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Abstract 

Background Near‑real time surveillance of excess mortality has been an essential tool during the COVID‑19 pan‑
demic. It remains critical for monitoring mortality as the pandemic wanes, to detect fluctuations in the death rate 
associated both with the longer‑term impact of the pandemic (e.g. infection, containment measures and reduced 
service provision by the health and other systems) and the responses that followed (e.g. curtailment of containment 
measures, vaccination and the response of health and other systems to backlogs). Following the relaxing of social 
distancing regimes and reduction in the availability of testing, across many countries, it becomes critical to measure 
the impact of COVID‑19 infection. However, prolonged periods of mortality in excess of the expected across entire 
populations has raised doubts over the validity of using unadjusted historic estimates of mortality to calculate 
the expected numbers of deaths that form the baseline for computing numbers of excess deaths because many 
individuals died earlier than they would otherwise have done: i.e. their mortality was displaced earlier in time to occur 
during the pandemic rather than when historic rates predicted. This is also often termed “harvesting” in the literature.

Methods We present a novel Cox‑regression‑based methodology using time‑dependent covariates to estimate 
the profile of the increased risk of death across time in individuals who contracted COVID‑19 among a population 
of hip fracture patients in England (N = 98,365). We use these hazards to simulate a distribution of survival times, 
in the presence of a COVID‑19 positive test, and then calculate survival times based on hazard rates without a posi‑
tive test and use the difference between the medians of these distributions to estimate the number of days a death 
has been displaced. This methodology is applied at the individual level, rather than the population level to pro‑
vide a better understanding of the impact of a positive COVID‑19 test on the mortality of groups with different 
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vulnerabilities conferred by sociodemographic and health characteristics. Finally, we apply the mortality displacement 
estimates to adjust estimates of excess mortality using a “ball and urn” model.

Results Among the exemplar population we present an end‑to‑end application of our methodology to estimate 
the extent of mortality displacement. A greater proportion of older, male and frailer individuals were subject to signifi‑
cant displacement while the magnitude of displacement was higher in younger females and in individuals with lower 
frailty: groups who, in the absence of COVID‑19, should have had a substantial life expectancy.

Conclusion Our results indicate that calculating the expected number of deaths following the first wave 
of the pandemic in England based solely on historical trends results in an overestimate, and excess mortality will 
therefore be underestimated. Our findings, using this exemplar dataset are conditional on having experienced 
a hip fracture, which is not generalisable to the general population. Fractures that impede mobility in the weeks 
that follow the accident/surgery considerably shorten life expectancy and are in themselves markers of signifi‑
cant frailty. It is therefore important to apply these novel methods to the general population, among whom we 
anticipate strong patterns in mortality displacement – both in its length and prevalence – by age, sex, frailty 
and types of comorbidities. This counterfactual method may also be used to investigate a wider range of disrup‑
tive population health events. This has important implications for public health monitoring and the interpreta‑
tion of public health data in England and globally.

Keywords Displacement, Harvesting, COVID‑19, Counterfactual, Excess mortality, Excess death

Introduction
During the COVID-19 pandemic near-real time surveil-
lance of excess mortality has been an essential tool for 
detection of increased and unexpected mortality in many 
countries [1–5]. It is sensitive both to direct and indirect 
effects of the pandemic and is not dependent on COVID-
19 testing patterns [6]. It provides information for managing 
the timing and extent of COVID-19 containment measures, 
planning for increased demands placed on health services, 
and remains critical for monitoring longer-term impacts of 
the pandemic on specific causes of mortality [7].

Excess mortality compares observed mortality with 
expected mortality, where expected mortality is com-
monly estimated using historic mortality rates. How-
ever, the pandemic has resulted in prolonged periods 
of mortality in excess of the number expected across 
the entire population. Without substantive peri-
ods of respite from waves of infection there has not 
been a ‘catch-up period’ long enough for deaths to 
return to the level expected based on pre-pandemic 
trends. Therefore, estimates of the expected number 
of deaths (and therefore excess deaths) beyond the 
first wave of the pandemic are increasingly unrelia-
ble for several challenging reasons, some of which we 
address in this paper:

1. Deaths due to COVID-19 occurred among individu-
als who would otherwise have been expected to live 
longer [8].

2. People with co-morbidities were more likely than 
others to die early following COVID-19 infection. 
Reported mortality rates from these causes (e.g., 
acute coronary syndrome) will be lower, both during 

and after the pandemic, than they would have been 
in the absence of the COVID-19 pandemic [9, 10].

3. Conversely, some elective surgery or other types of 
treatment for co-morbidities were postponed dur-
ing the pandemic, reducing the number of deaths 
expected to have occurred as a consequence of the 
surgery during the pandemic. However, delays in 
treatment might lead to higher long-term mortality 
from the affected conditions [11–13].

4. Disruption to normal life, during what has proved to 
be a lengthy pandemic, is likely to have affected levels 
of mortality and made the use of historic rates less reli-
able in estimating expected numbers of deaths. This 
disruption includes mobility restrictions, suppression 
of non-COVID-19 infections such as influenza, on-
going public reticence to engage with health services, 
and the unknown effects of surviving COVID-19 
infection on long-term mortality risk [14, 15].

For reasons 1–2, estimates of expected mortality are 
distorted by substantive and sometimes complex ‘mor-
tality displacement’ due to COVID-19. Establishing an 
accurate prediction of expected deaths is crucial for rou-
tine surveillance as well as monitoring the ongoing and 
longer-term impacts of the pandemic. In this paper we 
focus on the displacement of mortality experienced by 
those who had a positive COVID-19 test result.

To date, population level model-based approaches that 
aim to estimate short term displacement of mortality fol-
lowing an exogenous shock have typically involved the 
use of Poisson or Quasi-Poisson non-linear time-lag mod-
els [16, 17]. However, the extent to which an individual’s 
mortality is displaced is dependent on their underlying 
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risk of mortality prior to infection. Furthermore, in the 
COVID-19 pandemic, unlike a community-wide tempera-
ture shock in which the whole population is ‘at risk’, it is 
only once an individual has contracted COVID-19 that 
they suffer a markedly increased risk of their death being 
brought forward. Thus, an effective analysis must focus on 
the mortality of individuals in relation to rapid changes in 
their underlying risk profile with time and none of the pre-
vious methods naturally extend to encompass this possibil-
ity. Furthermore, the complex setting of repeated waves of 
COVID-19 infection affecting different individuals makes 
it difficult to apply any simple interpolation method.

In this paper, we use an exemplar dataset of patients 
from the English National Hip Fracture Database 
(NHFD) to adopt a Cox-regression-based methodol-
ogy using time-dependent covariates to estimate the 
profile of the enhanced risk of death across time in indi-
viduals who contracted COVID-19 [18, 19]. This general 
approach can be applied to any adverse event-based out-
come (death being just one example) that follows any ‘at-
risk’ defining event (here it just happens to be developing 
COVID-19), to investigate impacts by time or by cause.

The hip fracture population represents an ideal cohort 
in which to study mortality displacement for several 
reasons. Firstly, hip fracture represents one of the most 
common serious injuries in older people following which 
the mortality rate is high [20], which we anticipate will 
produce relatively short mortality displacement estimate 
times falling within the follow-up time-period available 
for Cox modelling – i.e. a large number of individuals 
who sustained a hip fracture could be expected to have 
died during the available follow-up time, regardless of 
whether they contracted COVID-19. Secondly, most 
individuals sustaining a hip fracture will be treated as a 
hospital inpatient where the risk of nosocomial exposure 
to COVID-19 was high, and we can have greater confi-
dence in accurately capturing the timing of early COVID-
19 infection compared to a community-based cohort, 
particularly during the first wave of the pandemic where 
community testing was not established. Thirdly, data for 
hip fracture patients in England are collected mandatorily 
by the NHFD as part of The Falls and Fragility Fracture 
Audit Programme (FFFAP), commissioned by the Health-
care Quality Improvement Partnership (HQIP) and man-
aged by the Royal College of Physicians (RCP). As such, 
a wealth of individual level data is available (allowing for 
risk adjustment) for this cohort through linkage of NHFD 
data to established national data sources which are uti-
lised in this study. Whilst we fully acknowledge that the 
mortality displacements seen in this population are not 
generalisable to the full English population, the hip frac-
ture population is used as an ‘exemplar’ to demonstrate 
the end-to-end application of the methods presented.

Methods
Overview
We describe a novel method for estimating mortality dis-
placement and how this is applied to adjust existing esti-
mates of expected, and therefore excess mortality. We do 
not describe methods for modelling excess mortality in 
this paper. Instead, we describe how to use estimates of 
mortality displacement to adjust any existing estimate of 
excess mortality.

Methods for estimating mortality displacement are 
described in three steps.

1. Firstly, we estimate the combined hazard (risk of 
death) at every time-point for each individual in the 
modelled population who tested positive for COVID-
19 (as it is only those individuals who developed 
COVID-19 that can have their death displaced by 
COVID-19) using a fitted Cox proportional hazards 
model. The Cox model is fitted based on all indi-
viduals in the population (not just those who tested 
positive for COVID-19) to allow the contribution of 
sociodemographic and health characteristics to mor-
tality to be more precisely estimated. We use the hip 
fracture population as an exemplar population in our 
method rather than the whole English population. 
The model based on the hip fracture data describes 
the risk of death over time since the date of occur-
rence of hip fracture for each individual; the resulting 
hazards described by the model are, therefore, condi-
tional upon suffering a hip fracture and are not gen-
eralisable to the full English population but allow the 
methodology to be demonstrated.

