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Abstract 

Background  Bayesian models have been applied throughout the Covid-19 pandemic especially to model time 
series of case counts or deaths. Fewer examples exist of spatio-temporal modeling, even though the spatial spread 
of disease is a crucial factor in public health monitoring. The predictive capabilities of infectious disease models 
is also important.

Methods  In this study, the ability of Bayesian hierarchical models to recover different parts of the variation 
in disease counts is the focus. It is clear that different measures provide different views of behavior when models 
are fitted prospectively. Over a series of time horizons one step predictions have been generated and compared 
for different models (for case counts and death counts). These Bayesian SIR models were fitted using MCMC 
at 28 time horizons to mimic prospective prediction. A range of goodness of prediction measures were analyzed 
across the different time horizons.

Results  A particularly important result is that the peak intensity of case load is often under-estimated, while random 
spikes in case load can be mimicked using time dependent random effects. It is also clear that during the early wave 
of the pandemic simpler model forms are favored, but subsequently lagged spatial dependence models for cases are 
favored, even if the sophisticated models perform better overall.

Discussion  The models fitted mimic the situation where at a given time the history of the process is known 
but the future must be predicted based on the current evolution which has been observed. Using an overall ‘best’ 
model for prediction based on retrospective fitting of the complete pandemic waves is an assumption. However it 
is also clear that this case count model is well favored over other forms. During the first wave a simpler time series 
model predicts case counts better for counties than a spatially dependent one. The picture is more varied for morality.

Conclusions  From a predictive point of view it is clear that spatio-temporal models applied to county level Covid-19 
data within the US vary in how well they fit over time and also how well they predict future events. At different times, 
SIR case count models and also mortality models with cumulative counts perform better in terms of prediction. A fun-
damental result is that predictive capability of models varies over time and using the same model could lead to poor 
predictive performance.
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In addition it is clear that models addressing the spatial context for case counts (i.e. with lagged neighborhood terms) 
and cumulative case counts for mortality data are clearly better at modeling spatio-temporal data which is commonly 
available for the Covid-19 pandemic in different areas of the globe.

Keywords  Covid-19, Pandemic, Spatio-temporal, Bayesian hierarchical modeling (BHM), MASE, MAE, MSE, 
Retrospective, Prospective

Background
Bayesian models have been applied throughout the 
Covid-19 pandemic especially to model time series of 
case counts or deaths (e.g [1, 2]; MedRxiv repository: 
https://​conne​ct.​medrx​iv.​org/​relate/​conte​nt/​181). Fewer 
examples exist of spatio-temporal modeling, even though 
the spatial spread of disease is a crucial factor in public 
Health monitoring [3]. The ability of infectious disease 
(ID) models to estimate the true disease risk is impor-
tant in the assessment of the relevance of the modeling 
approach. Equally, the ability of models to predict the 
future behavior of the ID is clearly also important for 
public health (PH) planning. It is also clear that models 
that provide good goodness of fit (GOF) do not always 
provide good predictive ability. Some evaluation of pre-
dictive capability of Covid-19 models has been attempted 
previously. Ensemble models (see e.g. https://​covid​19for​
ecast​hub.​org/​doc/​ensem​ble/) which accumulate results 
from a range of models were found to perform reasona-
bly well compared to individual models for case [4], mor-
tality [5], and hospitalisation [6]. However there has also 
been criticism of previous model prediction attempts 
(see eg [7]). Often the prediction is for marginal time 

series rather than the spatio-temporal joint distribution. 
The importance of examining the complete spatio-tem-
poral dynamic of an epidemic has been stressed previ-
ously [7]. Some recent approaches have also addressed 
space-time in ID modeling [8, 9]. While various time 
horizons are often evaluated for prediction accuracy, it is 
often clear that accuracy degrades quickly with extensive 
horizons [4]. The greatest accuracy is confined to single 
steps. In this paper an evaluation of the behavior of one 
step predictions from different spatio-temporal models 
are assessed and reported.

