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Abstract 

Background  COVID-19 brought enormous challenges to public health surveillance and underscored the impor-
tance of developing and maintaining robust systems for accurate surveillance. As public health data collection efforts 
expand, there is a critical need for infectious disease modeling researchers to continue to develop prospective surveil-
lance metrics and statistical models to accommodate the modeling of large disease counts and variability. This paper 
evaluated different likelihoods for the disease count model and various spatiotemporal mean models for prospective 
surveillance.

Methods  We evaluated Bayesian spatiotemporal models, which are the foundation for model-based infectious 
disease surveillance metrics. Bayesian spatiotemporal mean models based on the Poisson and the negative bino-
mial likelihoods were evaluated with the different lengths of past data usage. We compared their goodness of fit 
and short-term prediction performance with both simulated epidemic data and real data from the COVID-19 
pandemic.

Results  The simulation results show that the negative binomial likelihood-based models show better goodness of fit 
results than Poisson likelihood-based models as deemed by smaller deviance information criteria (DIC) values. How-
ever, Poisson models yield smaller mean square error (MSE) and mean absolute one-step prediction error (MAOSPE) 
results when we use a shorter length of the past data such as 7 and 3 time periods. Real COVID-19 data analysis 
of New Jersey and South Carolina shows similar results for the goodness of fit and short-term prediction results. 
Negative binomial-based mean models showed better performance when we used the past data of 52 time periods. 
Poisson-based mean models showed comparable goodness of fit performance and smaller MSE and MAOSPE results 
when we used the past data of 7 and 3 time periods.

Conclusion  We evaluate these models and provide future infectious disease outbreak modeling guidelines 
for Bayesian spatiotemporal analysis. Our choice of the likelihood and spatiotemporal mean models was influenced 
by both historical data length and variability. With a longer length of past data usage and more over-dispersed data, 
the negative binomial likelihood shows a better model fit than the Poisson likelihood. However, as we use a shorter 
length of the past data for our surveillance analysis, the difference between the Poisson and the negative binomial 
models becomes smaller. In this case, the Poisson likelihood shows robust posterior mean estimate and short-term 
prediction results.
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Background
The COVID-19 pandemic for the last 3 years has high-
lighted the importance of public health surveillance. Pan-
demic data collection efforts became the center stage for 
the state-of-the-art technology and resources of govern-
ment, research institutions, and technology firms. Each 
state health authority, research institutions, and technol-
ogy firms constructed COVID-19 dashboards to track 
and guide interventions. For example, South Carolina 
constructed the COVID-19 dashboard, and technology 
companies such as Google and Apple provided related 
data such as mobility and community spread reports in 
the public domain [1–3]. With these efforts, public health 
authorities can collect extensive COVID-19 data and 
make faster inferences and predictions about the current 
outbreak trend compared to previous infectious disease 
surveillance activities. The public health surveillance 
process was defined as “[T]he ongoing, systematic collec-
tion, analysis and interpretation of health data essential 
to the planning, implementation, and evaluation of pub-
lic health practice, closely integrated with the timely dis-
semination of these data to those who need to know” [4]. 
After the collection of the data, public health surveillance 
data analysis can be implemented in two ways regarding 
its purpose: prospective surveillance analysis and retro-
spective analysis [5]. Retrospective analysis investigates 
past trends and aims to find previous change points and 
important factors affecting disease spread. In contrast, 
prospective surveillance analysis is about real-time infer-
ence for outbreak detection and future prediction based 
on currently available data. For accurate prospective sur-
veillance, Bayesian spatiotemporal statistical models have 
been utilized to develop the surveillance metric and the 
method to deal with reporting delay and under-reporting 
problems. For example, Corberán-Vallet and Lawson 
[6] presented a novel surveillance metric to detect the 
beginning of an infectious disease outbreak. Surveillance 
Conditional Predictive Ordinate (SCPO) compares the 
current and estimated disease cases using Bayesian con-
ditional predictive ordinate and identifies the emergence 
of the disease clusters. Rotejanaprasert et  al. [7] and 
McGaugh [8] developed the nowcasting method to accu-
rately estimate the complete disease case distribution 
using both Poisson and the negative binomial likelihoods.

So far, Bayesian spatiotemporal surveillance mod-
els for the prospective surveillance analysis have mainly 
used the Poisson likelihood to model various infectious 
disease outbreaks count data [6, 9, 10]. However, the 
COVID-19 pandemic challenges us to develop a more 

flexible modeling framework to accommodate large dis-
ease counts and fluctuations. When disease cases are 
increasing sharply in a short period (e.g., first wave of 
COVID-19 in the New England regions in 2020 and Omi-
cron waves in the US in winter 2021–2022), the negative 
binomial likelihood is more flexible to accommodate this 
over-dispersed infectious outbreak data with its addi-
tional dispersion parameter.

The negative binomial likelihood has been used to 
model over-dispersed count data in many application 
areas, such as genetics and traffic accident literature 
[11–13]. It has also been used for infectious disease sur-
veillance [8, 14, 15] but not used widely in a Bayesian 
spatiotemporal analysis with the prospective surveillance 
setting. Several nowcasting papers used negative bino-
mial likelihood for Bayesian spatiotemporal modeling to 
deal with the over-dispersed data [8, 16].