2. Secondly, for each individual in the modelled popula-
tion who tested positive for COVID-19, we use the 
derived hazards to simulate a distribution of survival 
times, first in the presence of a COVID-19 positive 
test and, second, under the assumption that the same 
individuals had not tested positive. We use the dif-
ference between the median survival times for these 
two simulated scenarios to estimate the mortality 
displacement – i.e. number of days a death has been 
displaced.

3. In the final step, the mortality displacement estimates 
are then aggregated within sociodemographic and/or 
health characteristic groups that correspond to those 
used in existing population estimates of expected 
mortality in the population (e.g. by age, sex, and eth-
nicity groups). The aggregated distributions of mor-
tality displacement estimates are then used to adjust 
estimates of excess mortality in the general popula-
tion using a discrete probability model (which we 
refer to as a "ball and urn” model). The above steps 
are described in detail below.
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Estimating the combined hazard

Cox proportional hazards model Cox proportional haz-
ards models (“Cox models”) are first used to explore the 
impact of demographic and health-related determinants 
on the risk of all-cause mortality in individuals in the 
defined study population [21]. The data structure must 
include the date of first COVID-19 positivity and the date 
of death, enabling models to disentangle and quantify 
the profile over time of the factors that increased risk of 
death following a positive COVID-19 test.

Cox models partition the risk of death at any given time-
point in the follow-up of a defined population of indi-
viduals into two components: (1) the fluctuating baseline 
hazard that, at any specified time, has a single value 
applying to everybody in the population; (2) the relative 
risk of death which is specific to each individual and is 
determined by the constellation of personal risk factors 
that that individual exhibits. The term hazard of death 
refers to a measure of the risk of death at a single point in 
time. The baseline hazard is analogous to the intercept/
constant in a conventional regression model, but instead 
of a single value it exhibits different values at each dis-
tinctive follow-up time. Mathematically, it estimates the 
hazard of death at a given time-point for a hypothetical 
individual in whom all Cox model covariates take the 
value zero. In order to obtain the overall risk of death 
for a particular individual at that same time-point, the 
baseline hazard is multiplied by the product of the esti-
mated multiplicative risks associated with all covariates 
that take values other than zero at that time-point in that 
individual.

Cox model covariates fall into two classes. Most 
are time-fixed: they have the same multiplica-
tive effect on the hazard throughout follow-up. For 
example, as sex status remains unchanged through-
out follow-up, a sex covariate is usually time-fixed. 
The other class is time-dependent. Here, the value 
of the covariate may change over time, or the covari-
ate may remain fixed, but its estimated relative risk 
is allowed to change. The simplest covariate whose 
value may vary over time is the binary step function. 
At the start of follow-up this typically takes the value 
zero until a specified event occurs when it switches 
to one; it may return to zero at a later time. Binary 
step functions are central to our analysis. The time-
dependent COVID-19 covariates all take a value zero 
when follow-up starts. As soon as any individual 
has a positive COVID-19 test their first COVID-19 
covariate switches to value one. Two weeks later the 
first covariate switches back to zero and the sec-
ond switches to one, while at four weeks the second 

switches back to zero and the third becomes one ….. 
etc. Having adjusted for all other modelled covari-
ates, the coefficient associated with the first COVID-
19 covariate reflects the multiplicative increase 
of death risk in the first two weeks after a positive 
COVID-19 test. Similarly, the second estimates the 
increased risk during weeks two to four etc. To be 
strictly formal the coefficients actually estimate the 
natural logarithm of the relative risks and require 
exponentiation to generate multiplicative effects.

By fitting a Cox model to the defined study popula-
tion, we can obtain all analytic components needed 
to comprehensively interpret the survival profile of 
individuals and to tease out the temporal pattern of 
increased risk associated with COVID-19 infection. 
These key components are all captured in Eq. 1:

A failure time is a time-point in the follow-up where 
at least one individual dies. Equation  1 denotes the 
overall death hazard in subject i  at time t as �(t)i . It 
is obtained by multiplying the baseline hazard at time 
t , i.e.   ( ), by the impact of all 
time-fixed covariates,  ( ), 
and again by the impact of all time dependent covari-
ates,  ( ). In the term 
e xFi

TβF  , xFi refers to a vector of values for all the 
time-fixed covariates in subject i , βF  refers to the cor-
responding vector of time-fixed Cox regression coef-
ficients. In this formula the superscript T  corresponds 
to the mathematical operation “multiply each covari-
ate value by its corresponding coefficient and sum all 
the results”. Finally, exponentiation as denoted by e , 
renders the impact of each coefficient multiplicative. 
The equivalent term for the time dependent covari-
ates  has the same interpretation except that 
the notation xDi(t) indicates that the value of each time 
dependent covariate must be evaluated at time t.

Cox models were all fitted using the coxph() function 
in R (“R: A Language for Data Analysis and Graphics”, 
version 4, Vienna, 2022). The basehaz() function in R is 
generally used to estimate the baseline hazard but cannot 
be applied to models with time-dependent covariates. We 
therefore used the estimator proposed by Breslow [22], 
and used our own R code to derive the baseline hazard at 
failure time t as the number of failures at time t divided 
by the sum of [ ] across all subjects 
alive at time t . Further details of the way in which our Cox 
models were fitted and used can be found in Supplemen-
tary Material A. The combined hazard for a hypothetical 

(1)
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patient in our exemplar population who developed 
COVID-19 after a hip fracture is shown in Fig. 1.

Exemplar study population
The Cox model should ideally be fitted on a cohort 
including all individuals within the population in which 

excess mortality is to be studied. We illustrate the appli-
cation of this methodology using an exemplar population 
of patients who sustained a hip fracture. The exemplar 
study population included 98,365 patients aged > 60 years 
with a single hip fracture between 1/2/2019 and 31/10/20 
included in England’s National Hip Fracture Database 

Fig. 1 Simulation methodology—plot matrix describing simulation methodology for a hypothetical patient who developed COVID‑19 infection 
5 months following hip fracture. ‘Combined Hazard – illustrates the combined hazard for death for the example patient’s set of characteristics 
under COVID‑19 positive test and no positive test scenarios. ‘Simulate’ – illustrates the results of the first 20 simulations of a patient’s 
survival times under positive test and no positive test scenarios. ‘Summarise’ – all individual simulation results for the example patient are 
summarised as a Kaplan–Meier cumulative survival function. Hazard refers to hazard of death. Relative Risk refers to the impact of the fixed 
and time‑dependent covariate pattern for any individual. Source: Office for Health Improvement and Disparities, using data from National 
Hip Fracture Database (NHFD), Hospital Episode Statistics (HES) and Office for National Statistics (ONS), England. Copyright © 2022, Re‑used 
with the permission of NHS Digital. All rights reserved
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[18]. This represented 92% of all eligible patients with hip 
fractures in England over that period recorded national 
Hospital Episode Statistics (HES) [23]. These fracture 
data were linked pseudonymously at the level of individu-
als to HES (for patient characteristics and comorbidi-
ties),  Office of National Statistics (ONS) mortality data 
(to determine date of death) [24], and to English SARS-
CoV-2 antigen testing data (date of first positive COVID-
19 test) to determine the time of testing positive for 
COVID-19 relative to the date of hip fracture (COVID-
19 infection may occur before or after hip fracture) [25]. 
Individuals who sustained more than one hip fracture 
during the study period were excluded. Full details of 
data preparation, record linkage, and definitions of co-
morbidities and frailty are described in a previous pub-
lication [20]. Date of death was used to derive survival 
time in days from the date of hip fracture presentation. 
Available patient characteristics and co-morbidities were 
modelled as time fixed terms in a Cox proportional haz-
ard model; a time-dependent step function was used to 
define timing of an individual’s COVID-19 infection (if it 
occurred) relative to each risk-set time. Seasonality was 
adjusted for by defining each risk-set time according to 
season (spring, summer, autumn, winter) and year.

Ethics approval and consent to participate
Study governance approval was granted by the FFFAP 
and UK Healthcare Quality Improvement Partnership 
(HQIP) in June 2020 (reference: HQIP286). National 
excess death modelling was carried out as part of Pub-
lic Health England’s (PHE, now the Office for Health 
Improvement and Disparities (OHID)) responsibility to 
manage the COVID-19 pandemic. PHE/OHID have a 
legal basis, provided by Regulation 3 of The Health Ser-
vice (Control of Patient Information) Regulations 2002, 
to process confidential patient information in order to 
monitor the impact of SARS-CoV-2 infection on the pop-
ulation and to respond to the pandemic.

