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Abstract 

Background Longitudinal matching can mitigate confounding in observational, real-world studies of time-depend-
ent treatments. To date, these methods have required iterative, manual re-specifications to achieve covariate balance. 
We propose a longitudinal extension of genetic matching, a machine learning approach that automates balancing 
of covariate histories. We examine performance by comparing the proposed extension against baseline propensity 
score matching and time-dependent propensity score matching.

Methods To evaluate comparative performance, we developed a Monte Carlo simulation framework that reflects 
a static treatment assigned at multiple time points. Data generation considers a treatment assignment model, 
a continuous outcome model, and underlying covariates. In simulation, we generated 1,000 datasets, each consist-
ing of 1,000 subjects, and applied: (1) nearest neighbour matching on time-invariant, baseline propensity scores; (2) 
sequential risk set matching on time-dependent propensity scores; and (3) longitudinal genetic matching on time-
dependent covariates. To measure comparative performance, we estimated covariate balance, efficiency, bias, 
and root mean squared error (RMSE) of treatment effect estimates. In scenario analysis, we varied underlying assump-
tions for assumed covariate distributions, correlations, treatment assignment models, and outcome models.

Results In all scenarios, baseline propensity score matching resulted in biased effect estimation in the presence 
of time-dependent confounding, with mean bias ranging from 29.7% to 37.2%. In contrast, time-dependent propen-
sity score matching and longitudinal genetic matching achieved stronger covariate balance and yielded less biased 
estimation, with mean bias ranging from 0.7% to 13.7%. Across scenarios, longitudinal genetic matching achieved 
similar or better performance than time-dependent propensity score matching without requiring manual re-specifi-
cations or normality of covariates.

Conclusions While the most appropriate longitudinal method will depend on research questions and underlying 
data patterns, our study can help guide these decisions. Simulation results demonstrate the validity of our longitu-
dinal genetic matching approach for supporting future real-world assessments of treatments accessible at multiple 
time points.
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Background
Quasi-experimental matching methods support causal 
inference of outcomes in real-world analyses of health-
care programs and technologies [1]. In the absence of a 
randomized counterfactual, matching can identify an 
appropriate comparator for treatment, reduce the sensi-
tivity of effect estimates to final model specifications, and 
yield unbiased effect estimates provided that the  ignor-
ability condition is met [2]. Given that unobserved differ-
ences remaining across matched treatment groups signal 
a deviation from ignorability and threaten the validity 
of causal inference, researchers generally recommend 
maximizing covariate balance without limit [3]. The most 
common matching application estimates propensity 
scores using baseline covariate values [4], which is unable 
to address time-dependent confounding.

When treatments are accessible at multiple time 
points, patient eligibility and probability of receiv-
ing treatment can change continuously. For example, 
patients at risk of cardiac arrest may not immediately 
access a preventative intervention [5, 6]. In oncology, 
patients  diagnosed with cancer often wait to access 
genomic tests and targeted cancer treatments [7, 8]. 
Unaccounted variability in time-dependent covariates 
during these waiting periods can introduce confound-
ing, threatening the validity of comparative analyses. 
Longitudinal matching methods can account for time-
dependent confounding in real-world evaluations of 
static treatments whose assignment varies over time. 
Several longitudinal matching methods exist, each 
aiming to balance covariate histories through match-
ing patients over their longitudinal trajectories [5]. The 
comparative performance of these methods is poorly 
established, owing to a lack of simulation frameworks 
for longitudinal matching. Further, existing methods 
require iterative, manual re-specifications to balance 
covariate histories and achieve ignorability required 
for causal real-world evidence generation.

For time-invariant analyses, genetic algorithm-based 
matching automates the process of maximizing covari-
ate balance [9]. Through the use of an evolutionary 
genetic search algorithm, this method iteratively esti-
mates similarity and selects matched controls that 
minimize baseline group differences according to pre-
specified optimization criteria [10]. To our knowledge, 
genetic matching, and alternative machine learning 
approaches, have yet to be considered for automating 
balancing of time-dependent covariate histories. In this 
study, we propose a novel longitudinal extension for 
genetic matching to support real-world comparative 
evaluations. We then develop a simulation framework 
and evaluate performance of our proposed approach 
compared to alternative methods, in terms of ability 

to balance covariates and efficiently estimate unbiased 
treatment effects. To mimic real-world confound-
ing, we consider both continuous and binary covari-
ates whose values do and do not change over time, 
exploring sensitivity to distributional and correlation 
assumptions.