Define yij as the disease count at area i and time j, 
where i = 1…M, j = 1…T. We denote Yij ∼ Poisson µij  if

Note that there are multiple negative binomial param-
eterizations. The negative binomial model parameteri-
zation with mean and dispersion ( µij , rij ) is used in this 
paper. We are interested in the behavior of µij and rij 
depending on the change in infectious disease counts yij , 
so this parameterization is suitable for our purpose. We 
denote Yij ∼ NB

(

µij , rij
)

 if

In this study, we investigate the logarithm of the mean 
µij for the Poisson and the negative binomial likelihoods 
with various spatial terms and epidemic effect terms to 
model the infectious disease outbreak.

Prospective surveillance requires us to accommodate 
on-demand analysis and frequent changes in outbreak 
trends, so we need to consider how much past data we use 
for our modeling of outbreak trends. In the time-series 
forecasting analysis, the length of the past data usage is 
called the ‘window size’, and it is an important considera-
tion for the forecasting process when the disease trend 
has a large variation [17, 18]. When the outbreak trend 
is constantly changing, using a longer window size might 
be irrelevant and add more noise with out-of-date infor-
mation. However, including too short time windows can 
give insufficient information to the model and increase 
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the instability of the model fit. From the forecasting liter-
ature, Bayesian spatiotemporal surveillance has adopted 
a “sliding window” approach for prospective surveillance 
analysis [6, 7]. As time passes, it uses a fixed number of 
previous time periods for the analysis by dropping the 
oldest time periods from the dataset for analysis. This 
approach gives the computational efficiency for the 
Markov Chain Monte Carlo (MCMC) computation and 
enables the surveillance model to adapt to a fast-chang-
ing environment. For example, Corberán-Vallet and 
Lawson [6] used a sliding window approach to analyze 
the early detection metric. They compared the metric’s 
performance depending on the different window sizes in 
the weekly salmonellosis outbreak data. Rotejanaprasert 
et al. [7] implemented real-time surveillance with the sys-
tem to estimate the reporting delays. The Poisson and the 
negative binomial likelihoods with spatiotemporal mean 
models have been used for infectious disease surveillance 
studies. It was assumed that the negative binomial like-
lihood was used for over-dispersed data.In contrast, the 
Poisson likelihoods were used for those without an over-
dispersed pattern. However, the performance of mean 
models and likelihoods can be changed depending on 
how much past data was used. Therefore, we would like 
to comprehensively evaluate the Poisson and the nega-
tive binomial data models with various infectious disease 
mean models with various window sizes. The novelty of 
our paper lies in evaluating both Poisson and the negative 
binomial likelihoods, along with various Bayesian spati-
otemporal mean models, while different lengths of the 
past data for the prospective surveillance were analyzed.

Specifically, we would like to answer the following 
questions:

1.	 Comparison between likelihoods: When we have the 
over-dispersed outbreak data in the prospective sur-
veillance setting, how will the Poisson and the nega-
tive binomial likelihood perform with specific spa-
tiotemporal mean models and different amounts of 
previous data?

2.	 Comparison among the spatiotemporal mean mod-
els: Will adding spatial components regarding spa-
tial random effects and neighborhood transmission 
terms be adequate for modeling epidemic outbreaks?

The rest of the paper is organized as follows. In the 
Methods section, we will introduce our Bayesian spati-
otemporal models of interest. Mean models with various 
spatial characteristics and different epidemic transmis-
sion terms will be introduced. The negative binomial 
likelihood dispersion parameter is modeled using spatial 
and spatiotemporal effects. In the Results section, we will 
evaluate these models with the simulation data and the 

COVID-19 data of New Jersey (NJ) and South Carolina 
(SC). We analyzed the data with different mean models 
based on the Poisson and the negative binomial likeli-
hoods with different window sizes. Discussion and con-
clusion of the results will follow in the last sections.

Methods
Spatiotemporal infectious disease models for the count 
data
In this paper, we are interested in the newly occurred 
infectious disease case count data collected from the spe-
cific spatial unit. These spatial units usually follow the 
government administrative boundaries such as states, 
counties, and census tracts. A Poisson likelihood and 
a negative binomial likelihood are commonly used for 
these types of count data. For these likelihoods, a log link 
is used to connect the covariates of interest and the count 
data. Mean µij is modeled with linear model components 
using the log link.

We assume a Susceptible-Infected-Removed (SIR) 
model [19] for the infectious disease mechanism. The 
particular version of the SIR model evaluated here was 
proposed by Morton and Finkenstädt [20] which was 
originally applied to the time series of the measles out-
break and extended in the spatiotemporal domain by 
Lawson and Song [21] for an influenza outbreak analysis. 
The offset term log

(

Sij
)

 of the Eq. (1) was calculated using 
the SIR accounting equation. Define Sij as the size of the 
susceptible population at-risk at time i and area j. The 
accounting equation for the SIR model is

The susceptible population for the current period 
j is derived as a subtraction of the previous disease 
counts 

(

yi,j−1

)

 and removable population ( Ri,j−1 ) from 
the previous susceptible population. The equation con-
siders the removed population Ri,j−1 caused by death, 
relocation, and other reasons. In this paper, we exclude 
the reinfected cases of COVID-19 in our SIR model. For 
COVID-19, although it is now commonly accepted that 
it is possible to be re-infected, we still do not fully under-
stand the complex reinfection mechanisms, although 
loss of immunity and the emergence of new variants are 
important factors. Since our focus is the evaluation of the 
different spatiotemporal models rather than the precise 
mathematical formulation of infection mechanisms, such 
as estimating R-naught, our assumption does not prevent 
achieving the purpose of this paper. For our simulation, 
we assumed a rough 1% as the death rate based on the 

(1)
log

(

µij

)

= log
(

Sij
)

+ α
0
+ ui + vi + Epidemic component

Sij = S
i,j−1

− yi,j−1 − Ri,j−1.
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current total deceased population divided by the infected 
population from COVID-19 data (As of June 14th, 2022, 
US total death/US total cases = 1,008,116/85,570,063 = 0.
012 from [22]).

