratification and adaptive enrichment designs, 
as well as outcome-adaptive randomization, master pro-
tocols, platform trial designs, and the integration of real-
world data [3–9]. These approaches have the potential to 
reduce the duration of the DDP, improve the accuracy 
of treatment effect estimates, and ultimately translate 
research into effective clinical care [2].

There are trade-offs between the operating characteris-
tics of the DDP as a whole and each individual trial; these 
trade-offs may be difficult to quantify analytically. For 
example, the sample size of an early-phase trial to accu-
rately identify subpopulations will influence the power 
of a subsequent phase III registration trial, as well as the 
costs and duration of the DDP. Simulations offer insights 
into the magnitude of these trade-offs and can support 
the design of trials throughout the DDP.

Important initiatives in oncology, from industry, aca-
demia, and regulatory agencies, recognize the importance 
of early-stage studies in drug development processes, and 
the potential for new strategies to improve study designs. 
For example, the FDA Optimus project (2023) focuses 
on the important transition from dose-selection studies 
centered on the estimation of the maximum tolerated 
dose, a standard goal for in the development of cytotoxic 
treatments, to designs that account for other outcomes 
beyond toxicities [10–12], such as tumor response. More 
generally, novel classes of treatments (e.g., immunothera-
pies [13]) present new challenges for the design of clinical 
trials.

Several aspects of the relationships between early-
phase trial designs and later stages of the DDP have been 
discussed. For instance, data summaries from phase II 
trials, such as treatment effect estimates and confidence 

intervals, can inform the design of subsequent confirma-
tory studies [14, 15]. For the I-SPY 2 trial, Wang and Yee 
(2019) considered, using data observed throughout the 
phase II trial, the utility of predicting results of a subse-
quent confirmatory phase III trial to trigger interim and 
final decisions in early-stage trials, for example, the dis-
continuation of drug development [14]. De Ridder et al. 
(2005) investigate the impact of different distributions of 
pre-treatment prognostic characteristics in phase II and 
III trials on the likelihood of regulatory approval. Gotte 
et  al. (2015) compared different strategies to choose 
early-phase trial sample sizes and evaluate how they 
impact on the power of subsequent phase III trials [16].

Finally, Conaway and Petroni (2019) present a simu-
lation study evaluating the impact of early-phase trial 
design on the probability of regulatory approval [17]. 
Their work used interpretable metrics, such as the likeli-
hood of identifying the maximum tolerated dose and the 
likelihood of successful regulatory approval.

We complement the existing body of work by consid-
ering stylized simulation models of consecutive clinical 
trials within oncology DDPs. Specifically, we show how 
such simulation models can be used to select design 
parameters (e.g., sample size of a dose-escalation study) 
for early-phase trials while accounting for potential 
downstream effects on subsequent trials and the DDP as 
a whole. We present three models:

(1) A phase II single-arm trial and a subsequent phase 
III randomized controlled trial (RCT),

(2) A phase I dose-selection trial and a subsequent 
phase II single-arm trial,

(3) A phase II biomarker enrichment RCT [18] and a 
subsequent confirmatory phase III RCT.

The scenarios that we use to illustrate these simulation 
models are motivated by our previous work on the design 
of early stage trials in newly diagnosed glioblastoma [19–
22], lung cancer [23], and breast cancer [24]. In all three 
examples, we discuss how the use of flexible simulation 
models of the DDP can be stylized to the clinical setting, 
support the design of early-phase trials. This approach 
complements the current practice of selecting sample 
sizes and other aspects of early-phase studies based on 
important trial-specific operating characteristics, such as 
power and study duration. R code for DDP simulations is 
provided as supplementary RMarkdown files.

Methods
We considered three different DDP segments of two con-
secutive clinical trials. For each of the three examples, we 
proposed stylized models, where the results of the first 
trial (i.e., the final statistical analysis) determine whether 
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to start the second trial in the segment or discontinue 
the DDP and influence the design of the second trial. A 
key decision in early-phase trial designs is the selection 
of the sample size, based on relevant trial-specific operat-
ing characteristics and performance metrics of the DDP 
segment, which are computed under plausible scenarios 
using simulations. In this paper, these performance met-
rics were tailored to each example. Table  1 defines the 
terms used frequently in the manuscript. We used the 
objective response rate (ORR; ORR1 and ORR0 to indi-
cate the rates of experimental and standard of care treat-
ments, respectively) as the primary endpoint in all three 
examples. Simulations were repeated 10,000 times and 
performed in R 3.6.0 (R Core Team) [25].