Longitudinal matching overview
When a randomized comparator for treatment is una-
vailable, matching methods seek to mirror a randomized 
study design and identify a control group to infer com-
parative effects by drawing on observational data. 
Controls are selected based on the similarity between 
their observable characteristics and the characteris-
tics of patients who received treatment. When treatment 
assignment occurs at a single time point and treatment 
is static, matching considers only baseline, time-invariant 
covariates for treated patients and eligible controls [5]. If 
instead, treatment assignment occurs over a longitudinal 
period, patients’ covariate histories measured from base-
line up until the relevant time scale can be considered. 
Longitudinal matching enables consideration of time-
dependent covariates and their histories through creation 
of a series of pseudo experiments in which some patients 
are treated and other eligible at-risk patients are not [5]. 
Each pseudo experiment initiates at time point t, when at 
least one subject receives a treatment. Treated patients 
are then matched to available controls, based on eligibil-
ity, risk status, and covariate histories at t.

There are a large number of matching methods avail-
able, each varying in terms of relevant time scales, how 
covariates are adjusted for, measures used to define 
similarity, and algorithms employed to select matched 
controls [4, 5]. In the following section, we present 
three matching approaches to be assessed in simula-
tion, including a novel proposed machine learning-based 
method for longitudinally matching patients. We con-
sider applicability of each approach for evaluating a static 
treatment whose assignment varies over time.

Nearest neighbour matching on time‑invariant propensity 
scores (Rosembaum and Rubin 1983) [11]
Propensity score matching on baseline covariates is 
among the most common matching methods and per-
forms well for cross-sectional treatment evaluations 
[4]. In contrast to exact matching on covariate values, 
propensity score matching summarizes information on 
multiple covariates in a single measure, reducing dimen-
sionality and improving ability to select matches. Pro-
pensity score matching begins with estimating patients’ 
conditional probabilities of exposure given covariates, 
termed propensity scores, using a regression model of the 
probability of treatment, defined as:
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where zi denotes treatment status for individual i, xi 
are time-invariant covariates observed at baseline and 
hypothesized to correlate with both the propensity score 
and the outcome of interest, βk are corresponding coeffi-
cient estimates, εi is an error term, and f is a link function 
enabling non-linearity. While many link functions are 
possible, the logit link is common when estimating pro-
pensity scores:

Coefficients for the propensity score model may be 
estimated through maximum likelihood and are used 
to determine individual-level propensity scores. After 
estimating propensity scores, controls are matched to 
treated patients using a pre-defined matching algorithm 
and ratio. For example, 1:1 nearest neighbour matching 
selects one control whose propensity score is closest to 
that of a treated patient. Matching on the propensity 
score, or any function of the same covariates, will bal-
ance the distribution of those covariates [11, 12].

After matching, balance of entire covariate distribu-
tions must be assessed. Any remaining imbalance can 
signal a deviation from the ignorability condition [3]. To 
avoid biasing effect estimates, the propensity score model 
or the matching algorithm must be re-specified until 
balance is achieved. This iterative and time-consuming 
process does not guarantee maximization of covari-
ate balance, which has driven the recent emergence of 
machine learning-based methods automating the process 
of maximizing balance of baseline covariates [9, 13, 14].

Time-invariant matching methods are frequently 
used in real-world studies to evaluate time-dependent 
treatments [15], but these evaluations require a naïve 
assumption. Researchers must assume comparabil-
ity between ever treated and never treated patients 
and only baseline values for time-dependent covari-
ates factor into matching [5]. By ignoring known vari-
ability in factors likely to affect patients’ probability of 
treatment over the period, this approach incorrectly 
assumes that never treated patients are directly com-
parable to ever treated patients throughout the entire 
study period. Failing to account for this longitudinal 
variation can lead to bias, including immortal time 
bias, in which treated patients are guaranteed to be 
outcome-free from baseline until their treatment date 
and thus have improved relative outcomes [16]. The 
relative performance of time-invariant matching com-
pared to longitudinal matching in these instances is 
poorly characterized.

(1)Pr(zi = 1|x) = f (xiβk + εi)

(2)f (s) = ln(
s

1− s
)

Sequential risk set matching on time‑dependent propensity 
scores (Lu 2005) [17]
Risk set matching is the earliest statistical approach for 
longitudinal matching and involves matching treated 
patients with untreated patients in the same risk set at 
a given time point [5, 18]. Lu (2005) [17] extended risk 
set matching to reduce covariate dimensionality through 
consideration of a time-dependent propensity score 
and proposed two matching algorithms: simultaneous 
or sequential. We focus on sequential risk set matching 
on a time-dependent propensity score, which Lu (2005) 
[17] demonstrated performs similarly to simultaneous 
risk set matching and involves less restrictive assump-
tions for covariate exogeneity. This approach is common 
in applied real-world evaluations of treatments whose 
assignment varies over time [6, 15, 19, 20].