Methods
Data
Here data from the US state of South Carolina is exam-
ined at the county level. There are 46 counties in this state 
(see Fig.  1). Health policy is managed statewide and so 
Covid-19 response is at the state level. Whilst some cross 
border movement between states is possible the state-
wide administration of health policy limits cross bound-
ary effects. Here we examined case counts and deaths at 
the county level.

Fig. 1  County level map of South Carolina

https://connect.medrxiv.org/relate/content/181
https://covid19forecasthub.org/doc/ensemble/
https://covid19forecasthub.org/doc/ensemble/
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Our case count data (number of positive tests) at the 
county level is obtained from Department of Health 
and Environmental Control (DHEC) in South Caro-
lina, while the mortality count data is obtained from the 
National Center for health Statistics (NCHS) as reported 
in https://​github.​com/​nytim​es/​covid-​19-​data. The data 
is publicly available at this site and also available at JHU 
Hub site (https://​github.​com/​CSSEG​ISand​Data/​COVID-​
19). The reason for using the NYT site is that the deriva-
tion of the data are described in greater detail.

Figure  2 displays the distribution of case counts and 
deaths for Charleston and Richland Counties and is typi-
cal of 46 counties within the state of South Carolina. The 
timing of different waves and their characteristics vary 
across counties of course. The time range is March 6th 
2020 to February 21st 2021, which encompasses the main 
three waves of infection but excludes the main effect of 
vaccination, from March 2021 onwards.

Model development and fitting
In previous studies, a range of models have been fitted to 
these data. First an initial period in 2020 was examined 
[10] and later the full 353 day period [11]. Models were 
fitted retrospectively over the complete time period. The 
Bayesian models were fitted using Markov chain Monte 
Carlo (McMC) using the R package Nimble. Conver-
gence was checked using the R package CODA. Time to 
convergence, which varied between models, was always 
after 20,000 iteration burn-in, with sample size of 10,000. 
A model comparison was made based on goodness of 
fit using the Watanabe Akaike Information Criterion 
(WAIC). The WAIC is a standard relative goodness-of-
fit criterion and is now replacing the commonly used 

deviance Information criterion (DIC) as it can be sta-
bly estimated within McMC applications [12]. It is also 
closely related to leave-one-out cross-validation. In the 
later study [11], it was found that a Susceptible-Infected-
Removed (SIR) model in discrete time with dependence 
on lagged neighborhood counts and a set of deprivation 
predictors was the best fit for the case count data (model 
5A). For the mortality data dependence on case count 
and cumulative case counts was also the best model.

Define case count yij in the i th area and j th time period, 
for m areas and J time periods, with susceptible popula-
tion Sij : and yij ∼ Pois(µij) with µij = Sij .f (yi,j−1, ........)

where pi,j−1 = log f (yi,j−1, ........) is a propagator which 
can be flexibly modelled to allow for variation in trans-
mission in time and space. In the models developed in 
[11] the lowest WAIC model was found to have a propa-
gator of the form:

In this model, there is dependence on previous count in 
the same region ( yi,j−1 ) and also the sum of previous 
counts in neighboring regions ( 

k∈δi

yk ,j−1 ). In addition, a 

set of three deprivation predictors (% black population, % 
under the poverty line, multi-dimensional deprivation 
index 2017 based on the American Community Survey) 
were included in a linear predictor ( xtiβ ) and were found 
to significantly increase explanation. Finally, an uncorre-
lated random effect ( vi ) was also found to be important. 
The effect of asymptomatic transmission is included via a 
scaling effect on the previous count. While estimates of 
the rate varied during the pandemic, from around 50% to 

pi,j−1 = α0 + α1log(yi,j−1)+ α2 log(
∑

k∈δi

yk ,j−1)+ vi+xtiβ

Fig. 2  Daily case count of Covid-19 positive tests (left) and deaths (right) for Charleston and Richland counties SC, during the three waves 
in 2020–2021

https://github.com/nytimes/covid-19-data
https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
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17%, the most recent estimates suggest a low percentage 
[13]. A rate of 20% has been used in this work, and this 
appeared to provide the best overall fit. This model is 
denoted as the Full model in later discussion.