Simulating from the Cox model
Equation 1 allows one to obtain �(t)i , the overall hazard 
of death for individual i at failure time t . This permits 
a key inferential question central to a full counterfac-
tual analysis. Specifically: by how much is the expected 
survival time reduced for an individual who contracts 
COVID-19 (actual life-experience) compared with what 
would have been expected had they not contracted 
COVID-19 (counterfactual life-experience)? The solu-
tion to this query is obtained by sequentially asking and 
answering a more fundamental mathematical question 
over a succession of time-points t : given that subject 𝒾 is 
still alive immediately before failure time t , and regard-
less of whether they actually died or survived at time t , 

what is the probability that individual 𝒾 would die at t 
rather than survive through t? Mathematically this is a 
frequentist probability (i.e. the long-run probability, if 
one could keep re-running reality) [26]; when the num-
ber of simulations of failure times for each individual is 
large, the asymptotic properties of treating each simula-
tion as an independent replication result in probabilistic 
convergence of Eq. 1 to 1− e(−�(t)i)  [21, 22, 27]. The use 
of this result in our methodology is further described in 
Supplementary Materials B. A worked example of the 
derivation of the combined hazard from the Cox model 
for an example individual is shown  in Table  1 and sup-
ported by Fig. 1.

Using the theory outlined, it is straightforward to 
repeatedly simulate the expected date of death of any 
given individual in the study population and thereby 
to obtain a full probability distribution for that date of 
death. We start with individual 𝒾 = 1 and focus on the 
first unique failure time observed in the study popula-
tion ( uft1 ). We generate a pseudorandom number ( r ) 
from a uniform distribution between 0 and 1. If r ≤
�(1)1 individual 1 is viewed as having died at uft1 other-
wise they pass on to uft2 and the simulation process is 
repeated, and so on. If subject 1 is ultimately simulated 
to have died at the failure time corresponding to time u , 
his/her date of death in simulation 1 is declared as u : 
i.e. date.of .death[1,1] = u . If it has been decided, a-pri-
ori, to undertake M simulations the same approach can 
now be used to create a total of M independent reali-
sations of the expected date of death for individual 1: 
i.e.  date.of .death[1,1] , …..,  date.of .death[1,M] . Once the 
simulations for individual 1 are complete the same pro-
cess is repeated across all N subjects in the study popu-
lation thus obtaining a total of N ×M simulated times 
of death where date.of .death[i,s] is the simulated date of 
death in the sth simulation for the ith individual. If at any 
simulation an individual survives through every failure 
time, they are designated as censored (still alive) at the 
last failure time.

Estimation of displacement
Using the theory outlined above and the information 
contained in the output of the Cox model and Eq. 1, we 
repeatedly simulate and compare the expected survival 
profile (for the exemplar hip fracture population, this is 
the survival time from the date of hip fracture until the 
date of death) of all individuals in the modelled popula-
tion who tested positive for COVID-19 under two dis-
tinct scenarios:

(1) The ‘COVID-19 positive test scenario’ (i.e. what 
actually occurred: some members of the study 
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population tested positive to COVID-19 infection). 
These simulations are based on the full Cox model.

(2) The ‘no COVID-19 positive test scenario’ (i.e. the 
counterfactual scenario: no members of the study 
population tested positive to COVID-19 infec-
tion). These simulations are based on the same Cox 
model (all non-COVID-19 covariates remain the 
same) but with all COVID-19 covariates set to 0 for 
all subjects at all times.

Figure  1 – “simulate” shows the results of the first 
20 simulations for a hypothetical patient, “summarise” 
shows a Kaplan–Meier survival curve derived using all 
M simulation results as pseudo-observations. For each 
individual, the M simulations reflecting the expected 
date of death under the two scenarios is summarised by 
their respective medians. The difference between these 
two medians, �i , is then a measure of the expected shift 
(generally death would have been brought forward to 
an earlier time by testing positive for COVID-19) in the 
date of death under the actual COVID-19 positive test 
scenario compared with the counterfactual no positive 
test scenario. The quantity �i may be referred to as the 
mortality displacement in individual 𝒾. The median is 
chosen to characterise the survival distributions rather 

than the mean because survival distributions typically 
have long right-hand tails. The rationale for comparing 
simulated actual and counterfactual medians is pre-
sented in Supplementary Material C.

In order to estimate the median date of death under 
either scenario, the M simulated dates of death (and 
censoring statuses to incorporate those that survive 
through all failure times) in individual 𝒾 are treated 
as if they were M survival times across M individu-
als in a study population and summarised using a 
conventional Kaplan–Meier plot. If the Kaplan–
Meier survival function in subject 𝒾 falls below 50%, 
the median is obtained as the particular survival 
time at which the survival function first dropped 
below 50%. On the other hand, if the survival func-
tion never falls to 50% no direct estimate exists for 
the median survival time. To address this challenge, 
the survival curve is first linearised by taking the 
natural logarithm of the survival probabilities. The 
last 25% of the curve is then extrapolated based on 
the best fitting straight line and the median sur-
vival is identified as the survival time at which that 
straight line falls below a  loge(probability of survival) 
of  loge(0.5) = -loge(2) ~ -0.693. Further details are pro-
vided in Supplementary Material D.

Table 1 Worked example of the derivation of the combined hazard of death at example time‑points for an individual who sustained a 
hip fracture and first tested positive for COVID‑19 155 days after fracture

Time points are chosen to highlight the changes in COVID-19 time-dependent risk which occur after testing positive for COVID-19, according to binary step functions 
defined by a Cox proportional hazards model. The table illustrates how, at each time point after hip fracture, the combined hazard is calculated by multiplying 
the baseline hazard by the relative risk for time-fixed covariates (chosen in this example to include a range of co-morbidities conferring a relative risk of 7.1) and 
multiplying again by the relative risk for the time-varying exposure of testing positive for COVID-19

RR Relative risk
a  The relative risk for testing + ve for COVID-19 is described by four binary step functions which ‘turn on’ as the individual enters four pre-defined time-windows 
of varying COVID-19 risk – namely from 0 to 2 weeks  (C0-2w, RR = 12.1), 2 to 4 weeks  (C-2-4w, RR = 7), 4 to 6 weeks  (C4-6w, RR = 2.6), and 6 to 12 weeks  (C6-12w, RR = 1.6) 
following testing + ve for COVID-19 and return to a relative risk of 1 once the individual moves outside the time window defined by the step function



Page 8 of 20Holleyman et al. BMC Medical Research Methodology          (2023) 23:241 

Applying the mortality displacements to adjust estimates 
of excess mortality
Finally, the distribution of the individually estimated 
mortality displacements ( �i ) is used to adjust the num-
ber of deaths predicted to occur in any given week based 
on the conventional methods that had been used pre-
COVID-19 to calculate expected mortality rates in the 
general population and thus derive the extent of excess 
mortality [6].

For this final step, three sets of metrics are required: 1. 
the empirical distribution of mortality displacement gen-
erated through the steps described in the sections above; 
2. COVID-19 deaths at a given time t (it is important 
to note that, at the time of writing, nationally reported 
weekly COVID-19 deaths by the Office for National sta-
tistics were defined by death certificate mentions and not 
COVID-19 testing); and 3. estimates of expected deaths 
at t from PHE’s (now OHID) original excess deaths 
model [3]. For this step we adopt a heuristic approach 
to adjusting the expected number of deaths in any given 
week, based on the difference in expected survival time 
under positive test and NO-positive test scenarios—�i

—applied to people who died from COVID-19 in week 
t . In the simplest case each of these deaths is randomly 
allocated a displacement time based on the empirical dis-
tribution of the modelled survival time differences �i (see 
Fig. 2). The subsequent analysis is perhaps best illustrated 

via a practical simplified example based on a “ball and 
urn” model as outlined in Fig. 3.

In the simplified example illustrated in Fig.  3, the 
empirical distribution of  �i is constructed to fall 
between one and six weeks, with no negative values of �i 
being observed. In fact, in this simplistic example, 10% 
of the deaths are positively displaced by one week, 20% 
by two weeks, 30% by three weeks, 20% by four weeks, 
10% by 5 weeks and 10% by six weeks. Using this empiri-
cal distribution, the expected deaths in weeks t+1,…, t +6 
are adjusted by subtracting the corresponding number of 
COVID-19 deaths which occurred during week t which 
would have expected to be displaced to this time, result-
ing in an adjusted expected deaths estimate. This process 
is carried out iteratively, week by week, on each occasion 
removing the appropriate number of expected deaths 
from the down-stream weeks where they would have 
been expected to fall in the absence of COVID-19 deaths.

For the current analysis we apply displacement by cre-
ating the discrete probability distribution of the mod-
elled survival time differences by week �i for 4 strata 
within the hip fracture patients. The strata were: greater 
than or equal to 80 years vs under 80 years; by male and 
females. Each distribution represents the time adjust-
ment for COVID-19 deaths within that stratum for any 
week in time where a death was reported. For each week 
t when deaths where a cause of COVID-19 occurred, the 

Fig. 2 Density distribution of simulated median survival time differences between COVID‑19 positive test and no‑COVID‑19 positive test scenarios, 
for hip fracture in female patients by age. Source: Office for Health Improvement and Disparities, using data from National Hip Fracture Database 
(NHFD), Hospital Episode Statistics (HES) and Office for National Statistics (ONS), England. Copyright © 2022, Re‑used with the permission of NHS 
Digital. All rights reserved
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total deaths were re-distributed in time according to the 
probabilities for each week of the strata survival distribu-
tion �i , before being removed from the corresponding 
strata expected deaths for weeks t+1, …, t+6. COVID-19 
reported deaths start at week 0  (27th March 2020) and for 
this analysis we have used a final cut-off week of the  8th of 
October 2021 for reported COVID-19 deaths.