Sequential risk set matching sequentially matches 
treated patients to not yet treated patients with similar 
covariate histories up until a given time point. Coars-
ening of time is determined based on treatment dates. 
Unlike matching on time-invariant propensity scores, 
where all patients are eligible for matching at baseline and 
thus in the same risk set, sequential matching evaluates 
multiple risk sets over the period for which eligibility is 
non-constant. At time t, patients eligible for matching are 
included in the same risk set, Rt, and are not yet treated at 
t-e for any e > 0. Propensity scores are estimated at time 
t using time-to-event regression models. Lu (2005) [17] 
recommends a Cox proportional hazards model to esti-
mate time-dependent propensity scores:

where Lu (2005) [17] defines the propensity score at any 
time point as the hazard function. Given that the hazard 
function is not a probability and its values may exceed 1, 
it is not technically a propensity score. We therefore con-
sider the hazard function to be a proxied time-depend-
ent propensity score, rather than a true propensity score 
throughout the following sections.

Following time-dependent propensity score estimation, 
patients in Rt with similar proxied propensity scores at 
time t are then matched on the following distance:

Covariate balance at time of treatment is then assessed. 
Once again, if imbalance remains, the propensity score 
model and/or matching algorithm must be re-specified. 
Following balance achievement, outcomes from time-
dependent treatment can be compared across groups. 
In outcomes analysis, matched controls who later 
receive treatment are censored at their treatment date. If 

(3)hi(t) = h0(t)exp (βk ′xi(t))

(4)Distance xit , xjt = βk ′xi(t)− βk ′xj(t)
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matching with replacement, not-yet-treated patients may 
be eligible for matching at multiple time points, including 
as treated patients at their treatment date [21]. Weighting 
is necessary when matching with replacement to avoid 
false imprecision.

To date, longitudinal matching methods have relied 
on iterative, manual re-specification to achieve covariate 
balance. Balance is not guaranteed and, consequently, nor 
is fulfillment of ignorability. To our knowledge, machine 
learning-based approaches have yet to be considered for 
automating balancing of time-dependent covariate histo-
ries when longitudinal matching.

Longitudinal genetic matching on time‑dependent covariates
To reduce the need for manual adjustments when lon-
gitudinal matching, we propose a longitudinal exten-
sion of an established machine learning-based method, 
genetic algorithm matching on time-invariant covariates. 
Genetic algorithm matching, developed by Diamond 
& Sekhon in 2013, automates the process of optimizing 
time-invariant covariate balance through the use of an 
evolutionary genetic search algorithm [9, 22, 23].

Rather than measuring similarity across individu-
als based on differences in estimated propensity scores, 
genetic algorithm matching estimates a weighted form of 
a generalized Mahalanobis distance function:

where xi and xj are time-invariant covariates measured 
at baseline for individuals i and j, respectively, W is a 
positive definite matrix of weights for which diagonal K 
parameters must be chosen and off diagonal parameters 
are 0, S is the sample covariance matrix of X, and S−1/2 is 
the Cholesky decomposition of S such that:

A propensity score is recommended for inclusion 
alongside covariates when estimating the generalized 
Mahalanobis distance [9, 24]. To automate the process 
of iteratively checking covariate balance and respeci-
fying matches, this approach employs an evolutionary 
genetic search algorithm to maximize covariate balance 
according to a user-specified loss function [9, 22]. The 
algorithm continuously proposes batches of weights 
that modify the distance metric, with each batch gen-
erated learning from the prior batch to improve per-
formance. The algorithm continues to iterate until a 
minimum of the loss function is achieved. According to 
any loss function specified, genetic algorithm matching 
will asymptotically converge to the optimal matched 
cohort. The standard loss function evaluated by the 

(5)
Distance

(
xi , xj ,W

)
=

√
(xi − xj)

T (S−1/2)TW (S−1/2)(xi − xj)

(6)S = S−1/2(S−1/2)T

algorithm maximizes p-values from bootstrapped Kol-
mogorov–Smirnov (KS) and paired t-tests for all vari-
ables, using lexical optimization for a fixed sample size 
specified within the optimization [25–27].

We extend this method in a sequential risk set match-
ing framework. As in Lu (2005) [17], our longitudinal 
genetic matching extension begins by coarsening the 
study period into a series of time points, determined 
based on observed treatment dates and sample sizes for 
resulting risk sets. At each time t, patients in risk set 
Rt are genetic algorithm matched based on the values of 
their fixed and time-dependent covariates using the gen-
eralized Mahalanobis distance metric (5). Within each 
risk set, the evolutionary genetic search algorithm will 
asymptotically converge to the optimal matched cohort 
for the user-specified loss function [22]. To provide rea-
sonable starting values when initiating the evolutionary 
genetic search algorithm, we consider including a proxied 
time-dependent propensity score alongside covariates for 
estimating the generalized Mahalanobis distance at t.