The case count model is completed by an account-
ing equation which updates the susceptible popula-
tion: Sij = Si,j−1 − yi,j−1 − Ri,j−1 , with yi,j−1 replacing 
the true infective count, which is unobserved. Removal 
is assumed to occur at a given rate based on infectives 
and deaths i.e. Ri,j = ρyi,j−1 + di,j−1 , where di,j−1 is the 
observed death count in the i th region and previous time 
period.

In the previous analysis, deaths are assumed to be given 
and have not been modelled. However to make any pre-
dictions from these models, mortality must be modelled. 
The best fitting mortality model for the SC county level 
deaths, as found in many other studies, was based on 
both current case load and cumulative case counts:

and vdi  is an uncorrelated county level random effect. 
The superscript d denotes death parameter. This model 
is denoted as Full model. Whereas a death count model 
with the cumulative count removed is denoted aa the 
Base model in later comparisons.

In the above models all the regression parameters and 
random effects have zero mean Gaussian prior distribu-
tions with precisions assumed to have weakly informative 
gamma prior distributions: Ga(2,0.5). In what follows, 
one step ahead predictions have been made for case 
counts and deaths with modelled mortality.

Predictive measures
The assessment of predictive capability of models is an 
important focus. Here the focus is on the temporal pre-
diction beyond the current available data. Note that one-
step predictions are assessed only as longer time horizons 
can lead to considerable degeneration in prediction due to 
the stochastic nature of the SIR formulations, see eg [14].

To assess the predictive capability of the model-based 
analysis, it is possible to use different rules for scoring 
loss [15, 16]. Of these, proper scoring rules are often 
favored. In the following we use a range of proper scor-
ing rules based on squared error and absolute error loss. 
While these loss functions are optimal for Gaussian-
type observations, they are generally robust to depar-
ture from the Gaussian assumptions [15]. Our strategy 
was to make one step ahead predictions at various time 

di,j ∼ Pois(µd
ij)

log(µd
ij) = αd

0 + αd
1j log(yi,j)+ αd

2j log(Ti,j−1)+ vdi

where Tij =
∑

k=1:j

yi,k

points during the 3 epidemic waves. Models were fit-
ted up to the time point and then a one-step prediction 
made. This was done to mimic the way that prospective 
analysis of an infectious disease would be made at dif-
ferent times during the pandemic. It is likely that dif-
ferent epidemic periods could lead to divergence in the 
accuracy of predictions. The time points chosen for the 
evaluation were, in days:

10,20,30,40,50,100,105,110,115,120,125,130,135,140,14
5,150,160,180,200,250,275,300,310,320,330,340,350,352. 
These were chosen to represent different aspects of the 
time variation. In the analysis reported here a model is 
fitted retrospectively at a given time point and then a one 
step prediction is made and compared to the observed 
case count or death count at the next time. At each of 
the 28 time points a full McMC model fit was performed. 
The difference between the prediction and observed is 
the focus of our prediction metrics.

Define the following at time T:
yPi , d

p
i  one step prediction of case and death count at 

T + 1, and the case loss is.
ei = y

p
i − yi,T+1 and the death loss as edi = d

p
i − di,T+1 . 

Then the following summary metrics were computed for 
case counts:

and 
ASEi = abs(ei/c1i)

 which is the absolute scaled error 

[17],
APEi = abs(ei) which is the absolute error of the pre-

diction. Taking means over the areas this leads to MASE, 
MAPE. The mean squared error (MSE) was also consid-
ered but yielded results similar to the MAPE in overall 
form and is not discussed in detail for brevity. Note that 
these are all predictive loss measures. Once the metrics 
are computed for a particular model then model differ-
ences can be assessed. For death counts we computed the 
MSE and MAPE only.