When we recognize that the area-specific effects exist 
in our data, spatially correlated and uncorrelated random 
effect ui and vi for the area i can be used to specify the 
spatial characteristics. Besag et  al. [23] first used both 
correlated and uncorrelated random-effects models with 
the normal prior distributions in the Bayesian hierarchi-
cal model as log(θi) = α0 + ui + vi , which is called Besag-
York-Mollié (BYM) model. θi is the relative risk of area i, 
and disease cases for this model are assumed to follow 
the Poisson distribution. Spatial correlated random coef-
ficient ui have the intrinsic conditional autoregressive 
(ICAR) model [23], which has the form

where ui =
∑

j∈δi

uj
nδi

, δi = neighborhood of area i, u(i) = 
all regions except region i, and nδi is the number of the 
neighborhood regions of area i. The spatial uncorrelated 
random component vi follows the zero-mean Gaussian 
prior distribution with the variance σ 2

v  . We acknowledge 
that the variance term of spatial random components can 
capture the over-dispersion due to spatial characteristics. 
However, we also assume that over-dispersion of the 
infectious disease wave is affected by both space and time 
bounded characteristics. Therefore, comparing the nega-
tive binomial and Poisson likelihoods in Bayesian spati-
otemporal infectious surveillance analysis can show i) 
whether a spatial random component is an effective way 
to capture the over-dispersion property of the data and ii) 
which characteristics of overdispersion are more impor-
tant to model the infectious disease outbreaks.

In order to directly model the epidemic outbreak 
effect, we adopted the two-component endemic-epi-
demic model from [24] for our Bayesian spatiotemporal 
models. The authors divided the log-linear mean model 
into endemic and epidemic components. In our model, 
we capture two infectious diseases spread patterns: the 
lagged epidemic effect and the neighborhood epidemic 
effect. The lagged epidemic effect assumes that the cur-
rent disease count is influenced by the previous time’s 
disease count pattern. Therefore, disease spread can be 
intensified in the area where we had more disease counts 
in the previous period. We model this pattern with the 
term βep1 · log(yi,j−1) . The neighborhood epidemic effect 
assumes that the outbreak starting in one area will spread 
first into its neighboring areas. We model this pattern 
with the summation term of neighboring areas’ disease 
counts βep2 · log(

∑

δi
yδi ,j−1) . This effect was used in [21, 

ui|u(i) ∼ N (ui,
σ 2
u

nδi
),

25], effectively incorporating the neighborhood transmis-
sion of infectious diseases.

The endemic component incorporates the infectious 
disease’s baseline transmission rate and the area’s char-
acteristics. In the case of COVID-19, we do not know 
its baseline or future endemic characteristics yet. In this 
case, spatial random effects, as suggested by Besag-York-
Mollié [23] can be used to accommodate the factors 
related to the endemic nature of the infectious disease.

In summary, the full model of our spatiotemporal mean 
model has the following form:

with the Poisson and the negative binomial likelihoods 
for the disease count.

The prior distributions for the intercept α0 , regression 
parameters βep1 and βep2 follow the conventional zero-
mean normal distribution with variance σ20 for the inter-
cept term, and shared σ 2

β  for regression terms.
For variance terms, we further assume weakly-inform-

ative prior distributions, and standard deviations follow 
uniform prior distributions recommended by Gelman 
[26]. We also considered a different specification of the 
uniform priors, especially uniform shrinkage prior for 
the Poisson spatiotemporal model [27, 28] but selected 
the more general form of the uniform prior. Because our 
purpose is the comparison of different mean models and 
likelihoods while the length of previous data is fixed, we 
would like to use the prior for the standard deviation of 
each parameter to be used for both the Poisson and the 
negative binomial likelihoods and for other parameters 
as well as spatiotemporal components. Specifically we 
used the uniform prior [0,10] for the standard deviation 
of spatially correlated and uncorrelated random compo-
nents, parameters for epidemic components (βep1,βep2) , 
and the parameter for the negative binomial dispersion 
component (βr) . For the prior of standard deviation of 
α0 , we used Uniform [0,15]. We wanted to assume weakly 
informative prior for these standard deviation compo-
nents for each parameter and the maximum variance of 
100 and 225 satisfies our purpose compared to the aver-
age sampled values for each parameter during the simula-
tion study and the COVID-19 analysis. Also, it provided 
the reasonable fit and convergence for these parameters.