In a cross-sectional setting, genetic algorithm match-
ing outperformed traditional propensity score match-
ing when balancing time-invariant covariates of interest 
and was consequently able to establish less biased effect 
estimates [10, 28]. In simulation, we explore whether 
extending this machine learning-based method to match 
patients over a longitudinal follow up period presents 
similar advantages.

Methods
To compare the methods described above for mitigating 
time-dependent confounding and supporting real-world 
comparative evaluations, we undertook a Monte Carlo 
simulation study. Our simulation framework is depicted 
in Fig.  1. Simulated data reflected a static treatment 
assigned at multiple time points and considered a treat-
ment model, a continuous outcome model, and covari-
ates, varying in terms of their correlation with treatment 
status and/or the outcome, their time-dependency, and 
distributions. After simulation, we matched controls 
to treated patients using: (1) nearest neighbour match-
ing on time-invariant, baseline propensity scores; (2) 
sequential risk set matching on proxied time-dependent 
propensity scores; and (3) longitudinal genetic matching 
on time-dependent covariates. We ascertained relative 
performance based on ability to balance time-invariant 
and time-dependent covariates and efficiently estimate 
unbiased treatment effects. Scenario analyses enabled 
an assessment of sensitivity to assumed data inputs and 
specifications. We conducted this simulation study using 
Python 3.7 and R version 3.6.2 [29, 30]. Matching was 
performed using the Matching package in R [31].
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Data generation
We based the design of our data generation process on 
three prior simulation studies: (1) Austin 2014 [32] com-
paring multiple algorithms for matching on time-invar-
iant propensity scores; (2) Setoguchi, et  al. 2008 [13] 
evaluating machine learning approaches for time-invar-
iant propensity score estimation; and (3) Lu 2005 [17] 
assessing sequential and simultaneous matching on prox-
ied time-dependent propensity scores.

Like Austin 2014 [32], we simulated a continuous out-
come measure, yit, and twelve covariates, xk for k = [1,… 
12], affecting treatment selection and/or the outcome. Of 
these covariates, six were binary generated from a Ber-
noulli distribution with a parameter value of 0.5 and six 
were continuous covariates generated from a standard-
normal distribution. Treatment effect, θ, was estimated 
using a linear regression and the true effect was assumed 
to be one:

where coefficients αL,αM ,αh represented low, medium 
and high effects and were set to log (1.25), log(1.5) and 
log (1.75), respectively. Unlike Austin 2014 [32], our sim-
ulation study considered time-invariant covariates along-
side time-dependent covariates.

Treatment status, zit, was assigned longitudinally over 
the study period and included time-dependent covariates 
affecting the probability of treatment assignment and/or 

yit = zit + αLx1i + αMx2i + αHx3i + αHx5it + αLx6i

+ αMx7i + αHx8i + αHx10it + αLx11it + αLx12it

the outcome. Following Lu 2005 [17], we assigned subject 
treatment status by sequentially simulating the true treat-
ment probability, pi, based on a logistic regression model 
at each time, t:

where α0,treat was an intercept term adjusted to assign 
treatment to 1/3 of patients in our baseline scenario, as 
in Austin 2014 [32]. Treatment assignment was sampled 
from a Bernoulli distribution with parameter pit and was 
restricted to at most once per subject. After treatment 
assignment in one interval, subjects were excluded from 
later time intervals to ensure that treatment assignment 
and risk set eligibility only depended on covariate histo-
ries and not future covariate values. Based on Setogu-
chi, et al. 2008 [13], our base case treatment assignment 
model assumed non-linearity and non-additivity.

Our simulation study period considered six time inter-
vals, representing bi-monthly data collected over a one-
year period. To allow for time dependencies, we set six 
covariates as time-dependent in our base case scenario. 
Of these, three time-dependent covariates were con-
tinuous and three were dichotomous with values that 
changed across intervals (on-offs). As in Lu 2005 [17], we 
considered first order autoregressive, AR(1), processes 
in our base case scenario to incorporate autocorrela-
tion within continuous time-dependent covariate values 

Logit(pit ) = α0,treat + αLx1i + αMx2i + αHx3i + αLx4it

+ αHx5it + αM(x4it x5it )+ αLx6i + αMx7i

+ αLx
2
7i + αHx8i + αLx

2
9it + αM(x6ix

2
9it )+ αHx10it

Fig. 1 Overview of simulation framework and study design.

Using Monte Carlo simulation, longitudinal datasets are generated with pre-specified covariate distributions and correlation structures 
before applying assumed treatment assignment and outcome models. Matching methods are then applied within each dataset using covariates 
observed either at baseline (time-invariant propensity score matching) or per time interval (time-dependent propensity score and genetic 
matching). Treatment effects are estimated in each matched cohort. The results of each matching method are then compared based on bias 
and efficiency of treatment effect estimates and covariate balance metrics
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and assumed independence across covariates. Through 
Monte Carlo simulation, we generated 1,000 datasets 
according to the above specifications, each consisting of 
1,000 subjects.