Following adjustment of expected deaths in each week 
by stratum, the estimate of excess mortality in each week 
is re-estimated as the observed number of deaths in that 
week minus the adjusted expected number of deaths (see 
Supplementary Material E for further detail). The key 
steps of our method are summarised in Table  2 using 
mathematical notation.

Results
The study population included 98,365 hip fracture 
patients, in the period  1st February 2019 to  31st Octo-
ber 2020, with 13,000 of the affected patients developing 
COVID-19 before or after hip fracture. The distribution 
of timing of COVID-19 positive tests relative to hip frac-
ture (time-dependent term) is shown in Fig.  4. Most of 
those individuals who tested positive for COVID-19 did 
so following hip fracture with a peak at, or shortly after 
the date of their admission; this is partly a detection bias. 
Patient and surgical characteristics for the cohort are 
shown in Table 3 broken down by COVID-19 and mor-
tality status.

Multivariate model
Results of the multivariate Cox proportional hazard 
model are shown in Fig. 5, including time-fixed terms and 

COVID-19 time-dependent terms. The hazard of death 
was greatest within the first two weeks of testing positive 
for COVID-19 and gradually declined until almost reach-
ing baseline risk by six months.

Estimation of mortality displacement
Five hundred simulated actual and counterfactual sur-
vival times for each hip fracture who tested positive were 
summarised using the median survival time (extrapo-
lated where necessary for those whose survival estimate 
did not reach 50% at the time of maximum simulated 
follow-up). Mortality displacements due to COVID-19 
positive infection were calculated for each hip fracture 
as the difference between these two summarised val-
ues and presented as distributions grouped by age, sex, 
and frailty characteristics (Fig.  6). Mortality displace-
ment was smallest for older, frail, and male individuals 
(median = 135 days) and was largest for younger, female 
and lower frailty individuals in deaths were on average 
brought forward due to COVID-19 by almost 2  years 
(median = 535 days).

Adjusting expected and excess mortality estimates
The median difference between the actual and counter-
factual survival times for each of the 13,000 COVID-19 
patients with hip fractures were used to create a discrete 
probability distribution for four strata. Registered deaths 
in England with a cause of COVID-19 between  27th March 
2020 and  8th October 2021 were adjusted in time using the 
probability distributions, with 48.4% of total COVID-19 
deaths remaining within the time period after adjustment 
(Table 4 and Fig. 7). Removing adjusted COVID-19 deaths 

Fig. 3 Simple example for adjusting expected deaths using displaced COVID‑19 deaths
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Table 2 Summary of the end‑to‑end application of the methods described in this study to adjust national estimates of expected 
deaths
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Table 2 (continued)
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from the published expected number reduced expected 
deaths by 8.9% over this time period (Table 4).

An example of adjusting the published excess mortality 
for England using the adjusted expected deaths (based on 
the hip fracture data) is shown in Fig. 8 from the period 
of  27th March 2020 until the  8th October 2021. Over this 
time period the total excess deaths increased by 66% 
(Table  4), with the difference between excess mortality 
and adjusted excess mortality increasing each week over 
this period. The number of weeks in which the excess 
mortality was estimated to be negative reduced from 27 
to 5 weeks after adjustment (Fig. 8).

Discussion
Using a national dataset of hip fracture patients as an 
illustrative dataset, we describe and demonstrate a novel 
and generalizable method for estimating the parameters 
underpinning mortality displacement consequent upon 
COVID-19 positive test. We then use these parameters 
to adjust expected mortality, and thereby excess mortal-
ity (the difference between the number observed and the 
number expected in any time period), to facilitate on-
going surveillance of excess mortality during the remain-
ing pandemic and beyond.

Our results, based on the hip fracture dataset, indi-
cate that estimating the current expected number of 
deaths based solely on historical trends is an overesti-
mate because many of the deaths expected on this basis 

would already have occurred earlier in the pandemic. 
This means that, over any period well after the start of 
the pandemic, calculating the excess deaths based on his-
torical trends will be an underestimate. These both repre-
sent direct consequences of what may be called mortality 
displacement or harvesting.

Although our results provide clear evidence of short-
term mortality displacement in the population included 
in the national hip fracture registry, interpretation of its 
magnitude needs to take account of the fact that this is a 
select subgroup of the general population. Fractures that 
impede mobility in the weeks that follow the accident/
surgery considerably shorten life expectancy – at least 
in the elderly – and are in themselves markers of signifi-
cant frailty [13, 28]. In our analysis we have demonstrated 
that age, sex, and frailty all have substantial impacts on 
the frequency and magnitude of mortality displacement. 
This implies, given that our ultimate aim is to generate 
quantitative estimates of the effect of mortality displace-
ment in the general population, that it is important that 
we apply these methods to a representative sample of the 
national population. The critical importance of the anal-
yses reported in the current methodological paper is to 
demonstrate the methodology, working through it from 
end-to-end, and giving us the confidence to engage in the 
major task of applying them to national population data.

In interpreting the results of our analyses, it is indi-
viduals with low frailties and the largest displacements 
that have almost no impact on short term estimates of 

Fig. 4 Distribution of timing COVID‑19 infection (first recorded positive test) relative to hip fracture (grouped into 14‑day period bin‑widths). 
Source: Office for Health Improvement and Disparities, using data from National Hip Fracture Database (NHFD), Hospital Episode Statistics (HES) 
and Office for National Statistics (ONS), England. Copyright © 2022, Re‑used with the permission of NHS Digital. All rights reserved
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expected deaths (e.g. deaths over the next 12  months). 
This is because, with reference to Fig.  3, an individual 
that died of COVID-19 in a given week t , who would have 
been expected to live for a further 520 weeks (10 years) 
under the counterfactual, would only impact on the 
count of expected deaths at t+520  weeks. In contrast, 
the subpopulations in which mortality displacement 
has the greatest effect on current, past, and near-future 
estimates of expected mortality are older people with 
large frailties in whom statistical power is high, because 
there are so many deaths. Therefore, among this group, 

the magnitude of displacement can be estimated more 
precisely. Although the magnitude of displacement in 
younger, low-frailty subpopulations can only be esti-
mated with low precision, the precise magnitude is less 
important when adjusting current expected mortal-
ity estimates, because there is considerable certainty 
that individuals in this group would have survived well 
beyond the end of the prediction interval.

These observations have important implications for the 
use of our method in practice. First, it is adequately pow-
ered for the short-term adjustment of expected mortality. 

Table 3 Characteristics of study population by COVID‑19 and followed up for mortality status until  31st May 2021

a  At time of presentation with hip fracture. Source: OHID, using data from National Hip Fracture Database (NHFD), Hospital Episode Statistics (HES) and Office for 
National Statistics (ONS), England. Copyright © 2022, Re-used with the permission of NHS Digital. All rights reserved

COVID-19 Positive
n (%)

COVID-19 Negative
n (%)

Total
n (%)

Variable Level Alive Dead Alive Dead

Total 7,711 (7.8) 5,289 (5.4) 56,211 (57.1) 29,154 (29.6) 98,365

Time from hip fracture to COVID-
19 infection (days)

Mean (SD) 279.3 (238.3) 204.7 (204.7) n/a n/a 249.0 (228.2)

Age group (years) 60 to 69 514 (6.7) 149 (2.8) 6,403 (11.4) 1,155 (4.0) 8,221 (8.4)

70 to 79 1,667 (21.6) 876 (16.6) 16,311 (29.0) 4,498 (15.4) 23,352 (23.7)

80 to 89 3,742 (48.5) 2,568 (48.6) 24,547 (43.7) 13,384 (45.9) 44,241 (45.0)

90 + 1,788 (23.2) 1,696 (32.1) 8,950 (15.9) 10,117 (34.7) 22,551 (22.9)

Sex Female 5,787 (75.0) 3,144 (59.4) 41,698 (74.2) 18,156 (62.3) 68,785 (69.9)

Male 1,924 (25.0) 2,145 (40.6) 14,513 (25.8) 10,998 (37.7) 29,580 (30.1)

Residencea Own home/sheltered housing 5,305 (68.8) 3,358 (63.5) 50,401 (89.7) 19,019 (65.2) 78,083 (79.4)

Residential care 1,327 (17.2) 970 (18.3) 3,007 (5.3) 4,985 (17.1) 10,289 (10.5)

Nursing care 816 (10.6) 681 (12.9) 1,776 (3.2) 3,506 (12.0) 6,779 (6.9)

Hospital inpatient 263 (3.4) 280 (5.3) 1,027 (1.8) 1,644 (5.6) 3,214 (3.3)

Mobilitya Freely mobile without aids 2,253 (29.2) 1,100 (20.8) 26,815 (47.7) 6,145 (21.1) 36,313 (36.9)

Mobile outdoors with one or 
more aids or a frame

2,961 (38.4) 2,174 (41.1) 19,970 (35.5) 11,304 (38.8) 36,409 (37.0)

Never goes outside without 
help or no functional mobility

2,397 (31.1) 1,939 (36.7) 9,089 (16.2) 11,252 (38.6) 24,677 (25.1)

Not recorded 100 (1.3) 76 (1.4) 337 (0.6) 453 (1.6) 966 (1.0)

Nutritiona Normal nutrition 5,488 (71.2) 3,567 (67.4) 44,028 (78.3) 18,223 (62.5) 71,306 (72.5)