Results
A total of 28 McMC runs were made to produce the one 
step predictions and loss measures for any given model. 
Here we compare the difference in predictive capability 
of a simple SIR model to the optimal retrospective model 
which was previously reported (Full model). The base SIR 
model (denoted ‘Base model’) had a propagator of the 
form:
pi,j−1 = α0 + α1log(yi,j−1)+ vi with only a tempo-

ral dependence on previous cases in the same area, no 
dependence on previous neighbors and only a uncorre-
lated regional effect.

c1i =
∑

k=2:T

abs[yi,k − yi,k−1]/(T − 1)
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Figure  3 displays the one step case count prediction, 
compared to the observed count for Charleston county. 
Figure  4 displays the death count prediction for the 
same region.

Figure  5 Displays the a multi panel plot of the case 
count three predictive mesures and WAIC for Full model 
averaged over the spatial regions. Note that the WAIC 
increases over time due to the change in the size of 
observation set. It is clear that the case count MSE and 
MAPE tend to follow similar patterns with the root MSE 
(RMSE) displaying larger spikes of loss at certain points. 
The MAPE and MASE display somewhat similar behav-
ior overall. Its also notable that the main divergences of 
prediction are at peak times during the outbreak. This 
suggests that predictions during waves will be less reliable

Figure  6 displays the total MAPE difference between 
case count Full model and Base model.

In terms of MAPE it is noticeable that during the first 
wave the simple model appears to have better prediction 
accuracy (i. e. lower loss) than Full model. However this 
is not the case for later waves and after time 100 there is 
mostly lower loss (and better prediction) from the Full 
model. This is also particularly true during the main wave 
peaks. In addition, the MASE difference mirrors this 
behavior and only shows better prediction for the Base 
model in the first wave only. Figure 7 displays the total dif-
ference for the MASE between the Base and Full model.

Figure 8 displays the death count prediction difference 
for the MAPE, where the full death model dependent on 
cumulative cases is compared to a Base model with only 

Fig. 3  Time series plot of case count against one step prediction at 28 time points for Full model for Charleston county

Fig. 4  Time series plot of death counts against one step prediction at 28 time points for Full model for Charleston county
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Fig. 5  Total RMSE, MAPE, MASE, and WAIC for case count Full model (row-wise from top left)

Fig. 6  Time series profile of total difference in MAPE between Full model and Base model (with Charleston county case count superimposed)

Fig. 7  Total MASE difference between Full model and Base model (with Charleston county case count superimposed)
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current case count dependency. Similar performance is 
found for the MSE for death counts (see Additional file 1: 
Appendix Table 1) and is not included here for brevity.

Inspection of Fig. 8 demonstrates that the prediction 
quality is not maintained during the second wave and 
this is borne out in the MAPE difference which dis-
plays variable performance between the two models 
during that wave. The best death model with cumula-
tive case count dependence seems to perform better at 
the beginning of waves, but due to the highly variable 
death counts this is not maintained.

Additional file 1: Appendix Table 1 displays a selec-
tion of 14  days and the average results over the state 
for the metric differences for the chosen models. The 
days chosen are meant to represent the different peri-
ods where there are particular changes in pandemic 
activity.

It is clear that in the early first wave (as represented 
by days 20—50) the count MAPE and MASE are lower 
for the simpler models. This is also true for the death 
MAPE but the difference is less marked. By day 100 
the overall MAPE, MASE and death MAPE are lower 
for the best model (case Full model and death model 
with cumulative count dependence). By day 310 this is 
also the case but by day 350 shows a lower difference. 
Overall the case count measures seem to follow simi-
lar trajectories. The first day times are similar. For the 
death count MAPE and MSE the picture is more vari-
able. The Full model appears favored at the beginning 
of the first wave and at around day 300 but alternates 
at other times. While displayed results for a single 
county within a single US state are superimposed on 
the statewide average here (Figs. 6, 7 and 8), the results 
are comparable across many counties.