Statistical analysis
Within each simulated dataset, we applied each of the 
three matching methods described to select controls 
for treated patients. When considering the applicabil-
ity of matching algorithms unable to explicitly consider 
time-dependencies, we assumed treatment status was 
constant and assigned at baseline and considered only 
baseline values for time-dependent covariates. In our 
base case scenario, we 1:1 matched patients on all time-
dependent and time-invariant covariates simulated 
above, assuming an incorrect functional form for the 
estimated propensity score consistent with Setoguchi, 
et al. 2008 [13]. In all matching analyses, we allowed for 
replacement and ties.

For nearest neighbour matching on time-invariant pro-
pensity scores, we estimated each individual’s propensity 
score, ̂Pr(zi = 1|xit0) , based on the following incorrectly 
specified logistic regression model:

Sequential risk set matching on time-dependent pro-
pensity scores instead considered the following incor-
rectly specified Cox proportional hazards model to 
estimate proxied propensity scores:

Longitudinal genetic matching considered all time-
dependent and time-invariant covariates as well as the 
proxied time-dependent propensity score estimated in 
(10) above. Optimization criteria for genetic matching 
involved maximizing p–values from bootstrapped KS 
tests and paired t-tests at time of matching, using lexical 
optimization for a fixed sample size specified within the 
optimization [25–27]. R code for our proposed longitudi-
nal extension of genetic algorithm matching is provided 
in Supplemental Materials.

After identifying matched cohorts, we evaluated the 
following performance metrics at time of treatment 
across all datasets: (i) ability to balance measured covari-
ates; (ii) mean treatment effect estimates: 1

M

∑M
m=1 θm , 

where M is the number of simulations; (iii) mean vari-
ance of treatment effect estimates: 1

M

∑M
m=1 S

2
m , where 

S2m is the estimated variance within each simulation; 
(iv) mean standard error of treatment effect estimates: 

Logit
(
p̂i
)
= α0,treat + α1x1i + α2x2i + α3x3i + α4x4it0 + α5x5it0

+ α6x6i + α7x7i + α8x8i + α9x9it0 + α10x10it0

hi(t) = h0,i(t) exp
(
α0,treat + α1x1i + α2x2i + α3x3i + α4x4it

+α5x5it + α6x6i + α7x7i + α8x8i + α9x9it + α10x10it)

1
M

∑M
m=1(Sm/

√
n) , where Sm is the estimated standard 

deviation and n is the number of subjects within each 
simulation; (v) mean absolute bias of effect estimates: 
1
M

∑M
m=1 |(1.0− θm)| ; (vi) mean bias of effect estimates: 

1
M

∑M
m=1(1.0− θm) ; and (vii) root mean squared error 

(RMSE) of effect estimates: 1M
∑M

m=1 (1.0− θm)
2.

Consistent with most longitudinal matching studies [5], 
we assessed balance of time-invariant and time-depend-
ent covariates within each time interval through estimat-
ing means and boxplots of p-values from bootstrapped 
KS tests in continuous variables and paired t-tests in 
binary variables, as well as mean absolute standardized 
differences:

We also considered aggregate covariate balance, similar 
to Lu [17], through examining balance statistics at base-
line and time of treatment, by pooling matched cohorts 
across time intervals. We re-estimated absolute stand-
ardized differences across all treated intervals and report 
means across simulated datasets. We also estimated 
paired t-tests and bootstrapped KS tests for binary and 
continuous covariates, respectively, and report corre-
sponding means and boxplots.

In all analyses, we assumed a threshold of p < 0.05 for 
statistical significance and p < 0.10 for weak significance. 
Covariates with a p-value less than 0.05 were therefore 
strongly imbalanced, a p-value between 0.05 and 0.10 
were weakly imbalanced, and above 0.10 were balanced. 
For absolute standardized differences, we applied com-
mon rules of thumb [33]. A value above 20 was strongly 
imbalanced, between 10 and 20 was weakly imbalanced, 
and below 10 was balanced. While balance of time-
dependent covariates was primarily considered at time of 
treatment, we also estimated balance of these covariates 
(x4, x5, x9, and x10) at baseline (t = 0).