At risk of malnutrition 1,522 (19.7) 1,141 (21.6) 8,155 (14.5) 6,869 (23.6) 17,687 (18.0)

Malnourished 498 (6.5) 429 (8.1) 2,854 (5.1) 3,132 (10.7) 6,913 (7.0)

Not recorded 203 (2.6) 152 (2.9) 1,174 (2.1) 930 (3.2) 2,459 (2.5)

Hospital Frailty Risk Score group Low risk (< 5) 496 (6.4) 169 (3.2) 9,569 (17.0) 1,252 (4.3) 11,486 (11.7)

Intermediate risk (5–15) 2,888 (37.5) 1,686 (31.9) 29,213 (52.0) 9,498 (32.6) 43,285 (44.0)

High risk (> 15) 4,327 (56.1) 3,434 (64.9) 17,429 (31.0) 18,404 (63.1) 43,594 (44.3)

Cardiovascular disease Yes 3,526 (45.7) 3,054 (57.7) 19,646 (35.0) 16,589 (56.9) 42,815 (43.5)

Malignancy Yes 690 (8.9) 791 (15.0) 5,039 (9.0) 5,792 (19.9) 12,312 (12.5)

Dementia Yes 3,236 (42.0) 2,458 (46.5) 9,903 (17.6) 13,283 (45.6) 28,880 (29.4)

Chronic pulmonary disease Yes 2,287 (29.7) 1,714 (32.4) 14,932 (26.6) 10,024 (34.4) 28,957 (29.4)

Liver disease Yes 271 (3.5) 218 (4.1) 1,794 (3.2) 1,293 (4.4) 3,576 (3.6)

Diabetes (Type 1 & 2) Yes 1,642 (21.3) 1,298 (24.5) 10,222 (18.2) 6,377 (21.9) 19,539 (19.9)

Hemiplegia or paraplegia Yes 265 (3.4) 185 (3.5) 1,562 (2.8) 944 (3.2) 2,956 (3.0)

Renal disease Yes 2,003 (26.0) 1,861 (35.2) 10,930 (19.4) 9,948 (34.1) 24,742 (25.2)
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Specifically, the estimates that are generated are more 
precise in frailer elderly subgroups because there are 
more deaths, but the lack of precision in younger fitter 
populations will appropriately be reflected in wide con-
fidence intervals which should guard against over-inter-
pretation. Second, estimates of the hazard ratios (relative 
risks) associated with COVID-19 infection and their pro-
file over time after infection are estimated with precision. 
This means these hazard ratios are useful as epidemio-
logical metrics that can feed directly into our under-
standing of the public health implications of COVID-19. 

Third, however, it is less useful for what might be 
another apparently attractive use of our method—to 
estimate years of life lost (YLL). In the ith individual this 
is obtained directly as �i (see above). Because this is so 
straightforward and given that YLL is “a frequently used 
population health metric, originating back to the 1940s 
… and the idea is appealingly simple”,7 it sounds like an 
ideal use of method. But YLL requires very careful inter-
pretation. It is true that by applying our method across 
all age groups and summing the �i one could generate an 
overall point estimate of YLL, and by restricting this to 

Fig. 5 Coefficient plot for multivariate Cox proportional hazard model with time fixed and time dependent terms. Reference groups: 
Age = 60–69 years; Frailty = low or intermediate frailty, Co‑morbidity = absence of the condition; Seasonality = summer 2019. Seasonality defined 
as Winter (months December, January, February), Spring (March, April, May), Summer (June, July, August), Autumn (September, October, November). 
Source: Office for Health Improvement and Disparities, using data from National Hip Fracture Database (NHFD), Hospital Episode Statistics (HES) 
and Office for National Statistics (ONS), England. Copyright © 2022, Re‑used with the permission of NHS Digital. All rights reserved
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people who died of COVID-19 and dividing the total by 
the number of individuals one could obtain a point esti-
mate for average YLL per COVID-19 death to compare to 
other equivalent estimates [29–32]. However, this would 
be of limited value. In subpopulations that are old or frail 
we can generate estimates of YLL with acceptable preci-
sion, and this could provide a useful public health metric 
of the impact of the pandemic in those frailer subpopu-
lations. But in younger fitter subpopulations although 
we can confidently state that the relatively small number 
of individuals who died of COVID-19 lost many years 
of life, any formal quantification of those YLL would be 
too imprecise to be of value. Rather, in younger popula-
tions it is more sensible to estimate YLL using the “WHO 
Standard Approach” [30], based on applying an appropri-
ate standard life table to people who died of COVID-19 
[29]. We therefore believe that our methods, particularly 

once they have been applied to a nationally representa-
tive population, can provide a useful contribution to a 
description of YLL in older and frailer subpopulations. 
But we would not recommend they be used, on their 
own, to attempt to generate an estimate for the average 
YLL per COVID-19 death across the entire population 
which is better obtained in other ways [29–32].

The application of Cox hazards models with time-
varying covariates to simulate survival times has been 
validated previously [33]. Model-based approaches – 
such as ours – have been used previously to explore 
short and long-term displacement of mortality caused 
by exogenous events such as extreme temperatures, air 
pollution and influenza seasons. These have generally 
adopted deterministic and stochastic lag models [16, 17, 
34], based on treating mortality at a population level as 
a Poisson (or Quasi-Poisson) outcome [35]. Analogous 
population-level approaches have been used in publica-
tions looking at the extent of mortality displacement that 
had occurred leading up to the pandemic and the subse-
quent impact on pandemic mortality and indicate some 
level of displacement [8, 35–39]. In England and France 
short-term mortality displacement has been estimated 
at a population level by comparing the number of deaths 
above the expected value to those below the expected 
value within the given time period [8, 38]. In a USA 
study, no mortality displacement was identified, however, 
among other issues, as the study period ended in May 
2020, this may be a result of the short follow-up [35].

Fig. 6 Histogram of mortality displacements in the hip fracture cohort stratified by age, sex, and frailty characteristics (high frailty = hospital frailty 
risk score ≥ 15). Dashed vertical line illustrates median displacement. Text box shows median displacement and number of individuals within each 
stratum. Source: Office for Health Improvement and Disparities, using data from National Hip Fracture Database (NHFD), Hospital Episode Statistics 
(HES) and Office for National Statistics (ONS), England. Copyright © 2022, Re‑used with the permission of NHS Digital. All rights reserved

Table 4 Total registered COVID‑19 deaths, modelled expected 
deaths and excess mortality between  27th March until the  8th 
October 2021, including adjusted figures using hip fracture 
COVID‑19 mortality displacement, England

Source: Office for Health Improvement and Disparities, using data from National 
Hip Fracture Database (NHFD), Hospital Episode Statistics (HES) and Office 
for National Statistics (ONS), England. Copyright © 2022, Re-used with the 
permission of NHS Digital. All rights reserved

Total Adjusted

Expected deaths 763,448 695,425

Excess mortality 102,663 170,686
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Fig. 7 Total COVID‑19 registered deaths and adjusted COVID‑19 deaths from week 9  (27th March 2020) to week 81  (8th October 2021), England. 
Source: Office for Health Improvement and Disparities, using data from National Hip Fracture Database (NHFD), Hospital Episode Statistics (HES) 
and Office for National Statistics (ONS), England. Copyright © 2022, Re‑used with the permission of NHS Digital. All rights reserved

Fig. 8 Excess mortality and adjusted excess mortality from week 1  (27th March 2020) to week 81  (8th October 2021), England. Source: Office 
for Health Improvement and Disparities, using data from National Hip Fracture Database (NHFD), Hospital Episode Statistics (HES) and Office 
for National Statistics (ONS), England. Copyright © 2022, Re‑used with the permission of NHS Digital. All rights reserved
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One method which allows for the estimate of displace-
ment at an individual level to estimate years of life lost 
[40], takes the distribution of excess mortality by age 
group and applies the number of years of life expectancy 
lost in each group [41]. This method has been applied 
to data in Sweden and Norway, with the authors mak-
ing adjustments to expected mortality [41]. The study 
estimated YLL attributable to COVID-19 in 2020 being 
45,850 without adjustment for pre-pandemic seasonal 
influenza mortality displacement and 43,073 when 
adjusted for displacement. In Scotland, the number of 
YLL was estimated to approximately 15 per COVID-19 
death in 2020 [42]. In the USA, authors used projections 
of life expectancy under different COVID-19 scenarios 
to identify variation in outcomes between age and ethnic 
groups [43]. For example, in a medium COVID-19 sce-
nario the estimated reduction of life expectancy at birth 
in 2020 was approximately 1.13  years with large ethnic 
disparities – life expectancy for Black and Latino groups 
was estimated to be reduced by 2.10 and 3.05  years 
respectively, compared with 0.68 years for White groups. 
However, these methodologies are limited to analysis 
among groups for whom life expectancy is calculated 
and therefore is unable to account for the complex inter-
actions between co-morbidities and COVID-19 infec-
tion and risk of death. They, therefore, also assume that 
those who contract COVID-19 are a random subset of 
the population; yet evidence suggests a higher suscepti-
bility of COVID-19 infection amongst more vulnerable 
subgroups [44, 45].