Example 1: a phase II single‑arm trial followed 
by a confirmatory phase III RCT 
This DDP segment comprises a single-arm phase II trial 
followed by a phase III RCT (Fig. 1). The analysis of this 
segment, and the simulation scenarios that we used, were 
motivated by the specific problem of selecting phase II 
trial designs for newly diagnosed glioblastoma [19, 20, 
22] accounting for the impact of the design on the subse-
quent phases of the DDP.

The results from a single-arm phase II trial impact the 
decision to perform a phase III RCT or not and inform 
the design of the phase III trial. The phase II trial tests if 
the ORR of an experimental treatment is superior to the 
standard of care (SOC, null hypothesis H0 : ORR1 ≤ 0.4 ). 
In the DDP model, if the phase II trial rejects the null 
hypothesis based on an exact binomial test at a 0.05 sig-
nificance level, then a phase III RCT is initiated. We con-
sidered different phase II sample sizes n2 . The sample size 
n2 varies between 20 and 140 patients (Table 2), yielding a 
power between 70 and 99% with ORRs of 0.4 and 0.6 for 
the SOC and the experimental treatment. The phase III 
sample size is selected to attain a 90% power of rejecting 
the null hypothesis ( H0 : ORR1 ≤ ORR0 ) using a Fisher’s 
exact test with a 0.05 type I error rate. The power calcula-
tion and the choice of the phase III sample size are based 
on the estimate ORR1 from the phase II trial data and an 
historical estimate of  ORR0 equal to 0.4 for the SOC. 
Independent binary outcomes for trial participants are 
generated from binomial distributions with ORR1 = 0.6 
for the phase II, and ORRs equal to ORR1 = 0.6 and 
ORR0 = 0.4 for the phase III trial, conditional on treat-
ment assignment.

We examined two performance metrics. First, we 
determined the probability that the phase II trial recom-
mends a confirmatory phase III study that in turn dem-
onstrates a treatment effect. We call this probability the 
power of the DDP segment. Second, we calculated the 
total number of patients enrolled in the DDP segment, 

i.e., in the phase II and phase III trials, and reported the 
mean across simulations.

Example 2: a phase I dose‑finding trial followed by a phase 
II trial
This DDP segment includes a phase I trial using the Con-
tinual Reassessment Method (CRM) design [26] followed 
by a phase II single-arm trial. This example and the sim-
ulation parameters were motivated by a phase I trial in 
non-small cell lung cancer that we designed at the Dana-
Farber Cancer Institute [23].

In the phase I CRM trial, both sequential dose assign-
ments and the final dose selection are based on toxicity 
outcomes. The design targets the maximum tolerated 
dose (MTD), defined as the highest dose with probability 
of toxicity below a prespecified threshold (p). In our styl-
ized model, the dose selected by the phase I trial is sub-
sequently evaluated in a single-arm phase II trial. If a safe 
dose level is not identified by the phase I trial, then the 
DDP segment is discontinued (Fig. 2A). In the single-arm 
phase II trial, the experimental treatment is considered 
effective if it provides an improvement compared to a 
historical estimate for the SOC ( ORR0 = 0.4 , alternative 
hypothesis H1 : ORR1 = 0.6 ) Toxicities are also evaluated 
at the end of the phase II trial, and the DDP is discontin-
ued if the observed rate of adverse events in the phase II 
trial exceeds a pre-specified threshold.

The CRM trial evaluated six dose levels. We specified a 
toxicity threshold of p = 0.25, which is common in oncol-
ogy [26]. The CRM trial was simulated under the dose–
response/toxicity scenario displayed in Fig. 2B using the 
‘dfcrm’ R package [27] with sample sizes ranging from 
n1=10 to 80 patients. Toxicity outcomes in the phase I 
study at dose levels j = 1,…, 6 were generated according 
to the probabilities displayed in Fig.  2B. If the phase I 
study selected a dose j∗ , then the binary outcomes of the 
patients in the phase II trial were generated according to 
the parameters of dose j∗ in Fig. 2B. The single-arm phase 
II trial with n2 = 42 patients targeted 80% power (using 
an exact binomial test) with a significance level of 0.05 to 
test the hypotheses H0 : ORR1 ≤ 0.4 vs. H1 : ORR1 = 0.6 
(see Table 2). The sample size n2 was fixed and independ-
ent of the selected dose level.