For the negative binomial likelihood, there is a disper-
sion parameter for the over-dispersed data, and many 
previous analyses used the pre-specified gamma prior [8, 
16]. However, we observe from the COVID-19 data that 
the degree of over-dispersion is different depending on 
specific time and areas. Modeling this varied dispersion 

log
(

µij

)

=log
(

Sij
)

+ α0 + βep1 · log
(

yi,j−1

)

+ ui + vi + βep2 · log(
∑

δi

yδi ,j−1)
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parameter to specify the characteristics of the site was 
well established in the traffic accident literature [29, 30] 
and also recently used for the COVID-19 data analysis 
[15]. We assumed that dispersion of the infectious disease 
outbreak can be influenced by the area-specific charac-
teristics and used the spatial correlated and uncorrelated 
random components from the mean model to specify 
the dispersion parameter. We evaluated two forms of 
dispersion parameter modeling: 1) dispersion parameter 
considers spatial characteristics (ri) and is modeled with 
spatial components ui and vi:

2) dispersion parameter considers the variation of spa-
tial effect from its neighborhood and the difference of 
each time period ( rij):

Prior distributions for the intercept and regression 
parameter terms of the dispersion parameter are a zero-
mean Gaussian distribution with the variance σ2r0 and σ2βr 
respectively.

Model implementation
In this paper, we evaluated the performance of Bayesian 
spatiotemporal models for prospective surveillance by 
the sliding window approach. The models of interest are 
presented in Table 1. For each of the Poisson and the neg-
ative binomial likelihoods, we considered three different 
mean model forms. In the case of the negative binomial 
likelihood, for each mean model form, we further con-
sidered two different dispersion parameter forms. Each 
model in Table  1 was analyzed with 3 different window 
sizes.

The M1 model is the basic epidemic model without 
spatial components. It only depends on the lagged time 
series effect of previous disease counts. M2 is the infec-
tious disease model with spatial correlated and uncor-
related random effects (BYM model) with the lagged 

log(ri) = r0 + ui + vi

log
(

rij
)

= r0 + ui + vi + βr · log(
∑

δi

yδi ,j−1)

epidemic term. In model M3, we added the neighbor-
hood epidemic effect terms to the model M2. For the 
negative binomial likelihood, we considered both ri 
(dispersion due to a spatial effect) and rij (dispersion 
due to a spatiotemporal effect) as dispersion parameter 
specifications.

We first evaluated these models with simulated data 
and then applied them to the real COVID-19 data to 
assess their model performances. We conducted the pos-
terior sampling with the mixed Gibbs-Metropolis algo-
rithms using the ‘nimble’ package (version 0.11.1) [31] in 
R. The details of the full Bayesian implementation are in 
Additional file 1.

Model performance evaluation criteria
Model performance is evaluated by the deviance infor-
mation criterion (DIC), the mean squared error (MSE), 
and the mean absolute one-step-ahead prediction error 
(MAOSPE). DIC is the widely used goodness of fit meas-
ure in Bayesian analysis. It is defined as

where D[.] is the deviance of the model and θ is the 
parameter set of the model. DIC is based on the compari-
son of the average deviance and the deviance of the pos-
terior parameter estimates [32]. For model comparison, 
smaller DIC shows better goodness of fit.

MSE is the comparison of the data point and posterior 
mean estimate.

where S is the number of MCMC samples, M is the total 
number of the area, and t is the total number of time 
periods. It was calculated as the sum of the squared dif-
ferences between actual data yij and posterior estimates 
at each sampling period (µ̂ijs) and subsequently took the 
average of the summed value over the whole time, space 
and sampling periods.

DIC = 2Eθ|y(D)− D[Eθ|y(θ)]

MSE =
∑M

i=1

∑t

j=1

∑S

s=1

(

yij − µ̂ijs

)2
/(M · t · S),

Table 1  Bayesian spatiotemporal models considered for the evaluations

Poisson Negative binomial

log(ri) = r0 + ui + vi log
(

rij
)

= r0 + ui + vi + βr • log(
∑

δi
yδi ,j−1)

M1
log

(

µij

)

= log
(

Sij
)

+ α0 + βep1 · log
(

yi,j−1

)

  
PM1 (Poisson likelihood 
with the mean model M1)

NBM1RS (Negative binomial 
likelihood with the mean 
model 1 and dispersion varied 
by area)

NBM1RST (Negative binomial likelihood 
with the mean model 1 and dispersion 
varied by area and time)

M2
log

(

µij

)

= log
(

Sij
)

+ α0 + βep1 · log
(

yi,j−1

)

+ ui + vi  
PM2 NBM2RS NBM2RST

M3
log

(

µij

)

= log
(

Sij
)

+ α0 + βep1 · log
(

yi,j−1

)

+ ui + vi + βep2 · log(
∑

δi

yδi ,j−1)  
PM3 NBM3RS NBM3RST
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For evaluating short-term prediction, we generated the 
one-step-ahead prediction from the posterior estimates 
of the last time period and compared the value with real 
data.

For each sampling period s, ŷi,j+1,s was sampled from 
the estimated, µ̂i,j+1,s which was calculated using the val-
ues from the previous time period j.

Simulation method
We conducted simulation studies to evaluate how each 
model in Table 1 performs for different prospective sur-
veillance settings. Specifically, we would like to know 
how each spatiotemporal surveillance model performs 
depending on different window sizes.

To mimic the real surveillance data, the South Caro-
lina (SC) map was used for our simulation analysis. As 
we see from Fig.  1, it has 3 distinct metropolitan areas 
(Greenville, Richland, and Charleston) from northwest to 
southeast. We considered 30 time periods and assigned 
two disease outbreak waves, one from 6 to 15 and 
another from 18 to 26. We assumed the outbreak started 
in 3 metropolitan areas and spread through neighbor-
ing counties. The disease count during the epidemic was 
simulated following CDC guidelines [33]. Before the epi-
demic, disease counts were kept to less than 10 cases per 
100,000 populations (low-risk level). Upon the start of 
the epidemic, it is assumed to increase to more than 50 
cases per 100,000 populations (above the ‘high’ risk level). 