Limitations
We present the model in this paper as proof of concept, 
though it can be extended to include as much detail on 
risk factors as is available within the data source. It does 
have some limitations – it ultimately depends on accu-
rately identifying those testing positive for COVID-19 
infection, which is problematic when analysing mortal-
ity for early pandemic periods when, for many coun-
tries there was limited testing. This may also become 
more problematic as the method is applied to later pan-
demic periods where national policy decisions on testing 
impact the ability to collect accurate testing numbers. 
The method does not address displacement among those 
dying with COVID-19 but without a positive test, mor-
tality that occurred because of indirect effects of the 
COVID-19 pandemic either on the health system, such 
as limited access to services, or other effects of contain-
ment measures. In both cases these groups will have been 
included among the non-COVID-19 deaths, resulting 
in an underestimate of mortality displacement. It also 
does not address the problem of disruption to historic 
trends for other reasons, therefore, does not attempt to 

estimate what would have occurred in the absence of the 
pandemic. Several approaches can be applied in paral-
lel to address many of these questions. Theoretically, the 
approach depends on knowing all key variables, which is, 
as in all modelling situations, impossible to obtain. Addi-
tionally, estimation of the extent that deaths are deferred 
is limited to what is observed within the follow-up 
period. Our “ball and urn” method for adjusting expected 
deaths using counts of registered deaths where COVID-
19 is mentioned on the death certificate (as opposed to 
formal COVID-19 testing) may be an over or underesti-
mate of the true excess mortality of COVID-19, due to 
the representativeness of COVID-19 as the true under-
lying or contributory cause of death. Finally, we were 
unable to derive confidence intervals at each stage and in 
aggregate due to constraints on computational resources. 
We understand that the application of COVID-19 mor-
tality displacement to adjust conventional expected 
deaths models and the concept of excess mortality may 
be undertaken using different methods and further inves-
tigative work is required.

As in any model-based analysis, these limitations 
should be considered in interpreting results. However, 
compared with other complex modelling scenarios the 
data we have used are informationally very rich and 
should undoubtedly provide a useful approximation to 
what is happening in reality. Furthermore, if one focuses 
on the method—as a way to build and use a platform 
to provide information that may be used to help guide 
public health intervention in a wide variety of ways dur-
ing and following on from a substantial population-level 
public health shock—the limitations we highlight provide 
useful guidelines for how such platforms should be set up 
and evolve.

Implications and conclusions
Directly observing individuals within a population over 
time, monitoring events of interest and applying the 
methodology we have described has applications for 
answering a multitude of potential public health ques-
tions. We describe and apply the approach to temporal 
displacement of all-cause mortality. But it can equally 
well be applied to  the  displacement of  cause-specific 
death and to adjustment of excess mortality associated 
with specific causes. This will allow better understand-
ing of longer-term impacts of COVID-19 on important 
causes of death. The methods can also be extended to 
any adverse outcome (death is simply one example) 
following any ‘at-risk’ defining event (the example here 
being developing COVID-19). Furthermore, by assum-
ing everybody in the population is ‘at risk’ from the 
moment a pre-defined event occurs, death (or another 
metric) can be tracked as the primary outcome. In all 
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situations such as these, which include extreme tem-
perature events, it is possible to estimate the long-
term impact of any population-level event on any 
outcome – thereby providing critical information for 
public health planning.

Throughout the pandemic it has become increas-
ingly apparent that there is a worldwide need to link 
individual-level datasets from various sources to create 
population-level platforms. Setting up country-wide 
cohorts starting at prespecified times and recording 
critical events of interest, could provide critical infor-
mation for the purposes of public health surveillance, 
planning and intervention. Using data from such plat-
forms, our work demonstrates that by applying the 
extended Cox model and subsequently simulating the 
expected outcomes in both factual and counterfactual 
scenarios it would be possible to answer a multitude 
of questions (e.g., at this time, the impact of COVID-
19 infection on long-term comorbidity, health service 
utilisation and other health outcomes). The benefits of 
having a population platform such as this, and apply-
ing analytic methods, including modelling, at the 
individual-level offers numerous benefits. Using whole 
populations with individual-level data has the benefit 
of greater precision and richer mathematical models 
which provide a more robust approach to addressing 
the real challenges that are faced by public health sci-
ence as well as nations themselves. We believe that the 
ability to generate critical information to inform policy 
decisions and health planning, as well as help manage 
major public health shocks, would make an investment 
in an infrastructure based on pseudonymised data to 
track real-time, pan-population health events worth-
while given that the scientific and social returns that 
greatly exceed its costs.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12874‑ 023‑ 01984‑8.

Additional file 1: Supplementary 1 Material A. Fitting the Cox propor‑
tional hazard model. Supplementary Material B. Simulation protocol. 
Supplementary Material C. Comparison of the simulated actual and 
counterfactual scenarios. Supplementary Material D. Extrapolation of 
the Kaplan Meier survival curve. Supplementary Material E. Applying 
the displacement correction to excess mortality estimates.

Acknowledgements
We are grateful to the Royal Collage of Physician’s Falls and Fragility Frac‑
ture Audit Programme and Healthcare Quality Improvement Partnership 
for providing the National Hip Fracture Database data used in this study 
and to Crown Informatics for extracting and supplying the data. Produced 
by the Office for Health Improvement and Disparities (OHID), adapted 
from data provided by: 1) Hospital Episode Statistics (HES), NHS Digital 
© Copyright 2022, Re‑used with the permission of NHS Digital. All rights 
reserved 2) Linked HES‑ONS Mortality extract, Office for National Statistics 

(ONS), NHS Digital © Copyright 2022. The views and opinions expressed 
herein do not necessarily reflect those of any of the above‑mentioned 
organisations.

Authors’ contributions
Contributions according to CRediT – Contributor Roles Taxonomy (https:// 
casrai. org/ credit/). Richard James Holleyman: Conceptualisation, Data cura‑
tion, Formal Analysis, Funding Acquisition, Investigation, Methodology, Project 
administration, Software, Validation, Visualisation, Writing – original draft, 
Writing – review & editing. Sharmani Barnard: Conceptualisation, Investigation, 
Methodology, Project administration, Validation, Visualisation, Writing – origi‑
nal draft, Writing – review & editing. Clarissa Bauer‑Staeb: Conceptualisation, 
Data curation, Formal Analysis, Investigation, Methodology, Project administra‑
tion, Software, Validation, Writing – original draft, Writing – review & editing. 
Andrew Hughes: Conceptualisation, Data curation, Formal Analysis, Investiga‑
tion, Methodology, Software, Validation, Visualisation, Writing – original draft, 
Writing – review & editing. Samantha Dunn: Conceptualisation, Data curation, 
Formal Analysis, Investigation, Methodology, Software, Validation, Writing 
– review & editing. Sebastian Fox: Data curation, Formal Analysis, Investiga‑
tion, Methodology, Validation, Writing – review & editing. John N Newton: 
Conceptualisation, Resources, Writing – review & editing. Justine Fitzpatrick: 
Conceptualisation, Resources, Writing – review & editing. Zachary Waller: 
Conceptualisation, Data curation, Methodology, Writing – review & editing. 
David Deehan: Supervision, Writing – review & editing. Andre Charlett: Meth‑
odology, Resources, Writing – review & editing. Celia L Gregson: Methodology, 
Supervision, Writing – review & editing. Rebecca Wilson: Writing – review & 
editing. Paul Fryers: Conceptualisation, Funding Acquisition, Investigation, 
Methodology, Resources, Supervision, Validation, Writing – review & editing. 
Peter Goldblatt: Conceptualisation, Investigation, Methodology, Supervision, 
Validation, Writing – original draft, Writing – review & editing. Paul Burton: 
Conceptualisation, Data curation, Formal Analysis, Investigation, Methodology, 
Software, Supervision, Validation, Visualisation, Writing – original draft, Writing 
– review & editing.

Funding
RH was supported to undertake this study by grants from Orthopaedic 
Research UK (ref. 541) and a Royal College of Surgeons of England research 
fellowship funded through a generous donation from the Shears Foundation. 
CLG receives funding from Versus Arthritis (ref. 22086).

Availability of data and materials
Secondary sharing of the study data is not permitted, however the underly‑
ing data that support this study are available through formal application to 
the Falls and Fragility Fracture Audit Programme and UK Healthcare Quality 
Improvement Partnership Data Access Request Group. Data concerning 
excess mortality in England on which this study is based is published monthly 
by OHID and available publicly at https:// www. gov. uk/ gover nment/ stati stics/ 
excess‑ morta lity‑ in‑ engla nd‑ and‑ engli sh‑ regio ns.