Scenario analysis
To explore the sensitivity of our results to varying data 
inputs, specifications, and deviations from assump-
tions, we considered six additional scenarios (A to 
F), outlined in Table  1. In Scenario A, we assumed 
that propensity scores were estimated using correct 
functional forms, in contrast to our base case and all 
other scenarios where propensity score models failed 
to account for non-linearity and non-additivity in the 
true treatment assignment model. In Scenario B and 
C, we allow for pairwise correlation between all base-
line and time-varying covariates ranging from weak, at 
0.20, to strong, at 0.70. Scenario D explores a different 

1

M

M∑

m=1

∣∣∣(xtreatedm,t
− xcontrolsm,t

)/

√
(s2
treatedm,t

+ s
2
controlsm,t

)/2

∣∣∣
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autocorrelation structure for the time-dependent 
continuous covariates, assuming a first order mov-
ing average, MA(1), process. Scenarios E and F intro-
duce covariates generated from non-standard normal 
distributions, including normal, gamma and Poisson 
distributions. Additional sensitivity analysis reported 
in Supplemental Materials explored the influence of 
sample size of generated datasets, alternative match-
ing specifications, including propensity score defini-
tions and optimization criteria, as well as outcome 
models on results (Supplemental Tables  4, 5, and 6, 
respectively).

Results
Our Monte Carlo simulation generated 1,000 simu-
lated panel datasets for 1,000 individuals followed 
over six time intervals. In each interval, a mean of 60 
patients were treated (95% CI: 27, 92), with an overall 
treatment rate of 1/3. Supplemental Fig. 1 depicts the 
proportions of patients who were treated over time, 
who were eligible for matching, and who were matched 
in the base case scenario using each of the three 
matching approaches: (1) nearest neighbour match-
ing on time-invariant, baseline propensity scores; (2) 
sequential risk set matching on proxied time-depend-
ent propensity scores; and (3) longitudinal genetic 
matching on time-dependent covariates.

Covariate balance
Aggregate covariate balance achieved by each matching 
method at time of treatment varied across scenarios. 

Boxplots of p-values from distributional hypothesis 
tests as well as absolute standardized differences are 
reported in Figs. 2 and 3 respectively. Means and asso-
ciated standard deviations are provided in Supplemen-
tal Tables  1 and 2. Across all scenarios and methods, 
imbalance occurred more frequently in continuous 
covariates and time-dependent covariates. Imbalance 
was most prevalent in the high pairwise correlation 
scenario (C) and the scenarios where covariate distri-
butions were not standard normal (E and F). Consid-
ering mean p-values and standardized differences, 
the best balance metrics for all three matching meth-
ods occurred when the correct functional form of the 
propensity score model was estimated (scenario A), in 
which time-invariant matching balanced 6 of 10 covari-
ates and both longitudinal methods balanced all 10 
covariates at time of treatment.

Time-invariant propensity score matching performed 
worse than longitudinal matching in all scenarios, with 
the lowest balance observed in the high pairwise cor-
relation scenario (C). In this scenario, all 10 covariates 
showed evidence of imbalance. Both longitudinal match-
ing methods performed well in most scenarios, except for 
scenarios with non-standard normal covariate distribu-
tions (E and F). In these scenarios, longitudinal genetic 
matching outperformed time-dependent propensity 
score matching, on average achieving balance in 7 of 
10 covariates compared to no covariates. In weak and 
strong pairwise correlation scenarios (B and C), longitu-
dinal genetic matching balanced one more covariate than 
time-dependent propensity score matching.

Table 1 Summary of simulation scenarios

Description of all simulation scenarios ranging from Scenario A to Scenario F, exploring sensitivity of results to different functional forms of the propensity score, 
pairwise correlation across covariates, autocorrelation within covariates, and covariate distributions

Scenario Description Covariate distributions Treatment assignment model Correlations

- Base case x1, x2, x3, x4, x5∼ Bernoulli(0.5)
x6, x7, x8, x9, x10∼ N(0, 1)

Logit(pit) = α0,treat + αLx1i + αMx2i + αHx3i+
αLx4it + αHx5it + αM(x4it x5it)+αLx6i+αMx7i+
αLx

2
7i+αHx8i+αLx

2
9it + αM(x6i x

2
9it)+αHx10it

Autocorrelation:
x9, x10: AR(1)  
Pairwise correlation: ρ = 0

A Correct functional form Same as base case Logit(pit) = α0,treat + αLx1i + αMx2i + αHx3i+
αLx4it + αHx5it+αLx6i+αMx7i+αHx8i+αLx9it+
αHx10it

Same as base case

B Weak pairwise correlation Same as base case Same as base case x9, x10: AR(1)
All covariates: ρ = 0.2

C Strong pairwise correlation Same as base case Same as base case x9, x10: AR(1)
All covariates: ρ = 0.7

D Different autocorrelation 
structure

Same as base case Same as base case x9, x10: MA(1) ρ = 0

E Non-standard normal 
covariate distributions

x1, x2, x3, x4, x5∼ Bernoulli(0.5)
x6, x7, x8∼ N(0, 1)
x9, x10∼ N(2, 1)

Same as base case Same as base case

F Non-normal covariate 
distributions

x1, x2, x3, x4, x5∼ Bernoulli(0.5)
x6, x7, x8∼ N(0, 1)
x9∼ Poisson(2)
x10∼ Gamma(2, 1)

Same as base case Same as base case
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Fig. 2 Per-covariate boxplots of p-values for each scenario
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Fig. 3 Per-covariate boxplots of mean absolute standardized differences for each scenario
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The ability of each matching method to achieve covari-
ate balance within each simulated time interval was 
consistent with aggregate findings. Both longitudinal 
matching methods improved covariate balance in each 
interval compared to before matching. Within-interval 
balance metrics for the base case scenario are depicted in 
Supplemental Figs. 2 and 3.