MAOSPE =
∑M

i=1

∑t

j=1

∑S

s=1
|yi,j+1 − ŷi,j+1,s|/(M · t · S)

Figure  2 shows the example of the simulated data for 3 
metropolitan counties, and the details of the data gen-
eration process are provided in Additional file 2. For the 
window length, we considered 30, 7, and 3 time periods. 
The window size of 30 uses the entire data, which is the 
same as conducting the retrospective analysis. Window 
size 7 was chosen because it is long enough to cover the 
simulated outbreak wave’s entire increasing or decreasing 
trend. A window size of 3 represents the situation when 
a very current trend is only included for our surveillance. 
We calculated each window segment’s DIC, MSE, and 
short-term prediction performance. For MAOSPE, we 
sampled the one-step-ahead prediction for each window 
analysis result and compared them to the data in the fol-
lowing time period. Each model in Table 1 was fitted for 
the different window lengths of 30, 7, and 3 for 100 simu-
lated data sets. For each analysis, 500 samples were pro-
duced after 50,000 iterations with 45,000 burn-in periods 
and thinning by 10.

Results
Simulation study
We first reported the analysis results with the simulated 
data as explained in Simulation method section. The 
analysis results for each model with the different window 
sizes are presented in Tables  2, 3 and 4 and Additional 
file 3 Tables A1-A4. First, we compared how each model 
performs in the descriptive analysis setting (retrospective 
analysis) using a whole 30-time period analysis.

Fig. 1  The map of South Carolina with 3 highlighted metropolitan counties, which was used for simulation data generation
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Table 2 shows the DIC and MSE performance of each 
of the Poisson and the negative binomial models. The 
data of the window length 30 are over-dispersed, includ-
ing two high-risk outbreak waves (more than 50 per 
100,000 cases). Negative binomial likelihoods show bet-
ter model fits than Poisson models, as shown by compar-
ing DIC with 10882 (PM3) and 7302 (NBM3RST). As we 
expected from the role of spatial random coefficients, the 

models with spatial correlated and uncorrelated compo-
nents (M2 and M3) show better performances than the 
models only with a lagged time effect (M1). Models M2 
and M3 can follow epidemic transmissions due to both 
the neighborhood effect and the disease transmission 
of the previous time, so they showed better goodness 
of fit results and smaller MSE than model M1. Between 
the mean model M2 and M3, the mean model with 

Fig. 2  Example of the simulation data for 3 metropolitan areas of the South Carolina

Table 2   DIC and MSE values from the analysis of the window 
size = 30

DIC MSE

PM1 14,542 727

PM2 10,892 640

PM3 10,882 653

NBM1RS 8051 1650

NBM1RST 7967 1501

NBM2RS 7532 540

NBM2RST 7554 535

NBM3RS 7297 606

NBM3RST 7302 595

Table 3  DIC, MSE, and MAOSPE for the simulation analysis for 
the window size 7 when time 19 to 25 (fluctuation trend)

DIC MSE MAOSPE

PM1 3786 1200 27.02

PM2 3097 977 25.76

PM3 3109 1001 27.09

NBM1RS 2283 2011 36.32

NBM1RST 2279 2071 36.67

NBM2RS 2254 1140 42.76

NBM2RST 2264 1151 42.78

NBM3RS 2188 1408 38.58

NBM3RST 2189 1429 38.90
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neighborhood epidemic effects (M3) shows better good-
ness of fit compared to the model without it (M2).

Table  3 and Additional file  3 Tables A1–A2 present 
DIC, MSE, and MAOSPE results for window size 7. For 
each time period, the sliding window size of 7 includes 
6 previous time periods and current disease cases. One 
benefit of this setting is that we can investigate the model 
performance of the different disease trends. Our simula-
tion data was designed to have 2 infectious disease out-
break waves, and each wave was set for 15 time periods. 
A window size of 7 can capture increasing or decreasing 
trends or include fluctuation between trends. In order to 
present each model systematically, we selected the time 
segment from the different locations: 1) increasing, 2) 
decreasing, and 3) fluctuating (changing from increasing 
to decreasing trend) trends.

Table 3 presents the goodness of fit result for the win-
dow size of 7 when the disease trend fluctuates. It shows 
that the negative binomial models show smaller DIC val-
ues than the Poisson models. The mean model M3 shows 
the smallest DIC values for both Poisson and negative 
binomial likelihoods. However, each model’s MSE result 
differs depending on the trend. For the increasing and 
decreasing trends, the NBM3RST model has the smallest 
MSE, but for the fluctuation trend, the mean model PM2 
has the smallest MSE value. For window sizes 7 and 3, we 
can evaluate the short-term prediction result using the 
data from the next time period. The MAOSPE column 
shows that PM2 and PM3 models show smaller MAOSPE 
values than NB models.

Lastly, we evaluated the models with a window size 
of 3. When the transmission rate is very high, a window 
size of 3 can also have a large variability, but otherwise, 
it can be less variable compared to the window size of 7 
and 30. Table 4 and Additional file 3 Tables A3-A4 show 
the results from the analysis of window size 3. Table  4 
shows that negative binomial models provide a smaller 

DIC than Poisson models, but the difference is nar-
rower between the negative binomial and the Poisson 
likelihood models compared to the longer window size 
results. MSE and MAOSPE results show that when infec-
tion trends are increasing, NB and Poisson models are 
comparable. However, Poisson models show smaller MSE 
and MAOSPE when infection trends are decreasing or 
fluctuating.