Declarations

Ethics approval and consent to participate
Human accordance statement: This study was undertaken as a service evalu‑
ation using observational data and did not involve experimental treatment 
interventions on human subjects.
Informed consent to participate: the National Hip Fracture Database is 
approved by the NHS England Health Research Authority Confidentiality 
Advisory Group (CAG) to collect patient data without consent under Sec‑
tion 251 exemption. Secondary sharing of pseudonymised data is permitted 
under licence from the UK Health Quality Improvement Partnership (HQIP) for 
service evaluation and health research.
Study approval: Study approval was granted by the UK Health Quality 
Improvement Partnership (HQIP – reference 286) in June 2020. The study was 
classified as a service evaluation according to the Health Research Authority 
decision tool (http:// www. hra‑ decis ionto ols. org. uk/ ethics) and formal ethical 
approval was not required.
We confirm that all methods were carried out in accordance with relevant 
guidelines and regulations.

https://doi.org/10.1186/s12874-023-01984-8
https://doi.org/10.1186/s12874-023-01984-8
https://casrai.org/credit/
https://casrai.org/credit/
https://www.gov.uk/government/statistics/excess-mortality-in-england-and-english-regions
https://www.gov.uk/government/statistics/excess-mortality-in-england-and-english-regions
http://www.hra-decisiontools.org.uk/ethics


Page 19 of 20Holleyman et al. BMC Medical Research Methodology          (2023) 23:241  

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 UK Health Security Agency, Wellington House; 133–155 Waterloo Road, 
London SE1 8UG, UK. 2 Population Health Sciences Institute, Newcastle 
University, Newcastle Upon Tyne NE1 7RU, UK. 3 School of Population Health, 
Curtin University, Bentley, WA 6102, Australia. 4 Office for Health Improvement 
and Disparities, Department of Health and Social Care, 39 Victoria Street, Lon‑
don SW1H 0EU, UK. 5 Newcastle Upon Tyne Hospitals NHS Foundation Trust, 
Freeman Road, High Heaton, Newcastle Upon Tyne NE7 7DN, UK. 6 Musculo‑
skeletal Research Unit, Translational Health Sciences, Bristol Medical School, 
University of Bristol, Bristol BS8 1QU, UK. 7 Department of Public Health, Policy 
and Systems, University of Liverpool Waterhouse Building, Block B, Brownlow 
Street, Liverpool L69 3GL, UK. 8 Department of Epidemiology & Public Health, 
UCL Institute of Health Equity, University College London, 1‑19 Torrington 
Place, London WC1E 7HB, UK. 

Received: 28 June 2022   Accepted: 23 June 2023

References
 1. Office for National Statistics. Deaths registered weekly in England and 

Wales, provisional. https:// www. ons. gov. uk/ peopl epopu latio nandc 
ommun ity/ birth sdeat hsand marri ages/ deaths/ bulle tins/ death sregi stere 
dweek lyine nglan dandw alesp rovis ional/ weeke nding 11mar ch2022. 
Accessed 12 Apr 2023.

 2. Scottish Government. COVID‑19 detailed analysis. https:// data. gov. scot/ 
coron avirus‑ covid‑ 19/ detail. html. Accessed 12 Apr 2023.

 3. Office for Health Improvement and Disparities. Excess mortality in England 
and English regions. GOV.UK. 2023. https:// www. gov. uk/ gover nment/ stati stics/ 
excess‑ morta lity‑ in‑ engla nd‑ and‑ engli sh‑ regio ns. Accessed 31 Mar 2022.

 4. Eurostat. Excess mortality ‑ statistics. https:// ec. europa. eu/ euros tat/ stati 
stics‑ expla ined/ index. php? title= Excess_ morta lity_‑_ stati stics. Accessed 
12 Apr 2023.

 5. National Center for Health Statistics. Excess deaths associated with 
COVID‑19. 2023. https:// www. cdc. gov/ nchs/ nvss/ vsrr/ covid 19/ excess_ 
deaths. htm. Accessed 12 Apr 2023.

 6. Barnard S, Chiavenna C, Fox S, Charlett A, Waller Z, Andrews N, et al. Meth‑
ods for modelling excess mortality across England during the COVID‑19 
pandemic. Stat Methods Med Res. 2022;31:1790–802.

 7. Xie Y, Xu E, Bowe B, Al‑Aly Z. Long‑term cardiovascular outcomes of 
COVID‑19. Nat Med. 2022;28:583–90.

 8. Office for National Statistics. Excess mortality and mortality displacement 
in England and Wales ‑ Office for National Statistics. https:// www. ons. gov. 
uk/ peopl epopu latio nandc ommun ity/ birth sdeat hsand marri ages/ deaths/ 
artic les/ exces smort ality andmo rtali tydis place menti nengl andan dwales/ 
2020t omid2 021. Accessed 18 Mar 2023.

 9. Rehman H, Chandra N, Jammalamadaka SR. Competing risks survival 
data under middle censoring—An application to COVID‑19 pandemic. 
Healthcare Analytics. 2021;1:100006.

 10. Bhaskaran K, Bacon S, Evans SJ, Bates CJ, Rentsch CT, MacKenna B, et al. 
Factors associated with deaths due to COVID‑19 versus other causes: 
population‑based cohort analysis of UK primary care data and linked 
national death registrations within the OpenSAFELY platform. Lancet Reg 
Health Eur. 2021;6:100109.

 11. Department of Health and Social Care. Additional £5.4 billion for NHS 
COVID‑19 response over next 6 months. GOV.UK. https:// www. gov. uk/ 
gover nment/ news/ addit ional‑ 54‑ billi on‑ for‑ nhs‑ covid‑ 19‑ respo nse‑ over‑ 
next‑ six‑ months. Accessed 12 Apr 2023.

 12. NHS Digital. Compendium ‑ Deaths within 30 days of a hospital proce‑
dures or emergency admission. NDRS. https:// digit al. nhs. uk/ data‑ and‑ 
infor mation/ publi catio ns/ stati stical/ compe ndium‑ hospi tal‑ care/ curre nt/ 
deaths‑ within‑ 30‑ days. Accessed 12 Apr 2023.

 13. National Institute for Health and Care Excellence. Perioperative care in adults 
[C] Evidence review for preoperative risk stratification tools NICE guideline 

NG180. 2020. https:// www. nice. org. uk/ guida nce/ ng180/ evide nce/c‑ preop 
erati ve‑ risk‑ strat ifica tion‑ tools‑ pdf‑ 88331 51056. Accessed 12 Apr 2023.

 14. Bottle A, Aylin P, Warner M, Propper C, Stoye G, Burn S. What happened to 
English NHS hospital activity during the COVID‑19 pandemic? 2021.

 15. British Medical Association. NHS backlog data analysis. The British Medical 
Association is the trade union and professional body for doctors in the 
UK. https:// www. bma. org. uk/ advice‑ and‑ suppo rt/ nhs‑ deliv ery‑ and‑ workf 
orce/ press ures/ nhs‑ backl og‑ data‑ analy sis. Accessed 12 Apr 2023.

 16. Huynen MM, Martens P, Schram D, Weijenberg MP, Kunst AE. The impact 
of heat waves and cold spells on mortality rates in the Dutch population. 
Environ Health Perspect. 2001;109:463–70.

 17. Grize L, Huss A, Thommen O, Schindler C, Braun‑Fahrländer C. Heat wave 
2003 and mortality in Switzerland. Swiss Med Wkly. 2005;135:200–5.

 18. Royal College of Physicians, London. National Hip Fracture Database 
(NHFD). RCP London; 2015. https:// www. rcplo ndon. ac. uk/ proje cts/ natio 
nal‑ hip‑ fract ure‑ datab ase‑ nhfd. Accessed 12 Apr 2023.

 19. Therneau T, Crowson C, Atkinson E. Using time dependent covariates and 
time dependent coe cients in the cox model. A vignette for the survival 
package in R. https:// cran.r‑ proje ct. org/ web/ packa ges/ survi val/ vigne 
ttes/ timed ep. pdf.

 20. Holleyman RJ, Khan SK, Charlett A, Inman DS, Johansen A, Brown C, et al. 
The impact of COVID‑19 on mortality after hip fracture: a population 
cohort study from England. Bone Joint J. 2022;104:1156–67.

 21. Cox DR. Regression models and life‑tables. J Roy Stat Soc Ser B (Meth‑
odol). 1972;34:187–202.

 22. Breslow N. Discussion of regression models and life‑tables by Cox et al. J 
Roy Statist Assoc B. 1972;34:216–7.

 23. NHS Digital. Hospital Episode Statistics (HES). NHS Digital. https:// digit 
al. nhs. uk/ data‑ and‑ infor mation/ data‑ tools‑ and‑ servi ces/ data‑ servi ces/ 
hospi tal‑ episo de‑ stati stics. Accessed 8 Nov 2022.

 24. Office for National Statistics. Office for National Statistics ‑ Registered 
deaths. https:// www. ons. gov. uk/ peopl epopu latio nandc ommun ity/ birth 
sdeat hsand marri ages/ deaths. Accessed 27 Mar 2023.

 25. UK Government. About the data ‑ coronavirus (COVID‑19) in the UK. 
https:// coron avirus. data. gov. uk. Accessed 6 Sep 2022.

 26. Armitage P, Berry G, Matthews JN. Statistical methods in medical research. 
John Wiley & Sons; 2008.

 27. Kaplan EL, Meier P. Nonparametric estimation from incomplete observa‑
tions. J Am Stat Assoc. 1958;53:457–81.

 28. NHS Digital. Deaths within 30 days of emergency admission to hospital: 
fractured proximal femur: indirectly standardised rate, all ages, annual 
trend, F,M,P. NHS Digital. https:// digit al. nhs. uk/ data‑ and‑ infor mation/ publi 
catio ns/ stati stical/ compe ndium‑ hospi tal‑ care/ curre nt/ deaths‑ within‑ 30‑ 
days/ deaths‑ within‑ 30‑ days‑ of‑ emerg ency‑ admis sion‑ to‑ hospi tal‑ fract 
ured‑ proxi mal‑ femur‑ indir ectly‑ stand ardis ed‑ rate‑ all‑ ages‑ annual‑ trend‑
f‑ m‑p. Accessed 12 Apr 2023.