Treatment effect estimation
Figure  4 presents boxplots of treatment effect estimates 
for each of the three matching approaches, with means 
and corresponding variance reported in Supplemen-
tal Table 3. Across all methods and scenarios, the mini-
mum observed treatment effect estimate was 0.91 and 
the maximum was 1.47 (9% downward and 47% upward 
bias respectively). The smallest and largest observed bias 
for each matching method was: 29% (scenario E) and 44% 
(scenario C) for time-invariant propensity score match-
ing; 0.7% (scenario A) and 14% (scenario E) for time-
dependent propensity score matching; and 3% (scenarios 
A and F) and 17% (scenario C) for longitudinal genetic 
matching. Notably, both time-dependent propensity 
score matching and longitudinal genetic matching per-
formance improved when the correct functional form for 
the propensity score model was assumed (Scenario A). 
The accuracy of treatment effect estimates declined when 
strong pairwise correlation, or non-normal covariate dis-
tributions were introduced in the underlying data.

In all scenarios, longitudinal matching methods out-
performed time-invariant propensity score matching, 
achieving lower bias, lower RMSE, and more efficient 
treatment effect estimates. Variance and standard errors 
of treatment effect estimates were lowest for longitudi-
nal genetic matching in all scenarios indicating improved 
efficiency, except scenario A when the correct func-
tional form of the proxied time-dependent propensity 
score was known. In the base case and in scenarios A 
to D, both longitudinal methods achieved similar bias 
and RMSE. Time-dependent propensity score matching 

showed  slightly improved metrics compared to time-
dependent genetic matching in the aforementioned sce-
narios (mean lower bias of 3.8% and mean lower RMSE of 
0.02). Both longitudinal matching methods were robust 
to weak pairwise correlation (Scenario B). As pairwise 
correlation increased, both bias and RMSE increased, 
by 9.3% and 0.10 for time-dependent propensity score 
matching and by 13.3% and 0.14 for longitudinal genetic 
matching.

In scenarios E, and F, when covariate distributions 
deviated from standard normality, longitudinal genetic 
matching outperformed time-dependent propensity 
score matching resulting in 13% and 9% lower bias and 
0.01 and 0.06 lower RMSE, respectively. Additional sensi-
tivity analysis showed that longitudinal genetic matching 
performance improved with the inclusion of a propensity 
score and was sensitive to changes in the specified opti-
mization criteria, with the standard loss function mini-
mizing p-values from bootstrapped KS and paired t-tests 
performing best (Supplemental Table 5).

Discussion
We propose a longitudinal extension of genetic algo-
rithm matching for supporting real-world evaluations 
of time-dependent treatments. In simulation, we com-
pare performance of longitudinal genetic matching 
with time-dependent propensity score matching and 
naïve matching on time-invariant, baseline propensity 
scores. Although the latter remains the most common 
approach for observational studies evaluating time-var-
ying treatments [15], we find that baseline propensity 
score matching is unable to account for time-dependent 
confounding and results in biased treatment effect esti-
mation in all scenarios. This finding aligns with past 
research comparing performance of baseline propensity 
score matching with alternative longitudinal match-
ing and regression adjustment approaches [17, 34]. We 
also find that longitudinal genetic matching offers sev-
eral advantages to time-dependent propensity score 

Fig. 4 Boxplots of treatment effect estimates for each matching method across all scenarios
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matching. In all tested scenarios, longitudinal genetic 
matching achieved comparable or better performance 
in terms of ability to balance covariates, bias and MSE 
of treatment effect estimates, without the need to itera-
tively, manually re-specify a time-dependent propen-
sity score. In the presence of non-normally distributed 
covariates common for real-world health data [35], lon-
gitudinal genetic matching outperformed time-depend-
ent propensity score matching. Genetic matching is a 
non-parametric approach that is less sensitive to distri-
butional assumptions than propensity score matching, 
which in a time-invariant setting requires strong overlap 
of propensity score distributions to eliminate bias in the 
presence of non-normal covariates [36–38].