In summary, we examined each model with different 
simulation settings. We found that (i) the mean models 
with spatial random coefficients (M2 and M3) provide a 
smaller DIC value compared to the models with only pre-
vious epidemic components (M1); (ii) the negative bino-
mial models provide a better model fit when we have a 
longer window size but their difference becomes smaller 
when we have a shorter window size; and iii) overall, the 
Poisson models provide smaller MSE and MAOSPE val-
ues when we use the window size of 7 and 3.

Real data analysis of COVID‑19
Next, we shifted our focus to real outbreak data analysis 
of the COVID-19 pandemic.

We used the data from the state health depart-
ments collected in the New York Times GitHub [34] 
from March 15th, 2020 up to 52  weeks and investigated 
the data of COVID-19 for the states of New Jersey and 
South Carolina. Figure 3 shows each county’s cumulative 
COVID-19 cases of the study period. The state of New 
Jersey was selected for the comparison to South Carolina 
since it is the state with the highest population density 
(NJ: 1263.2/sq.mile and SC: 170.2/sq.mile in census 2020 
[35]) with a quite homogeneous population number in 
each county. New York Times GitHub provides the daily 
updated data for each county based on the reporting of 
each state health authority. The daily numbers from the 
national database allow us to track the spread of COVID-
19 at the finest level. However, it suffers from large fluc-
tuations due to random noise and systematic problems 
such as delayed reporting and a weekly pattern due to 
artifacts of the reporting schedule. Since our purpose 
is the evaluation of different models in the real data, we 
used the weekly average of the daily data to prevent these 
systematic problems and allow us to track the pattern of 
disease spread more clearly and with less random noise. 
For the first year, most of the SC area showed average 
case counts of less than 50 cases per 100,000 residents for 
28 days. On the contrary, the first wave of NJ showed a 
very high transmission rate. Therefore we could compare 
the models with different transmission levels by compar-
ing NJ and SC.

In the simulation analysis, we evaluated the various 
mean models for the Poisson and the negative bino-
mial likelihood. Based on the simulation results, we 

Table 4  DIC, MSE, and MAOSPE for the simulation analysis for 
the window size 3 when time 21 to 23 (fluctuation trend)

DIC MSE MAOSPE

PM1 1256 625 25.18

PM2 1024 358 26.14

PM3 1020 430 27.70

NBM1RS 982 1302 37.67

NBM1RST 944 852 38.74

NBM2RS 978 532 35.51

NBM2RST 990 516 35.69

NBM3RS 946 859 37.24

NBM3RST 951 1008 37.63
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used the mean model M3 for the real data analysis since 
M3 showed the best goodness of fit performance in the 
simulation study. The models evaluated in this section 
are summarized in Table  5. We implemented MCMC 
analysis with the R package Nimble [31] and sampled 
from 100,000 iterations with 90,000 burn-in periods and 
thinned the sample by 10. We used the same prior speci-
fications for real data analysis as the simulation analysis. 
We used ICAR distribution for ui , and the zero-mean 
normal distribution was used for vi,α0,βr ,βep1,βep2, and 

r0 . For variance terms, uniform (0,10) priors were used 
for the standard deviation. We used the window size of 
52 (whole year data), 7, and 3 weeks to compare the effect 
of window size on the goodness of fit and prediction 
performance.

As in the case of the simulation section, we compared 
the goodness of fit by DIC, posterior mean estimation by 
MSE, and short-term prediction performance evaluated 
by the MAOSPE measure. Table  6 presents the analysis 
results of the 52 time periods.

First, we compare the goodness of fit measures. From 
the comparison of the negative binomial and the Pois-
son likelihoods, the negative binomial likelihood mod-
els show smaller DIC values than the PM3. With one 
whole year of data, the negative binomial likelihood 
better accommodates the variation of the data with its 
dispersion parameter. The difference between the nega-
tive binomial and Poisson likelihoods is significantly 
larger for the NJ result since NJ data showed very high 
variability compared to the moderate transmission rate 
of SC data. On the contrary, the short-term prediction 

Fig. 3  Maps of NJ and SC with cumulative COVID-19 cases from March 2020 to Feb 2021

Table 5  Summary of the models to be evaluated

PM3
log

(

µij

)

= log
(

Sij

)

+ α0 + βep1 · log
(

yi,j−1

)

+ ui + vi + βep2 · log(
∑

δi

yδi ,j−1)  

NBM3RS
log

(

µij

)

= log
(

Sij

)

+ α0 + βep1 · log
(

yi,j−1

)

+ ui + vi + βep2 · log(
∑

δi

yδi ,j−1)  
log(ri) = r0 + ui + vi

NBM3RST
log

(

µij

)

= log
(

Sij

)

+ α0 + βep1log
(

yi,j−1

)

+ ui + vi + βep2 · log(
∑

δi

yδi ,j−1)  
log

(

rij
)

= r0 + ui + vi + βr · log(
∑

δi

yδi ,j−1)  

Table 6  DIC, MSE and MAOSPE table for the analysis of NJ and SC with the window size of 52 weeks

NJ SC

DIC MSE MAOSPE DIC MSE MAOSPE

PM3 25,527.52 4235.22 18.96 16,340.29 196.37 4.71

NBM3RS 12,033.40 4676.00 124.49 14,453.65 207.48 34.60

NBM3RST 10,107.35 4653.78 109.57 14,277.01 207.78 36.44
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and MSE for the window length of 52 show a differ-
ent pattern with the goodness of fit measure. MSE and 
MAOSPE columns of Table  6 show that the PM3 has 
smaller MSE and MAOSPE values than the negative 
binomial models.