We assessed two performance metrics. First, we deter-
mined the power of the DDP segment, which here is the 
probability of a positive phase II trial combined with the 
selection of a safe and effective dose at the end of the 
phase I trial (i.e. probability of toxicity P(DLT ) ≤ p and 
ORR > 0.4 ). Second, we determined the percentage of 
patients treated with an unsafe ( P(DLT ) > p ) or inef-
fective ( ORR ≤ 0.4 ) dose in the DDP segment. These are 
representative performance metrics; indeed, one could 
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consider other metrics, such as the duration of the DDP 
segment.

Additionally, there is growing interest in early-stage 
trial designs that seeks to incorporate efficacy outcomes 
into dose-selection decisions, with the aim of recom-
mending optimal dose levels (ODs) instead of MTDs. 
To provide an example (see Supplementary material for 

details) we explored a variation of the DDP segment that 
evaluates the same performance metrics (Figure S1). 
We considered a scenario with non-monotone dose–
response relationship and replaced the CRM design with 
the Bayesian adaptive design of Zang et  al. (2014) [12]. 
The design seeks to identify and recommend an OD level 
of an experimental agent instead of the MTD. The OD is 

Fig. 1 Example 1. A DDP segment: a phase II single-arm trial followed by a phase III RCT. The results of the phase II trial trigger the termination of 
the segment or continuation to phase III. B The probability that the phase II trial detects treatment effects and recommends a phase III trial that 
subsequently confirms the positive effect of the experimental treatment. C Average number of patients enrolled in the DDP segment (i.e., in the 
phase II and III trials) across simulations for an effective (black line) and ineffective (red line) therapy

Table 2 Description of the simulation models used to mimic DDP segments

Parameter Example 1
Phase II trial followed by a phase III trial

Example 2
Phase I dose‑finding 
trial followed by a 
phase II trial

Example 3
Phase II enrichment trial 
followed by a phase III RCT in 
the selected subpopulation

Sample size of the first trial 20–140 patients 10–80 patients 20–140 patients

SOC ORR 0.40 0.40 0.40

Hypothetical treatment effect used to 
choose the sample size for the second trial

Estimated from the phase II trial 0.20 Estimated from the phase II trial

Type I error rate of the second trial 0.05 0.05 0.05

Targeted power of the second trial 0.90 0.80 0.90

Sample size of the second trial Computed using the results of the phase II 
trial. Maximum size: 400 patients

Calculated to achieve 
the desired power. Trial 
size fixed: 42 patients

Computed using the results of 
the phase II trial. Maximum size: 
400 patients
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Fig. 2 Example 2. A DDP segment: a phase I dose-finding study followed by a single-arm phase II trial. The DDP is discontinued after the phase 
I trial (i.e., treatment not recommended for phase II) if the lowest dose has a high toxicity estimate (> 0.25). The DDP segment is discontinued 
after the phase II trial if the trial does not detect efficacy (ORR ≤ 0.4). B The dose–response (solid line) and dose-toxicity (dashed line) relationship 
of the drug. Horizontal lines denote the ORR of the standard of care (dashed line), the experimental treatment (dotted-dashed line), and toxicity 
threshold (dotted line). Both the 3rd and 4th dose levels are safe (p ≤ 0.25) and effective (ORR > 0.4). C The power of the DDP segment (i.e., the 
probability that the phase I trial selects dose 3 or 4 and the subsequent phase II trial detects a treatment effect). D The probability that a dose is 
selected at completion of the phase I trial (clear bars). The panel also illustrates the probability that the phase II trial detects a treatment effect and 
recommends the drug for a phase III trial (solid subset of clear bars). E The probability that a patient enrolled in the DDP segment will be given an 
unsafe or ineffective dose
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defined as the dose-level j with the highest response rate 
( ORRj ) among all dose-levels with acceptable toxicity 
[12].

Example 3: a phase II enrichment RCT followed by a phase 
III RCT 
We considered a DDP segment consisting of a two-arm 
randomized phase II adaptive enrichment trial [18] fol-
lowed by a phase III RCT (Fig. 3A). Several recent phase 
III RCTs (e.g., Sparano et al., 2018 [27]) evaluated experi-
mental treatments in subpopulations that were previ-
ously identified in early-phase clinical studies [28–30].

In this DDP segment, the phase II trial design consid-
ers a continuous biomarker with the goal of determining 
a cutoff value that identifies the subpopulation of patients 
that benefit from the experimental treatment. If the 
phase II trial identifies a treatment effect in a subpopu-
lation [18], then a phase III RCT is conducted. Eligibil-
ity for the phase III trial is limited to the subpopulation 
selected by the phase II study.