 29. Devleesschauwer B, McDonald SA, Speybroeck N, Wyper GMA. Valuing 
the years of life lost due to COVID‑19: the differences and pitfalls. Int J 
Public Health. 2020;65:719–20.

 30. Hanlon P, Chadwick F, Shah A, Wood R, Minton J, McCartney G, et al. 
COVID‑19 ‑ exploring the implications of long‑term condition type and 
extent of multimorbidity on years of life lost: a modelling study. Well‑
come Open Res. 2020;5:75.

 31. Pifarré I, Arolas H, Acosta E, López‑Casasnovas G, Lo A, Nicodemo C, Riffe 
T, et al. Years of life lost to COVID‑19 in 81 countries. Sci Rep. 2021;11:3504.

 32. Quast T, Andel R, Gregory S, Storch EA. Years of life lost associated with 
COVID‑19 deaths in the USA during the first year of the pandemic. J 
Public Health (Oxf ). 2022;44:e20–5.

 33. Austin PC. Generating survival times to simulate Cox proportional haz‑
ards models with time‑varying covariates. Stat Med. 2012;31:3946–58.

 34. Cheng J, Xu Z, Bambrick H, Su H, Tong S, Hu W. Heatwave and elderly 
mortality: an evaluation of death burden and health costs considering 
short‑term mortality displacement. Environ Int. 2018;115:334–42.

 35. Rivera R, Rosenbaum JE, Quispe W. Excess mortality in the United States 
during the first three months of the COVID‑19 pandemic. Epidemiol 
Infect. 2020;148:e264.

 36. Alicandro G, Remuzzi G, La Vecchia C. Italy’s first wave of the COVID‑19 pan‑
demic has ended: no excess mortality in May, 2020. Lancet. 2020;396:e27–8.

 37. Michelozzi P, de’Donato F, Scortichini M, Pezzotti P, Stafoggia M, De Sario 
M, et al. Temporal dynamics in total excess mortality and COVID‑19 
deaths in Italian cities. BMC Public Health. 2020;20:1238.

https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/deathsregisteredweeklyinenglandandwalesprovisional/weekending11march2022
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/deathsregisteredweeklyinenglandandwalesprovisional/weekending11march2022
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/deathsregisteredweeklyinenglandandwalesprovisional/weekending11march2022
https://data.gov.scot/coronavirus-covid-19/detail.html
https://data.gov.scot/coronavirus-covid-19/detail.html
https://www.gov.uk/government/statistics/excess-mortality-in-england-and-english-regions
https://www.gov.uk/government/statistics/excess-mortality-in-england-and-english-regions
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Excess_mortality_-_statistics
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Excess_mortality_-_statistics
https://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.htm
https://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.htm
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/articles/excessmortalityandmortalitydisplacementinenglandandwales/2020tomid2021
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/articles/excessmortalityandmortalitydisplacementinenglandandwales/2020tomid2021
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/articles/excessmortalityandmortalitydisplacementinenglandandwales/2020tomid2021
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/articles/excessmortalityandmortalitydisplacementinenglandandwales/2020tomid2021
https://www.gov.uk/government/news/additional-54-billion-for-nhs-covid-19-response-over-next-six-months
https://www.gov.uk/government/news/additional-54-billion-for-nhs-covid-19-response-over-next-six-months
https://www.gov.uk/government/news/additional-54-billion-for-nhs-covid-19-response-over-next-six-months
https://digital.nhs.uk/data-and-information/publications/statistical/compendium-hospital-care/current/deaths-within-30-days
https://digital.nhs.uk/data-and-information/publications/statistical/compendium-hospital-care/current/deaths-within-30-days
https://digital.nhs.uk/data-and-information/publications/statistical/compendium-hospital-care/current/deaths-within-30-days
https://www.nice.org.uk/guidance/ng180/evidence/c-preoperative-risk-stratification-tools-pdf-8833151056
https://www.nice.org.uk/guidance/ng180/evidence/c-preoperative-risk-stratification-tools-pdf-8833151056
https://www.bma.org.uk/advice-and-support/nhs-delivery-and-workforce/pressures/nhs-backlog-data-analysis
https://www.bma.org.uk/advice-and-support/nhs-delivery-and-workforce/pressures/nhs-backlog-data-analysis
https://www.rcplondon.ac.uk/projects/national-hip-fracture-database-nhfd
https://www.rcplondon.ac.uk/projects/national-hip-fracture-database-nhfd
https://cran.r-project.org/web/packages/survival/vignettes/timedep.pdf
https://cran.r-project.org/web/packages/survival/vignettes/timedep.pdf
https://digital.nhs.uk/data-and-information/data-tools-and-services/data-services/hospital-episode-statistics
https://digital.nhs.uk/data-and-information/data-tools-and-services/data-services/hospital-episode-statistics
https://digital.nhs.uk/data-and-information/data-tools-and-services/data-services/hospital-episode-statistics
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths
https://coronavirus.data.gov.uk
https://digital.nhs.uk/data-and-information/publications/statistical/compendium-hospital-care/current/deaths-within-30-days/deaths-within-30-days-of-emergency-admission-to-hospital-fractured-proximal-femur-indirectly-standardised-rate-all-ages-annual-trend-f-m-p
https://digital.nhs.uk/data-and-information/publications/statistical/compendium-hospital-care/current/deaths-within-30-days/deaths-within-30-days-of-emergency-admission-to-hospital-fractured-proximal-femur-indirectly-standardised-rate-all-ages-annual-trend-f-m-p
https://digital.nhs.uk/data-and-information/publications/statistical/compendium-hospital-care/current/deaths-within-30-days/deaths-within-30-days-of-emergency-admission-to-hospital-fractured-proximal-femur-indirectly-standardised-rate-all-ages-annual-trend-f-m-p
https://digital.nhs.uk/data-and-information/publications/statistical/compendium-hospital-care/current/deaths-within-30-days/deaths-within-30-days-of-emergency-admission-to-hospital-fractured-proximal-femur-indirectly-standardised-rate-all-ages-annual-trend-f-m-p
https://digital.nhs.uk/data-and-information/publications/statistical/compendium-hospital-care/current/deaths-within-30-days/deaths-within-30-days-of-emergency-admission-to-hospital-fractured-proximal-femur-indirectly-standardised-rate-all-ages-annual-trend-f-m-p


Page 20 of 20Holleyman et al. BMC Medical Research Methodology          (2023) 23:241 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 38. Canouï‑Poitrine F, Rachas A, Thomas M, Carcaillon‑Bentata L, Fontaine R, 
Gavazzi G, et al. Magnitude, change over time, demographic charac‑
teristics and geographic distribution of excess deaths among nursing 
home residents during the first wave of COVID‑19 in France: a nationwide 
cohort study. Age Ageing. 2021;50:1473–81.

 39. Scortichini M, Schneider Dos Santos R, De’ Donato F, De Sario M, Michelozzi 
P, Davoli M, et al. Excess mortality during the COVID‑19 outbreak in Italy: a 
two‑stage interrupted time‑series analysis. Int J Epidemiol. 2021;49:1909–17.

 40. GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases 
and injuries in 204 countries and territories, 1990–2019: a systematic analysis 
for the Global Burden of Disease Study 2019. Lancet. 2020;396:1204–22.

 41. Rypdal M, Rypdal K, Løvsletten O, Sørbye SH, Ytterstad E, Bianchi FM. 
Estimation of excess mortality and years of life lost to COVID‑19 in Nor‑
way and Sweden between March and November 2020. Int J Environ Res 
Public Health. 2021;18:3913.

 42. Wyper GMA, Fletcher E, Grant I, McCartney G, Fischbacher C, Harding O, 
et al. Measuring disability‑adjusted life years (DALYs) due to COVID‑19 in 
Scotland, 2020. Arch Public Health. 2022;80:105.

 43. Andrasfay T, Goldman N. Reductions in 2020 US life expectancy due 
to COVID‑19 and the disproportionate impact on the Black and Latino 
populations. Proc Natl Acad Sci U S A. 2021;118:e2014746118.

 44. Rozenfeld Y, Beam J, Maier H, Haggerson W, Boudreau K, Carlson J, et al. A 
model of disparities: risk factors associated with COVID‑19 infection. Int J 
Equity Health. 2020;19:126.

 45. Pijls BG, Jolani S, Atherley A, Derckx RT, Dijkstra JIR, Franssen GHL, et al. 
Demographic risk factors for COVID‑19 infection, severity, ICU admission 
and death: a meta‑analysis of 59 studies. BMJ Open. 2021;11:e044640.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.


	Adjusting expected deaths for mortality displacement during the COVID-19 pandemic: a model based counterfactual approach at the level of individuals
	Abstract 
	Background 
	Methods 
	Results 
	Conclusion 

	Introduction
	Methods
	Overview
	Estimating the combined hazard

	Exemplar study population
	Ethics approval and consent to participate
	Simulating from the Cox model
	Estimation of displacement
	Applying the mortality displacements to adjust estimates of excess mortality


	Results
	Multivariate model
	Estimation of mortality displacement
	Adjusting expected and excess mortality estimates

	Discussion
	Limitations
	Implications and conclusions

	Anchor 23
	Acknowledgements
	References