Our study responds to an unmet need for simulation 
frameworks that enable flexible comparisons of relative 
efficiency, bias and model sensitivity for competing longitu-
dinal matching approaches. While existing simulation stud-
ies explore sensitivity of time-invariant matching methods 
to various data generation processes, matching specifica-
tions, and outcomes [32, 39–42], prior simulation studies 
of longitudinal matching methods are scarce. Those avail-
able conduct limited (if any) scenario analysis and assume 
simplistic data generation processes that may be unrealis-
tic in real-world data, with a very small number of uncor-
related, normally distributed covariates, or linear, additive 
treatment assignment models [17, 21, 34]. Our framework 
builds on these published studies through explicitly mod-
elling different aspects of a panel data generating mecha-
nism and creating a series of pseudo experiments in which 
some patients are treated and other eligible at-risk patients 
are not, a design inherent to longitudinal matching. Our 
framework generates twelve binary and continuous covari-
ates, that are either time-dependent or time-invariant and 
correlate with treatment status and/or the outcome. We 
consider a range of pairwise correlations across covariates, 
autocorrelation structures within time-dependent covari-
ates, non-normal covariate distributions, and non-linearity 
and non-additivity in the propensity score model. Scenario 
analysis considers changes in assumed sample sizes, out-
comes models, strengths of covariate associations, devia-
tions from the correct functional form of the propensity 
score model, and modifications to longitudinal genetic 
matching specifications. Modifications will likely be nec-
essary to ensure this framework is fit-for-purpose when 
evaluating alternate longitudinal matching approaches. 
Yet the data generation steps inherent to the framework 
are broadly generalizable as is the programming for testing 
sensitivity to underlying assumptions.

Our study newly develops a machine learning approach 
to longitudinal matching. While common in time-invar-
iant propensity score literature [9, 13, 14, 43, 44], the 

advantages of machine learning-based approaches when 
automating balancing of time-dependent covariates are 
poorly established. In a cross-sectional setting, machine 
learning approaches, such as classification and regression 
trees (CART), random forests, neural networks and deep 
learning, vary in their ability to adjust for confounding 
and support stable, unbiased treatment effect estimation 
[14, 45, 46]. Future research is needed exploring whether 
alternative machine learning or deep learning approaches 
outperform genetic algorithm matching in a longitudinal 
setting.

While we applied extensive sensitivity analysis, includ-
ing evaluating the influence of correlation, covariate dis-
tributions, outcome models, and longitudinal genetic 
matching specifications on results, certain modelling 
and data generation assumptions remain untested. Addi-
tional validation studies may inform modelling decisions 
and longitudinal matching specifications in the presence 
of heterogeneous outcome and covariate data, including 
simulation studies considering alternative types of out-
comes and treatment assignment models and applied 
studies drawing on real-world data. While true treatment 
effects are rarely known in observational evaluations, 
applied studies will help establish the generalizability of 
simulation findings and may improve our understanding 
of real-world comparative performance. Our study is fur-
ther limited by the computational intensity of simulating 
sequential genetic matching. Each modelled scenario of 
1,000 simulations took approximately 3.75  days to run 
and future research examining performance of other 
machine learning algorithms in a longitudinal setting 
may require similar computational times. Yet within each 
dataset, the time required to longitudinally genetic match 
subjects  was reasonable for practical use, with a run 
time of 5.25 min. We also tested performance sensitivity 
to sample sizes and found small decreases in treatment 
effect estimation for all three methods when sample size 
was reduced to 500 and small improvements when sam-
ple size increased to 2000, although conclusions about 
relative performance were unchanged (Supplemental 
Table 4). With a sample size of 500, bias increased by 0.8 
percentage points for baseline propensity score match-
ing, 0.7 percentage points for time-dependent propensity 
score matching, and 1.2 percentage points for longitu-
dinal genetic matching. RMSE increased by 0.013 for 
baseline propensity score matching and 0.016 for both 
time-dependent propensity score matching and longitu-
dinal genetic matching. Future research further exploring 
finite sample performance of longitudinal genetic match-
ing with fewer observations or fewer time intervals would 
be beneficial. There are certain types of time-dependent 
treatments, which our framework was not developed to 
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evaluate, such as treatment strategies that involve vary-
ing treatment status within patients over time. Modifi-
cations to the assumed treatment assignment model are 
required to extend our simulation framework to consider 
time-varying treatment status and evaluate associated 
methods, such as marginal structural models or modified 
sequential Cox models [47–49].

Conclusions
When evaluating real-world impacts of static treatments 
whose assignment varies over time, longitudinal match-
ing can mitigate time-dependent confounding and sup-
port causal inference. Traditional longitudinal matching 
relies on time-consuming, manual re-specifications to 
achieve covariate balance and meet ignorability. In con-
trast, machine learning using genetic matching auto-
mates balancing time-dependent covariate histories. 
Depending on underlying data generation processes, 
longitudinal genetic matching achieves similar or 
improved performance compared to time-dependent 
propensity score matching and is less sensitive to non-
normal covariates. Our results demonstrate that lon-
gitudinal genetic matching can reliably inform future 
real-world assessments of time-dependent treatments.
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