In the phase II trial population, the biomarker was 
uniformly distributed between 0 and 1. We considered 
nine candidate cutoff points starting at 0.1 up to 0.9 with 
increments of 0.1 (Fig.  3B). The trial had three accrual 
periods and two interim analyses (IAs); 50% of the 
patients were enrolled in stage 1, 25% in stage 2, and 25% 
in stage 3. The outcomes for patients in the experimental 
arm, given their biomarker value were generated accord-
ing to the probabilities ORR1(x) displayed in Fig. 3B. The 
binary outcomes for the SOC arm were generated with 
ORR0(x) = 0.4 , without variation across biomarker val-
ues. The phase II enrichment trial tests the null hypoth-
esis H0 : ORR1(x) ≤ ORR0(x) for all values of x between 
0 and 1 using McNemar’s test (Simon and Simon 2013). 
We considered different phase II trial sample sizes, which 
varied from n2 = 20 to 140 patients (Fig. 3).

The phase III sample size n3 targeted a 90% power at a 
0.05 significance level based on a Fisher’s exact test, with 
a maximum of 400 patients. The sample size varied across 
simulations, based on the estimated ORRs for the experi-
mental and SOC treatments in the selected subpopula-
tion, as reported by the phase II enrichment trial, for the 
power calculation. Outcomes were simulated by the same 
mechanism as in phase II, where the biomarker value is 
uniformly distributed between the cut-off selected by the 
phase II trial and one.

We examined two performance metrics of the DDP 
segment. First, we determined the power of the DDP 
segment, i.e. the probability that, for an effective drug, 
the phase II trial selects a cutoff point and rejects H0 
(i.e., the null hypothesis that all patients don’t benefit 
from the experimental treatment) and that the phase 

III trial confirms the result. Second, we evaluated the 
duration of the DDP segment under realistic assump-
tions about enrollment rates.

Results

Example 1 The power of the DDP segment, as 
expected, was considerably reduced when we compared 
(i) a phase II design (the first component of the DDP seg-
ment) planned to achieve 80% power for our hypotheti-
cal treatment effect ( H1 : ORR1 = 0.6 ) without consider-
ing the subsequent phase III confirmatory trial, and (ii) a 
trial design with a sample size that targets 80% power of 
the DDP segment (Fig. 1B). In the first case, the resulting 
sample size of the phase II trial was 30 patients. For the 
hypothetical treatment effect, with this phase II sample 
size, the power of the DDP segment was below 65%. Con-
versely, planning the phase II trial with the support of a 
simulation model that includes both studies in the DDP 
segment (target: 80% power of the DDP segment), the 
resulting phase II study had a sample size of 60 patients. 
This translated into a ~ 90% power of the phase II trial. 
This increase in power of the DDP segment was associ-
ated with an increase in average total sample size of the 
segment from 225 to 325 patients (Fig.  1B). Moreover, 
the additional power gained by enrolling more patients in 
phase II begins to increase at a substantially lower rate for 
sample sizes above n2 = 80 . For example, the DDP power 
increases from approximately 85% to 88% by increasing 
n2 from 80 to 110 (Fig. 1B).

Example 2 Of the six doses considered in the phase I 
CRM trial, only dose levels 3 and 4 met the criteria for 
safety and efficacy. The other levels presented low ORR 
(doses 1 and 2) or were toxic (doses 5 and 6; Fig.  2B). 
Comparing performance metrics, a single-arm phase I 
trial with 20 patients was associated with 65% power of 
the DDP segment (i.e., probability of selecting dose 3 or 
4 in the phase I study and detecting efficacy in the sub-
sequent phase II trial; Fig. 2C). This sample size was also 
associated with a high probability that the phase II trial 
would evaluate and expose patients to ineffective or toxic 
doses (Fig. 2D-E). In contrast, enrolling 60 patients in the 
phase I trial provides 80% probability of selecting either 
dose 3 or 4 (Fig. 2D) and increases the power of the DDP 
segment to 75% (Fig. 2C).