Next, we investigated the window length of 7 during 
the 52-week periods. Identical to the simulation result, 
we presented the window analysis results categorized by 
the outbreak trend in three parts: increasing, decreas-
ing, and changing trends (fluctuation). For this pur-
pose, we selected the time segment 33–39  weeks (NJ) 
and 11–17  weeks (SC) for increasing trend, 9–15 (NJ) 
and 20–26 (SC) for decreasing trend, and 4–10 (NJ) and 
16–22 (SC) for the fluctuating trend. Table 7 and Addi-
tional file  3 Tables A5-A6 show the results of the win-
dow size 7. The results are similar pattern compared to 
the one-year analysis. The negative binomial shows bet-
ter goodness of fit, but the PM3 model shows the more 
stable estimation of posterior mean and predictive values 
shown by smaller MSE and MAOSPE values.

Window size of 3 shows a different pattern from the 
result of the long window size of 7 and 30. From Table 8, 
Additional file  3 Tables A7 and A8, we can observe 
that DIC values of PM3 are smaller than NBM3RS and 
NBM3RST when NJ has increasing and fluctuating 
trends and SC has a decreasing trend. MSE and MAOSPE 
tables show that PM3 has smaller MSE and MAOSPE 
values than its NB counterparts. The window size of 3 
has less variability in the data, therefore, the difference 
among the 3 models is smaller than the results of longer 
window sizes, and PM3 shows a better model fit in some 
cases. Overall, the PM3 shows smaller or comparable 

DIC values and stable MSE and short-term prediction 
performance than NBM3RS and NBM3RST.

Discussion
In this paper, we evaluated Bayesian spatiotemporal 
infectious disease models in the prospective surveillance 
setting with simulation data and real COVID-19 data 
analysis. Prospective surveillance demands good perfor-
mance in short-term prediction and the adjustment to 
the different past data lengths. We investigated how spa-
tiotemporal mean models performed with two count data 
likelihoods of the Poisson and the negative binomial like-
lihoods and with different sliding window lengths. Our 
results show that the choice of different window sizes 
affects the surveillance model performance. Adjusting 
window size for the prospective surveillance can be the 
balancing problem to achieve both stable prediction and 
removal of out-of-date information. Using a too short 
window size can make our statistical estimates unstable. 
However, using a too long window can make our cur-
rent parameter estimates over-smoothed and unable to 
change quickly to reflect the current trend. Especially, 
COVID-19 data shows the pattern of waves, and each 
wave has a distinct shape and intensity as we go through 
it. For example, there exists a difference among the first 
wave, the wave caused by the Delta variant and the wave 
caused by Omicron variant. Hence, we needed to use our 
past wave data, but quickly update the information at 
hand to adapt to the current wave. Our simulation and 
COVID-19 data analysis showed that a window size of 
at least 7-time points is preferred for our negative bino-
mial models, including dispersion parameter modeling 

Table 7  DIC, MSE and MAOSPE table for the analysis of NJ and SC for the window size of 7 (t = 4–10 weeks (NJ) and t = 16–22 weeks 
(SC) with fluctuation trend)

NJ SC

DIC MSE MAOSPE DIC MSE MAOSPE

PM3 2512.20 870.42 13.36 2259.62 101.67 6.76

NBM3RS 1355.98 1423.24 46.94 2099.09 163.03 18.63

NBM3RST 1364.13 1300.83 43.82 2073.57 149.33 18.69

Table 8  DIC, MSE and MAOSPE table for the analysis of NJ and SC for the window size of 3 (t = 7–9 weeks (NJ) and t = 18–20 weeks 
(SC) with fluctuation trend)

NJ SC

DIC MSE MAOSPE DIC MSE MAOSPE

PM3 512.29 89.46 12.27 910.43 50.09 10.94

NBM3RS 572.12 356.31 37.59 897.27 61.05 13.68

NBM3RST 527.08 106.95 48.72 900.27 61.92 13.65
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and spatial random components. With a longer data size, 
the negative binomial likelihood-based model provides 
stable estimation and better goodness of fit than Poisson 
likelihoods. Also, our data analysis results show that the 
negative binomial spatiotemporal models work well with 
data with large variabilities, such as the data with more 
than 50 cases per 100,000 infection rate. With small vari-
abilities such as the window size 3, negative binomial and 
Poisson based models are comparable, and Poisson likeli-
hood-based models provide stable prediction and some-
times better goodness of fit. Therefore, our preference for 
a specific model in the prospective surveillance can be 
decided according to the research goal of the model. Bet-
ter goodness of fit performance for the large wave, such 
as NJ data for the window size 52 and 7, clearly shows 
where the strength of the negative binomial likelihood-
based models exists. When we have over-dispersed data 
and long periods of past data are available and necessary 
for our purpose, the negative binomial likelihood pro-
vides the appropriate model fit. However, the difference 
among our likelihood-based models was reduced when 
the window size decreased. Even though we have the 
over-dispersed data, if a short window length is appro-
priate for our surveillance, then Poisson likelihood-based 
models provide comparable goodness of fit, posterior 
mean estimates, and prediction results with smaller error 
metrics. As we show in the window size of 3, if we use the 
short length of past data and our data has less than mod-
erate risk level, then Poisson likelihood is the parsimoni-
ous data model with stable prediction and the model fit.