Discussion
This paper is an attempt to evaluate the predictive ability 
of models that can be used for Covid-19 case counts and 
mortality. There are a number of important results which 
have arisen in this work. First, it is clear that during the 
early stages of the pandemic, simple case time series 
models (without neighborhood lagged effects) and simple 
death count models do better in one-step prediction.

It is to be expected that in the early stages of an out-
break, it is likely to be confined in spatial extent and 
limited in its transmission. The effects of deprivation in 
addition may not be expressed clearly in the initial stages 
of an outbreak. In addition, a data quality issue may clearly 
confound the early recording of case and death counts, 
and this under-ascertainment could vary over time.

Without, the benefit of having ‘test positive’ and ‘test 
negative’ data it is not possible to clearly assess the 
degree to which the population spread of the virus is 
occurring. In addition without serological surveys it is 
not possible to clearly assess the asymptomatic transmis-
sion, at any given time. In fact repeated surveys would 
have to be carried out to do so. The published literature 
during the pandemic has different estimates for asymp-
tomatic transmission and in [11] it was decide that a 20% 
rate would be a suitable balance estimate.

During the main wave peaks of the pandemic the 
lagged effect models with neighborhood effects for 
case counts and the cumulative count models for 
mortality perform better than the simple alternatives 
examined here. However it is also true that during 
the peak waves of the pandemic the ‘best’ models do 
not provide such good predictions compared to non-
peak periods. Figs  3 and 4 demonstrate this effect. In 
fact this appears often to be the case with a range of 

Fig. 8  Total MAPE difference for death counts for Base and Full model (with Charleston county death count superimposed)
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epidemic models in the literature (see e.g. [18] suppl 
Fig. 2, or [19] for an examples). The result is that while 
it is possible to model peak behavior very closely, it 
usually requires the use of time dependent random 
effects ([11, 20] Fig. 4), and so the predictive capabili-
ties of such models are limited due to the overfitting.

Some short comings of the work are apparent. First, 
although the models reported here have been validated 
in at least two US states at county level and in the UK, 
alternate models could be found to be evaluated and 
so this evaluation is only limited to those chosen. For 
example, models using reproduction numbers and 
unobserved (latent) exposed groups are sometimes 
suggested. These models have identification issues and 
so have been avoided here. Second, I have not made 
any probabilistic assessment of the major differences 
between the derived prediction metrics and this could 
be an important future direction. It has also not been 
a focus to look at longer predictions beyond one-step. 
This can be a difficult task with SIR models as they 
become degenerate without added injections of risk 
(such as new variants or jump diffusions). As jump dif-
fusions are not simple to predict, then it is difficult to 
make good predictions of where and when any future 
wave may occur. On the other hand we have examined 
the effect of change to prior distributions for param-
eters and their effect on estimation. In particular we 
varied the precision prior distributions for regression 
parameters and random effects. This did not affect the 
estimation of the models to any significant degree and 
the predictions were robust to these sensitivity changes.

Conclusions
Finally it is important that the context of the model fit-
ting and prediction is stressed. In this report, models 
which were compared for their retrospective goodness 
of fit to three waves of pandemic data were assumed in 
the predictive comparisons. During a pandemic the best 
model would not be known in advance and so judge-
ments may be made based on ‘best available‘ modeling. 
Initially simple models are likely to be considered, given 
available data. Later more sophisticated models, possibly 
within ensembles, are likely to useful. In our analysis we 
have found that this is supported by the preference for 
simple predictive models initially and lagged neighbor-
hood models later. The basic fact that model performance 
varies during the pandemic is an important fundamental 
takeaway from these performance assessments. The fact 
that the best models for later stages of the pandemic 
include neighborhood effects is also an important aspect 
of the predictive modeling that should be taken on board: 
Covid-19 spread is spatial as well as temporal in nature.
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