When the relationship between dose level and response 
is non-monotone, phase I designs that identify ODs 
instead of MTDs can improve the power of the DDP 
segment and reduce the average number of toxicity 
events (Figures S1 and S2).
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Example 3 In the third DDP segment, as the sam-
ple size of the phase II enrichment trial increased, the 
optimal biomarker cutoff point (0.6) was selected with 
increasing accuracy (Fig.  3C) and the probability of a 

negative phase II trial result that terminate the DDP 
decreased (Fig.  3C). This in turn led to a higher prob-
ability that the DDP segment has a positive result in the 
phase III trial (Fig. 3D). For example, if the phase II trial 

Fig. 3 Example 3. A DDP segment: a phase II randomized population enrichment trial (Simon & Simon, 2013) followed by a phase III RCT in the 
selected subpopulation. The results of the phase II trial trigger termination of the DDP segment or continuation to a phase III trial. B Simulation 
scenario with a continuous biomarker. As biomarker levels increase, the probability of treatment response increases. The population with biomarker 
levels ≥ 0.6 benefits from the experimental treatment compared to the standard of care (SOC; dashed horizontal line), whereas patients with 
biomarker levels < 0.6 have better probability of response under the SOC. C The probabilities that each cutoff is selected at the end of the phase 
II trial. Selection of the optimal cutoff point (0.6) is shown in green. The probability of a negative result of the phase II trial, without evidence of 
treatment effects, is shown in red. D Power of the DDP segment
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enrolled 40 patients, then the trial results recommend 
discontinuing the DDP with a probability of more than 
10%. Additionally, with this sample size, cutoff points of 
0.6 or greater were selected with approximately equal 
probabilities. In other words, with high probability the 
phase III trials enroll only a subset of patients that ben-
efits from the experimental treatment. With this sample 
size, we estimated a 30% power of the DDP segment (i.e., 
detecting efficacy in the phase III trial; Fig. 3D). By con-
trast, enrolling 130 patients into the phase II enrichment 
trial increased the power of the DDP segment to 70%. 
There is a trade-off between the power of the DDP seg-
ment and the time necessary to complete the segment. 
Large phase II sample sizes increase the DPP power, but 
they also tend to extend substantially the duration of the 
DDP segment (Fig. 3D).

Discussion
In this work, we (1) demonstrated the impact of early-
phase designs and their parameters, such as sample size, 
on the operating characteristics and potential results of 
subsequent late-phase trials; (2) illustrated that simu-
lation models are flexible, useful, and customizable to 
evaluate the relationships between early-phase trials and 
operating characteristics of the DDP; and (3) provided 
examples to facilitate the use of DDP simulation models 
in planning future early-phase trials in oncology.

The simulation-based approach that we proposed is 
applicable to trial designs and DDPs with various pri-
mary outcomes, including outcomes beyond responses 
(as considered in our examples). We use ORR in all 
phases for simplicity and simultaneously emphasize 
that the simulation-based framework that we proposed 
allows investigators to consider these designs and DDPs 
and compare early-trial designs with different primary 
outcomes. Comparing ORRs is one way to evaluate an 
experimental treatment; early-stage trial designs to eval-
uate a specific experimental treatment might use ORR, 
PFS, OS, or other novel measures as primary outcomes 
[31, 32]. The relative merits and weaknesses of these pri-
mary outcomes have been discussed in the oncology lit-
erature and vary substantially across patient populations, 
classes of treatments, and phases of drug development 
[33, 34].

In general, the choice of the primary endpoint should 
be tailored to the oncology trial and consider differences 
in study-specific aims across trials, strategies of differ-
ent DDPs, and patient populations. For a DDP with ORR 
as the primary endpoint (or other binary endpoints) 
in phase II and OS in later-phase trials, then scenar-
ios would need to be specified accounting for data and 
meta-analyses that allow the analyst to express realistic 

scenarios and explore operating characteristics of the 
DDP. Here, OS and PFS data can be generated concur-
rently for the phase II trial that utilizes ORR as primary 
outcomes, and these generated outcomes can be useful 
for designing the subsequent phase III study. This type 
of DDP segment involves some considerations. First, in 
the literature, discordant treatment effects have been 
reported between ORR and OS. Second, if the relation-
ship between ORR and OS outcomes is well-informed, 
OS data generated concurrently in the phase II trial can 
be useful for designing the subsequent confirmatory 
study.

In Example 1, we examined the relationship between 
the sample size of a phase II trial and the likelihood that 
a subsequent phase III trial would demonstrate improved 
outcomes for the experimental treatment compared 
to the SOC. This example illustrated how simulations 
and analyses restricted to a single clinical trial versus 
extended perspectives that account for subsequent stud-
ies in the DDP can lead to markedly different decisions 
on key aspects of the early-phase design such as the sam-
ple size.