We also evaluated different Bayesian spatiotemporal 
mean models and dispersion models for the prospec-
tive surveillance setting. Clearly, the models with spatial 
components (Models M2 and M3) perform better com-
pared to the model with only lagged time effects from 
the previous time period of disease cases. The differ-
ence between the models M2 and M3 is not prominent 
in our analysis. The effect of the neighborhood epidemic 
effect is not apparent in our simulation, and it depends 
on trend, window size and statistical models. Since spa-
tial random components also contain some of the neigh-
borhood effects, the part of the neighborhood epidemic 
effect term of M3 is included in the model M2, and it can 
reduce the difference between M2 and M3 in our study. 
We also explore the effect of spatially or spatio-tempo-
rally modeled dispersion parameters in the spatiotem-
poral surveillance models. Similar to the neighborhood 
epidemic effect, the difference between the two disper-
sion models depends on the size of the disease outbreak 
and the disease trend.

Even though we conducted a thorough investigation 
of the performance of spatiotemporal infectious disease 
outbreak models, some limitations still exist for our study 

and future work might be needed. First, our simula-
tion setting and COVID-19 data analysis were based on 
the knowledge available from 2020 to 2022. Our results 
can be changed depending on the characteristics of dif-
ferent infectious diseases such as transmission method, 
asymptomatic transmission, and vaccination rate. Sec-
ond, future work can be done to investigate the effect 
of the different window sizes thoroughly. In this paper, 
we focused on comparing the different models, depend-
ing on the different window lengths. Another interest-
ing study will evaluate the different window sizes for the 
same Bayesian spatiotemporal model. It can show the 
effect of long or short past data on parameter estimation 
stability and prediction accuracy for the infectious dis-
ease wave data.

Third, future work can be done to refine our Bayes-
ian spatiotemporal infectious disease models. This 
paper modeled the dispersion parameter of the negative 
binomial models with spatial random components and 
neighborhood terms to accommodate spatiotemporal 
characteristics of the infectious disease data. Not many 
studies have been done about Bayesian spatiotemporal 
modeling with a negative binomial likelihood, so more 
interesting ways to model the dispersion parameter can 
be developed in the future. For the infectious disease 
modeling components, we can extend our epidemic 
terms to include more ‘trend’ parameters to accommo-
date the trend change and the volatility of the data. There 
is a growing body of infectious disease modeling fore-
casting analysis based on volatility and fluctuation [36]. 
Future work can be performed to quantify and consider 
the volatility within our Bayesian spatiotemporal infec-
tious disease models. Also we can extend our SIR and 
endemic components to include the characteristics of 
infectious disease transmission. Many experts predict 
that COVID-19 will possibly stay with us as an endemic 
disease [37, 38]. As our knowledge grows, we can refine 
our “endemic” component of our model to accommo-
date endemic COVID-19. Currently, we modeled it with 
random effect components only following the area’s 
characteristics.

Finally, in this paper, we evaluated our models by the 
traditional summary metrics of forecasting such as 
MAOSPE and MSE. Future work could extend the model 
evaluation metrics to measure ‘probabilistic’ forecast-
ing performance. There is a significant body of literature 
about evaluating the ‘probabilistic’ nature of forecasting 
activity. Gneiting [39] stated that all forecasting activi-
ties need to reflect the innated uncertainty and this 
uncertainty needs to be evaluated through the forecast-
ing metric. These measures aim to evaluate the statistical 
consistency between probabilistic forecasts and real data. 
The logarithmic score [40] and the Dawid-Sebastiani 
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score [41] are examples of these performance evaluation 
metrics (Gneiting et  al. called them as ‘proper scoring 
rule’). Czado et al. [42] and Wei and Held [43] extended 
and presented these evaluation tools and statistical sig-
nificance tests for the count data model. A comparison 
of Bayesian hierarchical spatial-temporal models regard-
ing probabilistic predictive performance will be another 
exciting extension of this paper.

Conclusion
We evaluated Bayesian spatiotemporal models of the 
infectious disease outbreak in the prospective surveil-
lance. The spatiotemporal mean models based on the 
Poisson and the negative binomial likelihoods were eval-
uated. The negative binomial model showed better good-
ness of fit performance for the over-dispersed infectious 
disease outbreak data, especially for the longer window 
size. Poisson likelihood based models show more stable 
posterior estimates and short-term prediction perfor-
mance, and their goodness of fit is as good as the nega-
tive binomial models when we analyze the short window 
length. The choice of the window size is important for the 
data model choice, and the choice of the window depends 
on how much variability our outbreak situation has. If we 
have highly volatile data in a short period of time, then 
our model selection will be different from the low volatil-
ity situation.

Through COVID-19 surveillance, public health enti-
ties highlighted the necessity and importance of pro-
spective surveillance in the United States. The Center 
for Disease Control (CDC) announced the establishment 
of the new federal-level disease forecasting center [44] 
which will emphasize not only comprehensive data col-
lection but also research on the inference and forecast of 
infectious disease outbreaks. We believe that this study 
will help infectious disease modelers, epidemiologists, 
and public health researchers improve infectious disease 
surveillance, including but not limited to the COVID-19 
pandemic.
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