In Example 2, we considered a phase I dose-finding trial 
designed to identify the highest tolerated dose (MTD) to 
be evaluated in a subsequent phase II study. The simula-
tion model quantified the extent to which increasing the 
phase I sample size would affect the likelihood of a posi-
tive result at completion of the DDP segment. Stylized 
models of DDP segments can be used to compare early-
phase trial designs (e.g., 3 + 3 design [35], CRM design 
[26], Bayesian Optimal Interval (BOIN) design [36], Eff-
Tox design [37], etc.) under plausible scenarios. These 
comparisons can include phase I designs that utilize both 
toxicity and response outcomes (see the Supplementary 
Material for one example).

In Example 3, we considered a phase II adaptive 
enrichment design [18]. Our model of the DDP segment 
quantified the extent to which the phase II sample size 
contributes to the power of the DDP segment. Our styl-
ized simulations evaluate the accuracy of the DDP seg-
ment in identifying the subpopulation that benefits from 
the experimental therapy. Simulations can also be used 
to explore implications of the phase II trial design on the 
DDP costs and duration.

In all our examples, the outlined performance met-
rics of the DDP segments are not intended to constitute 
an exhaustive assessment. Rather, they exemplify the 
trade-offs between sample size, trial conclusions, accu-
racy, and time necessary to evaluate treatments in DDP 
segments. One limitation of this work is that our DDP 
segments contain only two consecutive trials. How-
ever, in certain cases it may be useful to consider the 
complete DDP, from the trial that the investigators are 



Page 10 of 11Vanderbeek et al. BMC Medical Research Methodology          (2023) 23:151 

designing onward. Additionally, in our examples, the 
sample size of the second clinical trial is selected using 
only a point estimate of the treatment effects from the 
first clinical study. In several cases it is appropriate to 
account also for the variance and confidence interval of 
this estimate.

Several contributions point at the importance of ade-
quate sample sizes in early-phase trials [16, 38]. For 
instance, unrealistic expectations of large treatment 
effects have been associated with poor sample size deci-
sions and trial designs [38]. We showed, through simple 
simulation models, how the sample sizes of early-phase 
trials can impact on the resource requirement and the 
probability of positive findings of the DDP segments. For 
example, in our first DDP segment, a phase II sample size 
of 30 patients achieved trial power equal to 80%, and the 
probability of a positive finding at completion of the DDP 
segment was only 65%, while increasing the phase II sam-
ple size to 60 patients yields 80% probability of a success-
ful DDP segment. Moreover, significance levels different 
from the ubiquitous 5% level can be explored. Realistic 
and well-justified treatment effects hypotheses and sce-
narios are necessary for standard power calculations as 
well as for simulation-based analyses of DDPs to support 
decisions about key parameters early-stage trial designs.

Simulation reports used for the purpose of support-
ing trial designs need to balance (i) the use of compre-
hensive and plausible sets of scenarios (e.g., potential 
dose-toxicity and dose-efficacy curves) and (ii) multiple 
operating characteristics with (iii) concise summaries of 
the analysis to compare candidate trial designs. The Food 
and Drug Administration (FDA) Model-Informed Drug 
Development (MIDD) guidance (2021) acknowledges 
that “when successfully applied, MIDD approaches can 
improve clinical trial efficiency, increase the probability 
of regulatory success, and optimize drug dosing/therapeu-
tic individualization” [39]. Simulation models have been 
useful in supporting decision-making in drug develop-
ment. Data and results from meta-analyses and previous 
studies as well as information on regulatory standards 
and recruitment rates are fundamental in the develop-
ment of useful simulation models of DDPs.

DDP models can support decision-making on early-
phase trial designs by improving comparisons of can-
didate trial designs and taking into consideration the 
impact of early-stage trials on subsequent trials in the 
DDP. We showed here that simple and stylized simula-
tions of DDP segments can effectively complement the 
use of standard operating characteristics (e.g., power and 
duration of a clinical trial). Ultimately, better decision-
making on trial designs improves the efficiency of the 
DDP a whole as and accelerates the translation of clinical 
trial findings into clinical care.

Conclusions
We discussed how stylized simulation models of clini-
cal trials in an oncology DDP can quantify important 
relationships between early-phase trial designs and 
their consequences for the remaining phases of the 
DDP. These models can be used to estimate and com-
pare performance metrics of the DDP under realistic 
scenarios; for example, the duration and the total num-
ber of patients enrolled. These estimates complement 
the evaluation of operating characteristics of early-
phase trial design, such as power and sample size.
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